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Abstract. Named entity recognition and classification (NERC) is fun-
damental for natural language processing tasks such as information ex-
traction, question answering, and topic detection. State-of-the-art NERC
systems are based on supervised machine learning and hence need to be
trained on (manually) annotated corpora. However, annotated corpora
hardly exist for non-standard languages and labeling additional data
manually is tedious and costly. In this article, we present a novel method
to automatically generate (partially) annotated corpora for NERC by ex-
ploiting the link structure of Wikipedia. Firstly, Wikipedia entries in the
source language are labeled with the NERC tag set. Secondly, Wikipedia
language links are exploited to propagate the annotations in the target
language. Finally, mentions of the labeled entities in the target language
are annotated with the respective tags. The procedure results in a par-
tially annotated corpus that is likely to contain unannotated entities.
To learn from such partially annotated data, we devise two simple ex-
tensions of hidden Markov models and structural perceptrons. Empiri-
cally, we observe that using the automatically generated data leads to
more accurate prediction models than off-the-shelf NERC methods. We
demonstrate that the novel extensions of HMMs and perceptrons effec-
tively exploit the partially annotated data and outperforms their baseline
counterparts in all settings.

1 Introduction

The goal of named entity recognition and classification (NERC) is to detect and
classify sequences of strings that represent real-world objects in natural language
text. These objects are called entities and could for instance be mentions of
people, locations, and organizations. Named entity recognition and classification
is thus a fundamental component of natural language processing (NLP) pipelines
and a mandatory step in many applications that deal with natural language text,
including information extraction, question answering, news filtering, and topic
detection and tracking [32] and has received a great deal of interest in the past
years.

State-of-the-art methods for detecting entities in sentences use machine learn-
ing techniques to capture the characteristics of the involved classes of entities.
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Prominent methods such as conditional random fields [23, 22] and structural sup-
port vector machines [2, 46, 48] need therefore to be adapted to annotated data
before they can be deployed. Such data is for instance provided by initiatives
such as CoNLL1 that put significant effort in releasing annotated corpora for
practical applications in major languages including English, German [41], Span-
ish, Dutch [40], Italian2, and Chinese [49]. Although there are corpora for a few
minor languages such as Catalan [27], there exist about 6,500 different languages
and a large fraction thereof is not covered by NLP resources at all.

From a practitioners point of view, the performance of NERC systems highly
depends on the language and the size and quality of the annotated data. If the
existing resources are not sufficient for generating a model with the required
predictive accuracy the data basis needs to be enlarged. However, compiling a
corpus that allows to learn models with state-of-the-art performance is not only
financially expensive but also time consuming as it requires manual annotations
of the collected sentences. Frequently, the annotation cannot be left to laymen
due to the complexity of the domain and it needs to be carried out by trained
editors to deal with the pitfalls and ambiguity. In the absence of appropriate
resources in the target language, the question rises whether existing corpora in
another, perhaps well-studied language could be leveraged to annotate sentences
in the target language. In general, cross-lingual scenarios, for instance involving
parallel corpora, provide means for propagating linguistic annotations such as
part-of-speech tags [51, 12], morphological information [44], and semantic roles
[35]. In practice, however, creating parallel corpora is costly as, besides anno-
tating the text, sentences need to be aligned so that translation modules can be
adapted. Existing parallel corpora are therefore often small and specific in terms
of the covered domain.

In this article, we study whether multilingual and freely available resources
such as Wikipedia3 can be used as surrogates to remedy the need for annotated
data. Wikipedia, the largest on-line encyclopedia, has already become a widely
employed resource for different NLP tasks, including Word Sense Disambiguation
[30], semantic relatedness [18] or extracting semantic relationships [39]. So far,
only few contributions involving Wikipedia focus on multilingual components
such as cross-language question answering [16].

We present a novel approach to automatically generate (partially) anno-
tated corpora for named entity recognition in an arbitrary language covered
by Wikipedia. In the remainder, we focus on NERC and note that our ap-
proach is directly applicable to other NLP tasks such as part-of-speech tagging
and word sense disambiguation. Our method comprises three stages. In the first
stage, Wikipedia entries are labeled with the given NERC tag set. The second
stage uses Wikipedia language links to map the entries to their peers in the
target language. The third stage consists of annotating the detected entities in
sentences in the target language with their corresponding tag. Note that the

1 http://ifarm.nl/signll/conll/
2 http://evalita.fbk.eu/
3 http://www.wikipedia.org/
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methodology leaves entities that are not linked within Wikipedia unannotated.
Consequentially, the procedure results in partially labeled corpora which likely
contain unannotated entities. We therefore devise two novel machine learning
algorithms that are specifically tailored to process and learn from such partially
annotated data based on hidden Markov models (HMMs) and structural per-
ceptrons.

Empirically, we demonstrate that with simple extensions, machine learning
algorithms are able to deal with this low-quality inexpensive data. We evalu-
ate our approach by automatically generating mono- and cross-lingual corpora
that are orders of magnitude larger than existing data sets. Empirically, we ob-
serve that using the additional data improves the performance of regular hidden
Markov models and perceptrons. The novel semi-supervised algorithms signifi-
cantly improve the results of their baseline counterparts by effectively exploiting
the nature of the partially annotated data.

The remainder is structured as follows. Section 2 reviews related approaches
to generate corpora using Wikipedia. We present the automatic generation of
cross-lingual corpora using Wikipedia in Section 3 and Section 4 introduces the
machine learning methods for learning from partially labeled data. We report
on our empirical results in Section 5 and Section 6 concludes.

2 Wikipedia-based Corpus Generation

There are several techniques that classify Wikipedia pages using NERC labels as
a preliminary step for different applications. Some of those applications include,
for instance, to extend WordNet with named entities [47], to provide additional
features for NERC [21], or even to classify Flickr tags [34]. However, how these
techniques can be employed to generate tagged corpora is largely understudied.
In the remainder of this section, we review three approaches that are related to
our work.

Mika et al. [31] aim to improve named entity recognition and classification
for English Wikipedia entries using key-value pairs of the semi-structured info
boxes. Ambiguity is reduced by aggregating observed tags of tokens (the values)
with respect to the fields of the info boxes (the keys). Regular expressions are
used to re-label the entities. Rather than complete sentences, the final output
consists of text snippets around the detected entities. Their approach ignores
language links and is therefore restricted to mono-lingual scenarios.

Nothman et al. [33] and Richman and Schone [38] propose methods to assign
NERC tags to Wikipedia entries by manually defined patterns, key phrases, and
other heuristics, respectively. [38] for instance devise key phrases that serve as
a simple heuristic for assigning labels to categories and observe reasonable pre-
cision by tagging categories containing the words people from as person, those
including the word company as organization, and those including country as
location, etc. The two approaches focus on extracting completely annotated sen-
tences which results in two major limitations. There is the risk of erroneously
annotating tokens due to overly specified rules and heuristics because sentences
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must be annotated completely and consequentially, large parts of the corpus are
discarded because they are likely to contain false negatives (entities which are
not annotated). Compared to [38], we take a different approach by only anno-
tating entities with high confidence and leaving the remaining tokens unlabeled.
By doing so, our method acts on a much larger data basis. The final models are
trained on the partially annotated sentences and render the use of heuristics and
manually crafted rules unnecessary.

Alternative approaches to ours are self-training or distant supervision meth-
ods. Knowledge bases like Wikipedia are used to automatically extract informa-
tion (e.g,. entities) that are used to train a classifier which is then used to detect
even more entities in the resource, etc. [4]. A general problem with self-training
is that the initial models are trained on only a few data points and often do not
generalize well. As a consequence, erroneous tags enter the training data and
may dominate the whole training process.

3 Generating Annotated Corpora using Wikipedia

This section presents our approach to automatically generate (partially) an-
notated corpora for named entity recognition and classification. Our method
exploits the link structure of Wikipedia as well as the linkage between Wiki-
pedias in different languages. The proposed methodology consists of 3 stages.
Firstly, Wikipedia entries in the source language are annotated with the respec-
tive NERC tag set (Section 3.1). Secondly, the annotated entries are projected
into the target language by following cross-lingual Wikipedia links (Section 3.2).
Thirdly, anchor texts in the target language linking to previously annotated
entries are labeled with the corresponding tag (Section 3.3).

Figure 1 illustrates the cross-lingual setting for English (left, source language)
and Spanish (right, target language). For each language, there are two entries
linking to the river Danube (Spanish: Danubio). The black pointer indicates the
language link from the Spanish Wikipedia page to its peer in English. To generate
a corpus in Spanish using English as source language we proceed as follows. The
mentions of Danube are tagged as location and propagated by links 1 and 2 to
the Danube entry. In our simple scenario, the resulting distribution (person:0,
location:2, ...) clearly indicates that this entry should be annotated as a location.
Using the Wikipedia language link (link 3), the annotation is propagated to the
Spanish entry Danubio which is also tagged as location. Finally, anchor texts in
the Spanish Wikipedia of links four and five pointing to Danubio are accordingly
annotated as locations. We obtain a partial annotation of the Spanish Wikipedia
where mentions of Danubio are tagged as location.

Table 1 shows an exemplary sentence and its partial annotation. According
to described procedure, Danubio is successfully annotated as a location. Words
that are not linked to Wikipedia entries such as que as well as words that do
correspond to Wikipedia entries but have not been processed yet such as Carlo-
magno remain unlabeled. Since not all entries can be resolved, the final corpus
is only partially annotated.
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Fig. 1. Wikipedia link structure.

Table 1. A partially annotated sentence.

Carlomagno contribuyó a que el Danubio fuese navegable

? ? ? ? ? B-LOC ? ?

In the remainder, we focus on the English CoNLL-2003 tags, however we
note that the choice of the tags is problem dependent and the incorporation of
other tagsets is straight forward. The CoNLL-2003 tags are PER (person), LOC
(location), ORG (organization), MISC (miscellaneous), and O (not an entity).
In the following, we introduce our strategy in greater detail.

3.1 Annotating Wikipedia Entries

Our approach to labeling Wikipedia entries with elements of the tag set is based
on existing resources. More specifically, we use the freely-available version of
Wikipedia from [3], which provides a version of the English Wikipedia with
several levels of semantic and syntactic annotations. These annotations have
been automatically generated by state-of-the-art algorithms (see [3] for details).
Moreover, this corpus preserves the Wikipedia link structure.

Note that the maximal possible number of annotations of the corpus depends
on the number of links pointing to the Wikipedia entries in the source language.
While some entries such as Danube are supported by more than 1,000 mentions
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Table 2. Mismatch of annotation (center row) and linked text (bottom row) for an
exemplary sentence.

· · · are of the Corts of Barcelona from 1283
· · · O O O B-MISC O B-LOC O O
· · · O O O wiki/Corts of Barcelona O wiki/1283

others such as Holidays with Pay (Agriculture) Convention, 1952 are almost not
interlinked at all within Wikipedia. As a consequence, annotations will hardly
be generated from this entry and the existing ones may be noisy due to ambi-
guity. However note that even if only highly interlinked entries are selected, a
considerably large set of entries needs to be labeled to build a corpus with a
reasonable number of annotations.

We proceed by propagating the annotations to the entries. Every tagged
anchor link that is concisely tagged propagates its annotation, while mismatches
between linked text and annotation are discarded. Table 2 shows an example of
such a mismatch. The link Cort of Barcelona remains unused because neither
MISC or LOC completely cover the linked text. Recall Figure 1 for another
example. The anchor text linked to the English Wikipedia page Danube (links 1
and 2) is tagged as a location and the corresponding label LOC is assigned to the
entry. The major advantages of this approach are twofold. First, it significantly
reduces the human effort as no manual annotations are needed. Second, it does
not depend on the language dependent category structure. Thus, this approach
is generally applicable with any tagged subset of Wikipedia.

Table 3 shows the number of perfect matches between tags and Wikipedia
links. Very frequent entries such as Barcelona or Danube are mostly tagged as
locations while others like Barcelona Olympics do not show a clearly identifiable
peak or are even associated with more than one label as for instance the entry
Barnet. In general, there are many links to a Wikipedia page and the provided
tags are not always perfect. It is thus necessary to reduce the number of ambigu-
ous entities, that is Wikipedia entries that can be associated to more than one
tag such as schools which can be either tagged as organization or as location,
depending on the context.

Our approach however naturally allows for detecting ambiguous entities as
all occurrences of tags are collected for an entry. Their counts simply serve as
indicators to detect ambiguity. We observe a clear peak in the tag-distribution
when an entity is not ambiguous; the majority of the annotations correspond to
the true class of the respective entities. Thus, a simple strategy to reduce the
noise of the tagging and to select a unique label for an entry is to perform a
majority voting which corresponds to a maximum-a-posteriori prediction given
the tag distribution. In practice, it is beneficial to incorporate a threshold θ to
select only those Wikipedia entries that have been tagged at least θ-times and
to filter entries whose ratio between the first and the second most common label
is greater than α.
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Table 3. Example of the different counting associated to CoNLL labels

LOC PER ORG MISC

Danube 1391 31 16 8

Barcelona 3,349 14 1 0

Barcelona Olympics 2 4 2 5

Barnet 33 10 74 0

Table 4 shows the label distribution for θ = 30 and α = 0.4 (Wikipedia) for
65,294 Wikipedia entries that are labeled by our method. For comparison, we
include the approach by [38] (Category), which maps Wikipedia categories4 to
named entity tags. When applying this tagging technique, we use the same set of
key phrases and results from [47], who labeled Wikipedia categories manually. In
a few cases multiple assignments are possible; in these cases, we assign the tags
to the category matching the most key phrases. Using the category strategy, we
obtain NE labels for 755,770 Wikipedia entries. Note that there is no Wikipedia
entry assigned to MISC as the original list of key phrases does not include a list
for the tag miscellaneous. Further note that it is generally difficult to define key
phrases and detection rules for inhomogeneous entity classes such as miscella-
neous which are often inalienable in NER as they pool entities that cannot be
associated with high confidence to one of the other classes. Another drawback of
the category approach is that the entries are found via the Wikipedia category
structure and that there is no guarantee for obtaining highly interlinked entries.
Recall that the number of annotated entities in our procedure is equivalent to
the number of links pointing to entries. The number of resulting annotations
cannot be controlled by the category approach. For instance, the category ap-
proach leads to 13M and 800K entities for the mono-lingual English → English
and the cross-language English → Spanish experiments, respectively. While our
approach resulted in 19M and 1.8M entities, respectively.

Table 4. Entity distribution for our method (Wikipedia), the category approach [38]
(Category), and manually labeled results from [47] (Manual).

Wikipedia Category Manual

Label Entries % Entries % Entries %

LOC 12,981 19.8 149,333 19,7 404 11.4

ORG 17,722 27.1 107,812 14,2 55 1.5

PER 29,723 45.5 498,625 65,9 236 6.7

MISC 4,868 7.4 - - - -

O - - - - 2,822 80.2

AMB - - - - - -

65,294 755,770 3,517

4 https://en.wikipedia.org/wiki/Help:Category
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Table 5. Wikipedia cross-language links.

Links Direction #Links

French→ English 730,905

English→ French 687,122

Spanish→English 480,336

English→Spanish 475,921

Catalan→English 200,090

English→Catalan 163,849

Dutch→English 167,154

English→Dutch 145,089

Icelandic→English 29,623

English→Icelandic 25,887

3.2 Cross-lingual propagation

Once the NERC tags are assigned to Wikipedia entries in the source language,
we project these assignments to Wikipedia entries in the target language. This
approach exploits the cross-lingual links between Wikipedias in the respective
languages, provided that a Wikipedia cross-language link exists between two
entries.

Note that links are not bi-directional, that is the existence of a link in one
direction does not necessarily imply the existence of the opposite direction. Ta-
ble 5 shows the number of language links between the English Wikipedia and
some smaller Wikipedias in French (1,008,744 entries), Spanish (655,537 entries),
Catalan (287,160 entries), Dutch (684,105 entries) and Icelandic (29,727 entries).
Particularly for non-popular languages, the number of cross-lingual links from
and to the English Wikipedia varies. Moreover, some of the links are not up-
dated, mistyped, or use different character encodings. For instance, we are only
able to map 262,489 Spanish Wikipedia entries out of the 480,336 language links
to the corresponding English counterparts. The opposite direction is supported
only by 160,918 entries. Nevertheless, apart from the coverage, the cross-lingual
propagation can be considered as almost error-free.

3.3 Corpus Annotation

Once the tags are assigned to Wikipedia entries in the target language, the an-
chor text of the links pointing to tagged entries are annotated with the respective
tag. We obtain a partially annotated corpus, as we have no information about
annotations for text outside the entity link. The next section deals with machine
learning techniques to learn from these partially annotated sentences.

4 Learning from Partially Annotated Data

Traditionally, sequence models such as hidden Markov models [36, 20] and vari-
ants thereof have been applied to label sequence learning [14] tasks. Learning
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Table 6. An exemplary sentence tagged with the mentioned entities.

x1 x2 x3 x4 x5 x6 x7
x = The Danube is Europe ’s second longest · · ·
y = O LOC O LOC O O O · · ·

y1 y2 y3 y4 y5 y6 y7

procedures for generative models adjust the parameters such that the joint like-
lihood of training observations and label sequences is maximized. By contrast,
from an application point of view, the true benefit of a label sequence predictor
corresponds to its ability to find the correct label sequence given an observation
sequence. Many variants of discriminative sequence models have been explored,
including maximum entropy Markov models [29], perceptron re-ranking [10, 11,
2], conditional random fields [23, 24], structural support vector machines [2, 48],
and max-margin Markov models [46]. In this Section, we present extensions of
hidden Markov models and perceptrons that allow for learning from partially
labeled data.

A characteristic of the automatically generated data is that it might include
unannotated entities. For instance, entity mentions may not be linked to the
corresponding Wikipedia entry or do not have an associated Wikipedia entry.
In cross-language scenarios, linked entries in the target sentences may not be
present in the source Wikipedia and thus cannot be resolved. While labeled
entities in the automatically generated data are considered ground-truth, the
remaining parts of the sentence likely contain erroneous annotations and the
respective tokens are thus treated as unlabeled rather than not an entity.

The following section introduces the problem setting formally. Section 4.2
and 4.3 present hidden Markov models and perceptrons for learning with par-
tially labeled data, respectively. Section 4.6 discusses ways to parameterize the
methods and Section 4.7 details their parallelization for distributed computing.

4.1 Preliminaries

The task in label sequence learning [14] is to learn a mapping from a sequential
input x = (x1, . . . , xT ) to a sequential output y = (y1, . . . , yT ), where each
observed token xt ∈ Ω is annotated with an element of a fixed output alphabet
yt ∈ Σ, see Table 6 for an example. Additionally, we observe some ground-truth
annotations of input x denoted by the set z = {(tj , σj)}mj=1 where 1 ≤ tj ≤ T
and σj ∈ Σ.

Given a sample of n pairs (x1, z1), . . . , (xn, zn) the set of labels zi determine
the learning task. If for all zi = ∅ holds, observations are unlabeled and the
setting is called an unsupervised learning task. In case |zi| = Ti for 1 ≤ i ≤ n
all observed tokens are labeled and we recover the standard supervised scenario.
If sequences are either completely annotated or completely unannotated a semi-
supervised learning task is obtained, however, the focus of this article lies on
learning with partially annotated data which generalizes the standard learning
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Fig. 2. Hidden Markov model (left) and Markov random field (right) for label sequence
learning. The xt denote observations and the yi their corresponding latent variables.

tasks and does not make any assumption on the zi. In the remainder we use
x[1:t] as a shorthand for the sub-sequence x1, . . . , xt of x.

4.2 Hidden Markov Models for Partially Annotated Data

We now extend hidden Markov models (HMMs) to learn from partially anno-
tated data. The novel method combines supervised and unsupervised learning
techniques for HMMs and we briefly review HMMs and the Baum-Welch algo-
rithm in Section 4.2, respectively.

Hidden Markov Models Hidden Markov models are generative sequential
models [37]. Their underlying graphical model describes how pairs (x,y) are
generated and is depicted in Figure 2 (left). That is, a (first-order) hidden Markov
model places an independence assumption on non-adjacent factors and computes
the joint probability P (x,y) by

P (x,y) = P (y1)

T∏
t=1

P (xt|yt)
T−1∏
t=1

P (yt+1|yt).

Priors πσ = P (y1 = σ), transition probabilities A = (aστ )σ,τ∈Σ with aστ =
P (yt+1 = τ |yt = σ) and observation probabilities B(x) = (bσ(xt))σ∈Σ,1≤t≤T
with bσ(xt) = P (xt|yt = σ) need to be adapted to the data. Usually, the param-
eters θ = (π,A,B) are estimated by maximizing the log-likelihood

θ∗ = argmax
θ

n∑
i=1

logP (x,y|θ).

Once optimal parameters θ∗ have been found, they are used as plug-in esti-
mates to compute label distributions for unannotated sequences by means of the
Forward-Backward algorithm [37]. This algorithm consists of a left-to-right pass
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computing αt(σ) and a right-to-left pass that computes βt(σ). The auxiliary
variables are defined as

αt(σ) = P (x[1:t], yt = σ|θ) =

{
πσbσ(x1) : t = 1∑

τ [αt(τ)aτσ] bσ(xt+1) : otherwise

βt(σ) = P (x[t+1:T ]|yt = σ, θ) =

{
1 : t = T∑

τ aστ bτ (xt+1)βt+1(τ) : otherwise,

and the probability for yt taking label σ is given by

P (yt = σ|x, θ) =
αt(σ)βt(σ)∑
τ αt(τ)βt(τ)

.

Expectation Maximization In the absence of (partial) labels, that is
⋃
z = ∅,

only unlabeled input sequences x1, . . . ,xn are given. In this unsupervised case
the Baum-Welch algorithm [5] is often used to learn parameters of hidden Markov
models. The algorithm takes the number of possible states as input parameter
and initializes the first model randomly. It then maximizes the data likelihood
by an Expectation-Maximization (EM) procedure [13] consisting of two alter-
nating steps. The Expectation-step computes the most likely annotations for the
unlabeled sequences given the input sequences and the model. The Maximiza-
tion-step re-estimates the model parameters given the input sequences and the
previously computed annotations. The method is a variant of self-training and
converges to a local optimum.

Hidden Markov Models for Partially Annotated Data We now propose
an extension of hidden Markov models that learns from partially labeled data
{(xi, zi}ni=1. The distribution of the labels zi can be arbitrary and if |zi| = Ti
for all i or in case

⋃
zi = ∅ we recover the supervised and unsupervised hidden

Markov models as special cases, respectively.
The idea is to revise the Expectation-Maximization framework as follows and

grounds on the observation that annotated tokens do not need to be estimated
during the Expectation-step. Conversely, we may use original EM updates for
treating unannotated tokens as these may need to be re-estimated. This obser-
vation can be incorporated into the Forward-Backward procedure by altering
the definition of the involved probabilities α and β so that the modified variants
always chooses the ground-truth label for annotated tokens. The Maximization-
step is identical to the original Baum-Welch algorithm but uses the modified α̃
and β̃ variables. The modified variables are defined as

α̃t(σ) = P (x[1:t], z≤t, yt = σ|θ) =

{
0 : if (t, τ) ∈ z ∧ τ 6= σ

αt(σ) : otherwise

β̃t(σ) = P (x[t+1:T ], z>t|yt = σ, θ) =

{
0 : if (t, τ) ∈ z(yt) ∧ τ 6= σ

βt(σ) : otherwise.

where z≤t = {(t′, τ) ∈ z : t′ ≤ t} denotes the set of annotated tokens up to
position t and z>t = z \ z≥t are the labeled tokens at positions greater than
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t. Marginalizing over the unannotated positions gives us the desired quantities;
the distribution of labels at position t is for instance given by

P (yt = σ|x, z, θ) =
α̃t(σ)β̃t(σ)∑
τ α̃t(τ)β̃t(τ)

.

The above computation schema enforces P (yt = σ|x, z) for every annotated
token (t, σ) ∈ z and P (yt = τ |x, z) = 0 for alternative labels τ 6= σ. For
unlabeled tokens xt the original Expectation-Maximization updates are used.
Note that this algorithm is a special case of [42].

4.3 Structured Perceptrons for Partially Labeled Data

The sequential learning task can alternatively be modeled in a natural way by
an undirected Markov random field where we have edges between neighboring
labels and between label-observation pairs, see Figure 2 (right). The conditional
density P (y|x) factorizes across the cliques [19] and different feature maps can
be assigned to the different types of cliques, that is φtrans for transitions and φobs
for emissions [2, 23]. Finally, interdependencies between x and y are captured
by an aggregated joint feature map φ : X × Y → Rd,

φ(x,y) =

(
T∑
t=2

φtrans(x, yt−1, yt)
>,

T∑
t=1

φobs(x, yt)
>

)>
.

We are only interested in the maximum-a-posteriori label-sequence which gives
rise to log-linear models of the form

P (y|x) ∝ w>φ(x,y).

The feature map exhibits a first-order Markov property and as a result, decoding
can be performed by a Viterbi algorithm [17, 43] in O(T |Σ|2),

ŷ = f(x;w) = argmax
ỹ∈Y(x)

w>φ(x, ỹ). (1)

In the remainder, we will focus on the 0/1- and the Hamming loss to compute
the quality of predictions,

`0/1(y, ŷ) = 1[y 6=ŷ]; `h(y, ŷ) =

|y|∑
t=1

1[yt 6=ŷt] (2)

where the indicator function 1[u] = 1 if u is true and 0 otherwise.

4.4 Loss-augmented Structured Perceptrons

The structured perceptron [10, 2] is analogous to its univariate counterpart, how-
ever, its major drawback is the minimization of the 0/1-loss which is generally
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too coarse for differentiating a single mislabeled token from completely erroneous
annotations. To incorporate task-dependent loss functions into the learning pro-
cess, we make use of the structured hinge loss of a margin-rescaled SVM [48,
28].

Given a sequence of fully labeled (x1, z1), (x2, z2), . . . where |zi| = Ti, the
structured perceptron generates a sequence of models w0 = 0,w1,w2, . . . as
follows. At time t, the loss-augmented prediction is computed by

ŷt = argmax
ỹ∈Y(xt)

[
`(yt, ỹ)−w>t φ(xt,yt) + w>t φ(xt, ỹ)

]
= argmax

ỹ∈Y(xt)

[
`(yt, ỹ) + w>t φ(xt, ỹ)

]
.

Rescaling the margin with the actual loss `(yt, ỹ) can be intuitively motivated
by recalling that the size of the margin γ = γ̃/‖w‖ quantifies the confidence
in rejecting an erroneously decoded output ỹ. Re-weighting γ̃ with the current
loss `(y, ỹ) leads to a weaker rejection confidence when y and ỹ are similar,
while large deviations from the true annotation imply a large rejection threshold.
Rescaling the margin by the loss implements the intuition that the confidence
of rejecting a mistaken output is proportional to its error.

An update is performed if the loss-augmented prediction ŷt does not coincide
with the true output yt; the update rule is identical to that of the structured
perceptron and given by

wt+1 ← wt + φ(xt,yt)− φ(xt, ŷt).

After an update, the model favors yt over ŷt for the input xt, however, note
that in case ŷt = yt the model is not changed because φ(xt,yt)− φ(xt, ŷt) = 0
and thus wt+1 ← wt.

Margin-rescaling can always be integrated into the decoding algorithm when
the loss function decomposes over the latent variables of the output structure as
it is the case for the Hamming loss in Eq. (2). After the learning process, the
final model w∗ is a minimizer of a convex-relaxation of the theoretical loss (the
generalization error) and given by

w∗ = argmin
w

E
[

max
ỹ∈Y(x)

`(y, ỹ)−w> (φ(x,y)− φ(x, ỹ))

]
.

4.5 Transductive Perceptrons for Partially Labeled Data

We derive a straight-forward transductive extension of the loss-augmented per-
ceptron that allows for dealing with partially annotated sequences and arbitrary
(partial) labelings z [15]. The idea is to replace the missing ground-truth with
a pseudo-reference labeling for incompletely annotated observation sequences.
We thus propagate the fragmentary annotations to unlabeled tokens so that we
obtain the desired reference labeling as a makeshift for the missing ground-truth.
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Fig. 3. The constrained Viterbi decoding (emissions are not shown). If time t is an-
notated with σ2, the light edges are removed before decoding to guarantee that the
optimal path passes through σ2.

Following the transductive principle, we use a constrained Viterbi algorithm [7]
to decode a pseudo ground-truth yp for the tuple (x, z),

yp = argmax
ỹ∈Y(x)

w>φ(x, ỹ) s.t. ∀(t, σ) ∈ z : ỹt = σ.

The constrained Viterbi decoding guarantees that the optimal path passes through
the already known labels by removing unwanted edges, see Figure 3. Assuming
that a labeled token is at position 1 < t < T , the number of removed edges
is precisely 2(k2 − (k − 1)k), where k = |Σ|. Algorithmically, the constrained
decoding splits sequences at each labeled token in two halves which are then
treated independently of each other in the decoding process.

Given the pseudo labeling yp for an observation x, the update rule of the loss-
augmented perceptron can be used to complement the transductive perceptron.
Note that augmenting the loss function into the computation of the argmax gives
yp = ŷ if and only if the prediction ŷ fulfills the implicit loss-rescaled margin
criterion and φ(x,yp)− φ(x, ŷ) = 0 holds.

Analogously to the regular perceptron algorithm, the proposed transductive
generalization can easily be kernelized. Note that the weight vector at time t is
given by

wt = 0 +

t−1∑
j=1

φ(xj ,y
p
j )− φ(xj , ỹj)

=
∑

(x,yp,ŷ)

αx(yp, ŷ)
[
φ(x,yp)− φ(x, ŷ)

]
(3)

with appropriately chosen α’s that act as virtual counters, detailing how many
times the prediction ŷ has been decoded instead of the pseudo-output yp for
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an observation x. Thus, the dual perceptron has virtually exponentially many
parameters, however, these are initialized with αx(y,y′) = 0 for all x,y,y′

so that the counters only need to be instantiated once the respective triplet is
actually seen. Using Eq. (3), the decision function depends only on inner products
of joint feature representations which can then be replaced by appropriate kernel
functions k(x,y,x′,y′) = φ(x,y)>φ(x′,y′).

4.6 Parametrization

The presented extensions of hidden Markov models and structural perceptrons
learn from labeled and unlabeled tokens. In practical applications, the unlabeled
tokens usually outnumber the labeled ones and thus dominate the optimization
problems and consequentially valuable label information does only have little
or no impact at all on the final model. A remedy is to differently weight the
influence of labeled and unlabeled data or to increase the influence of unlabeled
examples during the learning process.

For the hidden Markov models, we introduce a mixing-parameter 0 ≤ λ ≤ 1
to balance the contribution of labeled and unlabeled tokens such that the final
model can be written as

HMMfinal(D) = (1− λ)HMMS(DL) + λHMMU (DU ),

where HMMS(DL) and HMMU (DU ) correspond to supervised (HMMS) and un-
supervised (HMMU ) HMMs which are solely trained on the labeled part DL and
unlabeled part DU of the data D = DL

⋃
DU , respectively. For the perceptrons,

we parameterize the Hamming loss to account for labeled and unlabeled tokens,

`h(yp, ŷ) =

|yp|∑
t=1

λ(z, t)1[ypt 6=ŷt]

where λ(z, t) = λL if t is a labeled time slice, that is (t, ·) ∈ z, and λ(z, t) = λU
otherwise. Appropriate values of λHMM , λL and λU can be found using cross-
validation or using holdout data.

4.7 Distributed Model Generation

The discussed hidden Markov models and perceptrons can easily be distributed
on several machines. For instance, EM-like algorithms process training instances
one after another and store tables with counts for each instance in the Estimation-
step. The counting can be performed on several machines in parallel as the tables
can easily be merged in a single process before the Maximization-step which is
again a single process. After the optimization, the actual model is distributed
across the grid for the next Expectation-step.

Perceptron-like algorithms can be distributed by using the results by Zinke-
vich et al. [53]. The idea is similar to that of EM-like algorithms. Equation
(3) shows that the order of the training examples is not important as long as
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Table 7. Descriptive statistics for the English → English corpora.

CoNLL Wikipedia

Tokens 203,621 1,205,137,774
Examples 14,041 57,113,370
Tokens per example 14.5 21.10

Entities 23,499 19,364,728
Entities per example 1.67 0.33
Examples with entity 79.28% 21.28%

MISC entities 14.63% 13.78%
PER entities 28.08% 29.95%
ORG entities 26.89% 32.80%
LOC entities 30.38% 23.47%

counters store the number of times they have been used for updates. Thus, the
model generation can be distributed across machines and a final merging process
computes the joint model which is then distributed across the grid for the next
iteration.

4.8 Related Work

Learning with partially labeled data generalizes semi-supervised learning [8]
which aims at reducing the need for large annotated corpora by incorporating
unlabeled examples in the optimization. Semi-supervised structural prediction
models have been proposed in the literature by means of Laplacian priors [24, 1],
entropy-based criteria [25], transduction [52], co-training [6], self-training [26],
or SDP relaxations [50]. Although these methods have been shown to improve
over the performance of purely supervised structured baselines, they do not re-
duce the amount of required labeled examples significantly as it is sometimes
the case for univariate semi-supervised learning. One of the key reasons is the
variety and number of possible annotations for the same observation sequence;
there are |Σ|T different annotations of a sequence of length T with tag set Σ
and many of them are similar to each other in the sense that they differ only
in a few labels. Furthermore, the above mentioned methods hardly scale for
Wikipedia-sized data sets. Thus the closest method to the proposed extension of
the structural perceptron is [45]. Both approaches rely on the same underlying
graphical model and types of features, and use EM-like optimization strategies.
We thus consider them as of the same family of approaches and note that our
approach is conceptionally simpler than the one presented in [45].

5 Evaluation

In this section we report on our empirical evaluation of the automatic corpus
generation. The remainder of this section is organized as follows. Section 5.1
summarizes the CoNLL data sets and Section 5.2 details our experimental setup.
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We report on mono-lingual results for English in Section 5.3 and summarize the
cross-lingual experiments in Section 5.4.

5.1 CoNLL Corpora

We use the English, Spanish and Dutch versions of Wikipedia to evaluate our
system since manually annotated corpora are available for these languages. We
use the corpora provided by CoNLL shared tasks in 2002 [40] and 2003 [41].
The CoNLL’2003 shared task [41] corpus for English includes annotations of
four types of entities: person (PER), organization (ORG), location (LOC), and
miscellaneous (MISC). This corpus is assembled of Reuters News5 stories and
divided into three parts: 203,621 training, 51,362 development, and 46,435 test
tokens.

In the CoNLL’2002 shared task for Spanish and Dutch, entities are annotated
using the same directives as in the English CoNLL’2003 corpus and hence com-
prise the same four types. The Spanish CoNLL’2002 corpus [40] consists of news
wire articles from the EFE6 news agency and is divided into 273,037 training,
54,837 development and 53,049 test tokens. The Dutch CoNLL’2002 corpus [40]
consists of four editions of the Belgian newspaper “De Morgen” from the year
2000. The data was annotated as part of the Atranos project at the University
of Antwerp. The corpus consists of 202,644 training, 37,687 development and
68,875 test tokens.

Our cross-language scenarios are based on tagged versions of Wikipedia. For
English, we use the freely available resource provided by [3] as a starting point
while for Spanish, we tagged the complete Spanish Wikipedia using a classifier
based on the supersense tagger (SST) [9].

5.2 Experimental Setup

We use the original split of the CoNLL corpora into training, development,
and test data, where the development data is used for model selection. In each
experiment we compare traditional hidden Markov models and structural loss-
augmented perceptrons with their extensions for learning from partially labeled
data, respectively, as introduced in Section 4. The baselines are trained on the
CoNLL training sets in the target language while their extensions additionally
incorporate the automatically labeled data into the training processes. Percep-
trons use 4 different groups of features, the word itself, its stem, part-of-speech,
and shape/surface-clues. Features are encoded using a hash function with 18
bits, allowing for a maximum of 218 dimensions. We report on averages over 10
repetitions where performance is computed on the respective CoNLL test split
in the target language.

5 http://www.reuters.com/
6 http://efe.com/
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Fig. 4. Performance for English → English: HMM (left) and Perceptron (right).

5.3 Mono-language: English → English

The goal of the mono-lingual experiment is to study an ideal scenario where
every entity is trivially mapped to itself instead of applying the cross-language
scenario. By doing so, every detected entity is preserved and does not have to
be discarded because of missing language links. Table 7 shows some descriptive
statistics of the obtained corpus. As expected, entity annotations are sparser
in the automatically generated corpora compared to the CoNLL training set
because of false negatives as the automatically generated corpus is only partially
labeled.

Using our procedure we obtain an automatically generated corpus that is
about 6,000 times larger than the CoNLL training set. To assess the importance
of the size of the additional sample, we randomly sample the generated corpus
into smaller subsets.

Figure 4 shows the F1 performance for varying sizes of additional Wikipedia
data for hidden Markov models (left) and structural perceptrons (right). Both
algorithms perform significantly better than their traditional counterparts. The
HMM+Wikipedia however cannot benefit from an increasing number of addi-
tional sentences due to the limited feature representation by point-distributions.
By contrast, the Wikipedia enhanced perceptron uses a much richer set of fea-
tures and clearly improves its performance in terms of the number of available
additional data. The improvement is marginal but significant.

5.4 Cross-language Experiments

In this section, we present results on the cross-language experiments, English→
Spanish, English → Dutch and finally Spanish → English. The data generation
follows the protocol described in Section 3.

Table 8 compares the CoNLL and the automatically generated corpora from
Wikipedia for Dutch and Spanish. As before, the generated corpora are sev-
eral orders of magnitude larger than their CoNLL counterparts in all respects,
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Table 8. Descriptive statistics for the English→ Spanish and English→ Dutch corpora

Spanish Dutch
CoNLL Wikipedia CoNLL Wikipedia

Tokens 264,715 257,736,886 202,644 139,404,668
Examples 8,323 10,995,693 15,806 8,399,068
Tokens per example 31.81 23.44 12.82 16.60

Entities 18,798 1,837,015 13,344 8,578,923
Entities per example 2.26 0.17 0.84 1.02
Examples with entity 74.48% 12.15% 46,49 % 46.22%

MISC 11.56% 10.59% 25.01% 16.16%
PER 22.99% 35.56% 35.35% 12.23%
ORG 39.31% 23.15% 15.60% 50.48%
LOC 26.14% 30.70% 24.04% 21.13%
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Fig. 5. Performance for English → Spanish: HMM (left) and Perceptron (right).

ranging from the number of tokens and examples to NERC annotations. Inter-
estingly, the Spanish data has fewer entities per example and a slightly different
NERC distribution than Dutch which shows a larger difference in the NERC
label distribution.

Figure 5 shows our empirical findings for the cross-language scenario English
→ Spanish. Although the differences are not as striking as in the mono-lingual
experiment, the results reflect the same trend. Again, both Wikipedia enhanced
methods consistently outperform the regular HMMs and perceptrons. While the
HMM+Wikipedia hardly benefits from adding more partially labeled data, the
performance of the perceptron+Wikipedia jumps for 4×10e6 additional tokens;
the absolute increase is again marginal but significant.

Figure 6 details results for cross-language from English to Dutch. While
the HMM shows a similar behavior as for English to Spanish, the perceptron
clearly suffers from including too many unlabeled examples. The last experi-
ment studies the cross-language scenario from Spanish to English. Since English
is the biggest Wikipedia and English NLP tools are usually more accurate, us-
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ing English Wikipedia as the source language seems to be a natural choice for
cross-lingual NERC. Nevertheless, Figure 7 shows the results for the uncommon
Spanish → English setting.

Both methods perform as expected and exhibit the already observed slight
increase in performance when more partially labeled data is added. While the
HMMs are clearly outperformed by the ones trained on the mono-lingual English
→ English data, the perceptron surprisingly increases the performance of its
single-language peer. We assume that the Wikipedia language links act like a
filter for ambiguous entities so that the final bi-lingual corpus contains less noise
than the mono-language data. As a consequence, the corpus generated by the
cross-language approach reflects the true distribution of entities in English better
than the mono-lingual counterpart where every single entity is preserved.
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Table 9. Descriptive statistics for the Spanish → English corpora.

CoNLL Wikipedia

Tokens 203,621 1,205,137,774
Examples 14,041 57,113,370
Tokens per example 14.5 21.10

Entities 23,499 11,917,106
Entities per example 1.67 0.67
Examples with entity 79.28% 41.65%

MISC entities 14.63% 19.42%
PER entities 28.08% 12.86%
ORG entities 26.89% 33.87%
LOC entities 30.38% 33.85%

6 Conclusions

We studied cross-language named entity recognition and classification (NERC)
and presented an automatic approach to generate partially annotated corpora
automatically from Wikipedia. Our method consisted of three stages. Firstly, we
assigned the NERC tags to Wikipedia entries in the source language. Secondly,
we exploited Wikipedia language links to translate entries into the desired tar-
get language. Thirdly, we generated a partially labeled corpus by annotating
sentences from Wikipedia in the target language.

We devised simple extensions of hidden Markov models and loss-augmented
perceptrons to learn from the partially annotated data. The data generation
as well as the proposed extensions to the traditional learning algorithms were
orthogonal to state-of-the-art approaches and could be easily included in any
structural prediction model such as structural support vector machines and con-
ditional random fields.

Our empirical results showed that using the automatically generated corpus
as additional data is beneficial and leads to more accurate predictions than off-
the-shelf methods. The observed improvements in performance were marginal
but significant. We remark that NERC is mandatory for high-level text pro-
cessing and that small improvements might have a large impact on higher-level
applications as errors accumulate across the processing pipeline.

Future work will extend the presented figures with results for more partially
labeled data and address the impact of the number of cross-language links of
Wikipedia and the assignment of the labels to Wikipedia entries. We also intend
to exploit the context of Wikipedia entities given by the link structure as an
alternative denoising step. Although we focused on NERC as underlying task,
our approach is generally applicable and can be straight-forwardly adapted to
other NLP tasks including word sense disambiguation and part-of-speech tagging
so that another interesting line of research is to extend our method to other
sequential tasks.
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