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Abstract

We consider the problem of identifying primary categories of a business listing
among the categories provided by the owner of the business, in order to
enhance local search and browsing. The category information submitted by
business owners cannot be trusted with absolute certainty since they may
purposefully add some secondary or irrelevant categories to increase recall
in local search results, which makes category search very challenging for
local search engines. Thus, identifying primary categories of a business is
a crucial problem in local search. This problem can be cast as a multi-
label classification problem with a large number of categories. However, the
large scale of the problem makes it infeasible to use conventional supervised-
learning-based text categorization approaches.

We propose a large-scale classification framework that leverages multi-
ple types of classification labels to produce a highly accurate classifier with
fast training time. We effectively combine the complementary label sources
to refine prediction. The experimental results indicate that our framework
achieves very high precision and recall and outperforms a competitive base-
line using a centroid-based method.

We also propose a new ranking feature based on the mapping of queries
and documents to category space and show that the new feature leads to
ranking relevance improvements for local search.
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1. Introduction

Consumers accessing online information through their handset devices
is one of the main reasons why local search is outgrowing Desktop search.
Recent studies show that at least 20% of Web queries have some sort of local
intent [31]. Local search queries usually respond to an instant informational
need, and they are gaining traction among marketeers because they are issued
by users deeper in the purchase funnel, who are more likely to make quick
decisions. Local search intent spans different types, from a user wanting to
find a shop nearby to learning the development of recent news events. As
with generic vertical search, relevance is domain-specific and comprises many
different well-defined aspects like relatedness, closeness, reputation among
others. Different types of queries in local search pose different challenges for
ranking, and the results quality yielded by search engines differ; for instance,
category queries such as “Restaurants" are known to be harder than business
name queries such as “Best Buy" [17].

In this paper we focus on the problem of business ranking. The main
source of information are registered business listings which provide infor-
mation of varying quality about a physical store. One of the challenges in
category queries in local search is that category descriptions submitted by
business owners are often incorrect. For instance, it is a common practice
from owners registering their business to add some secondary or irrelevant
categories in order to increase recall. For example, the owner of a Japanese
restaurant may add “Korean Restaurants" to the category description of the
business, in the hope that her store may appear in the search results for the
query “Korean Restaurants" as well as for the query “Japanese restaurants".
This motivates the problem of identifying primary (or true) categories of a
business. This can be regarded as an multi-label classification problem [26]
in which we can assign multiple primary categories to a business.

Text categorization has been an active field of research in the natural
language processing and machine learning communities (See Section 2). The
scenario just portrayed, however, differs from previous studies in that the
large number of categories in local search (2000 categories in total) makes
it impossible to use most of the conventional supervised-learning-based text
categorization methods.
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This work presents a solution to the large-scale primary category predic-
tion (multi-label classification) problem by combining three complementary
sources of information (business labels):

• Labels provided by human judges

• Labels provided by business owners

• Click signals provided by users in local search

The first step is to derive a set of highly predictive features from labels
from business owners and click signals. Then, a classifier is trained from
these features using labels by human judges as targets. These features are
engineered using textual similarity features, clicks and exploiting the relation-
ship between different categories of business listings. Experimental results
demonstrate that integrating these multiple sources of labels is highly ben-
eficial for a large-scale classification problem. In order to accommodate all
the different sources of information, we develop an iterative algorithm that
is able to discard incorrectly classified labels. We demonstrate that, under
certain benign conditions such that the confidence of the classifier exceed a
certain threshold, the algorithm improves classification accuracy. Further-
more, we make use of the category (taxonomy) structure in order to generate
classifiers with a lower error rate.

A second main contribution of this paper is to develop a new rank feature
that leverages our primary category classifier. The key idea of this new
feature is to map queries and documents (listings) to category space and
perform matching in the same category space. The outcome of an experiment
using a large number of queries coming from a commercial search engine
demonstrates that the derived classification features can directly improve
relevance significantly.

The techniques developed here can be applied to learn highly effective
ranking models for local search results, as well as serving as tools to provide
browsing capabilities over faceted search results, which have been enriched
with category information. This is crucial when the search is performed in
an environment with limited display capabilities such a mobile device [11].

This paper is organized as follows. Section 2 summarizes previous work
related to this paper. Section 3 presents our proposed approach for primary
category prediction. In Section 4, we introduce a new rank feature based
on the primary category classifier. Section 5 reports experimental results for

3



primary category prediction and ranking. Finally, Section 6 concludes this
paper.

2. Related Work

The main bulk of this work is closely related to text categorization. Tex-
tual categorization is the task of assigning a category label from predefined
categories to a given document, comprised of textual features (as opposed
to multimedia classification), and it has been a blooming field of interest in
the machine learning and natural language processing/information retrieval
communities for over 20 years.

The predominant approach for automatic classification is to machine learn
a document representation using a hand-labelled partition of a document col-
lection. There has been a plethora of machine learning approaches introduced
for text categorization, such as k-Nearest Neighbors [23, 27], Naive Bayes
[18], Decision Trees [33, 35], Neural Networks [29] Support Vector Machines
(SVM) [1, 9, 15, 25] and Centroid Classifier [14, 20].

One of the key aspects of this is the document representation cost when
the algorithms have to deal with large-scale training and test sets. Non-
parametric data-based representations (like word-level unigrams or N-grams)
require a large amount of computational resources to store the high amount
low-level features. In our domain of interest (large scale multi-class classifi-
cation) this overhead is apparent at training but more critically at training
time. We employ a variant of the centroid classifier as our baseline [14],
which can be seen as a specialization of Rocchio’s method [24] (nearest cen-
troid classifier), which is widely adopted in the IR literature. The algorithm
computes one representation per class using the vector-space model, which
corresponds to the centroid vector of all the positive training instances (doc-
uments) for that category. Some prior work has shown that this method
provides comparable or superior performance to that of k-Nearest Neighbors
and 2/3-Gram Naive Bayes classifiers [14].

Most of the above approaches rely on labels provided by human judges.
In the context of web page classification and query classification, there have
been efforts to leverage click-through data [7, 19, 21] to improve classification
performance. Click-through data have been applied to other related problems
such as Web search ranking systems [8, 16].

Cao et al. [7] introduce a conditional random field classifier that is able to
classify search queries employing the information contained in user sessions
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(i.e., queries previously issued by the same user within a short time-span).
Kim et al. [19] leverage query logs with a semi-supervised algorithm, which
augments the training set by propagating labels from similar documents.
Similarity is defined by the click-graph, this is, two documents are regarded
similar when users click in both of them after issuing similar queries. Li et
al. [21] present an overview of the KDD-cup query classification challenge,
which describes systems and approaches for classifying 800K queries into 67
predefined classes. Joachims [16] presents an approach to optimize the re-
trieval effectiveness of search engines using click-through data, by learning
a SVM. Similarly, Chapelle and Zang [8] present a method to infer edito-
rial labels from query log and click information, using a Dynamic Bayesian
Network that provides relevance estimates for clicked documents. Previous
results have shown that categories are able to reduce the time spent by users
in finding a particular search result [11]. Given that we also focus enhancing
ranking with classification, in order to extract query-document features for
ranking business listings, we need to map the user query into the category
space in which the actual documents have been classified. Query classifica-
tion has been a key area of development for improving the performance of
search engines [22]. We highlight some works mostly related to ours. Broder
et al. [5] show how matches between ad creatives and queries can be im-
proved by an aggregation of classes of URLS returned as a query result list.
Relatedly, Bennet et al. [2] show that category features can be beneficial
for ranking Web search results, and experiment on a system that enriches
the Web search index with metadata related with the category information.
Blanco et al [3] propose a combination of a term- and a concept-based re-
trieval model that closes the semantic gap between queries and documents
expanding both of them with category information. We depart from those
works in several ways. The main focus of our work is to perform large-scale
classification as well as improving retrieval performance, as the former is also
important for providing browsing and filtering capabilities in the local search
scenario. This context is challenging, given the large number of classes the
algorithm has to deal with and also the domain is narrower than general Web
search, implying that there is a high content overlap between classes. Note
that this setting departs from other large-scale hierarchical text classifica-
tion initiatives,1 which target a larger number of classes (up to 300K) but

1http://lshtc.iit.demokritos.gr
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the amount of data is smaller (2.5M documents maximum), and the main
challenge is to overcome data-sparsity. Cissé et al. [10] assume that classes
can be arranged within a pre-established hierarchy and propose a method
that learns compact class codes using autoencoders which leverage a binary
code defined on similarity assumed to be available over the different classes.
Weston et al.Ê[34] present a general approach for converting an algorithm
which has linear time in the size of the set of labels to a sublinear one via
label partitioning, using a previously trained label scorer.

Our method also leverages different sources of labels, and learns to discard
unreliable labels in an iterative fashion. Furthermore, we exploit category
structure in order to enhance classification performance. In our work, we
do not rely on a single label source such as editorial labels or click-through
data. Instead, we aim at effectively combining multiple label sources to
improve the performance of text categorization in the context of local search.
All this highly predictive classification features are useful for improving the
effectiveness of a state of the art learning to rank function.

3. Predicting Primary Categories

In this section, we propose a machine learning approach to identify pri-
mary categories of a business listing page.

3.1. Problem Formulation
Let D = {d1, d2, . . .} be the set of all business listing pages stored in

a local search index and C = {c1, c2, . . .} be the set of all categories for
local businesses, as defined by human editors. We follow a vector-space
representation of business pages d, in which vector components are drawn
from the set T = {t1, t2, . . .}, comprising all terms appearing in D. The set
of categories assigned to a business listing d is denoted by Cd. Categories are
organized in a tree hierarchical manner, in which category nodes present in
higher levels of the tree denote semantically broader concepts than nodes in
lower levels. Formally, ci � cj if there is a path in the tree encoding C from
ci to cj. An example would be food services � restaurant � steak house.
We denote by Dc = {d | c ∈ Cd, d ∈ D} the set of all listings that have c
assigned as one of its categories. A category c ∈ C is a primary category of a
business listing d ∈ D if c represents a relevant label for the listing, denoting
precisely the type of business d relates to, and there are not narrower relevant
categories in C for d, this is, @ ci ∈ C s.t. c � ci.
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Figure 1: An example of a business listing page. Categories are highlighted in a red box.

The primary category classification problem is posed as follows: given a
business listing d and a category c ∈ Cd, determine whether c is a primary
category of d.

Figure 1 shows an example of a business listing page. Based on the
above definitions, Cd of this listing is the set {“Steak Houses", “Restaurants",
“Carry Out & Take Out", “American Restaurants", “Seafood Restaurants"}.
These categories are either provided by the owner of the business or a third-
party information provider. In this example, only “Seafood Restaurants" is
a primary category of the business and the other categories are deemed as
secondary or irrelevant.

Note that this problem can be regarded as a multi-label text categoriza-
tion problem since it is possible for a business to have multiple primary cat-
egories. Furthermore, we assume that there is at least one primary category
for each business listing. This assumption is useful for performing feature
normalization, which is discussed in Section 3.3.3.

3.2. Proposed Solution
The main challenge for our problem is the large number of categories

(2000 categories in total), which makes it very difficult to apply conventional
supervised-learning-based text categorization approaches. Firstly, most stan-
dard multi-class approaches (e.g. multi-class SVMs) decompose the problem
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Table 1: Comparing different types of label sources.
Label sources Accuracy Coverage (no. of covered listings) Usage

Cats. assigned by owners (Cd) medium high feat. in Section 3.3.1
User clicks high medium features in Section 3.3.2

Editorial labels high low labels y in training & testing

into a number of binary independent classification tasks, and therefore have
a O(n2) complexity in the number of classes n. Most importantly, obtaining
enough labels to train a classifier for each category is indeed very expensive
and not feasible in domains like ours. In this work we turn into leveraging
some other types of pseudo labels to train the classifiers. Indeed, there are
two types of such pseudo labels available for our problem. One is the cat-
egory description Cd assigned to listings. Despite of the set Cd containing
some categories that have been incorrectly assigned, a collection of listings
within the same category convey valuable information about the category.
The second source is comprised of the user clicks gathered from local search
click logs. Category names (e.g., “chinese restaurants") are common queries
in local search. User clicks on business listings in the search results provide
important signals about the relationship between categories and business
listings.

Our proposed solution is as follows. We first derive a set of features
x to be employed by a classifier from the above two pseudo-label sources
(discussed in detail in Section 3.3). Note that a feature vector x is defined
for a business listing-category pair (d,c). For example, the click-through rate
of d for c (from the search results when c is used as a query) is such a feature.
Lastly, we train a classifier f(d, c) using training data {(x1, y1), (x2, y2), . . .}
where yi is a label provided by human judges.

Table 1 compares the three different types of category label sources lever-
aged in our solution. We refer to accuracy as the ratio between the number of
correct categories assigned to listings over the number of assigned categories.
Conversely, coverage refers to the average amount of categories assigned by
business listing. It is apparent that the three sources complement one an-
other in terms of accuracy and coverage. Since categories by owners and user
clicks have large coverage, they are appropriate for being used as targets to
generate features (discussed in Section 3.3 in detail). On the other hand,
the editorial labels by human judges are very accurate although they are not
enough to train a classifier for each class. Thus, we use it as the final learning
targets to combine the features (in Section 3.4).
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After we obtain a classifier f(d, c), the categories in Cd can be adjusted
by the classifier in the following manner. If a category c ∈ Cd is classified as
not being a primary one, it is eliminated from Cd. Since the actual categories
belonging to Cd are used to generate features for the classifier, the updated Cd
generates different values of the features. Then, we can train a new classifier
based on the new feature values. Thus, it is possible to repeat this process
to further improve prediction. This iterative method is described in Section
3.5.

3.3. Features
In this section, we discuss how features are derived. Note that each feature

is defined for a business listing-category pair (d,c) to be used as a signal for
our classifier f(d, c).

3.3.1. Centroid-based Similarity Features
For each category c ∈ C, we define

Centroidc =
∑
d∈Dc

d (1)

where d is a business listing represented as a tf-idf weight vector. In other
words, Centroidc is the cumulated weight vector for all the listings that
share the category c in their assigned categories. Then, we can compute the
cosine similarity measure between a business listing d and the centroid vector
Centroidc for a category c:

cosine_sim(d, c) =
d · Centroidc
||d|| ||Centroidc||

(2)

We use cosine_sim(d, c) as a feature for our classifier. The motivation
for this features is as follows. Each centroid vector Centroidc is a mixture of
the true distribution of terms for the category c and the noise due to errors
in Cd. However, the true distribution dominates the centroid since the error
rate of categories assigned by owners is low (around 10%). Also, it should
be noted that even when the owner of a business may assign secondary or
irrelevant categories to the category description part of the content (Cd) to
increase recall for local search, it is less likely for the owner to corrupt the
overall content of the business data (d). For example, “Korean Restaurants"
can be easily added to the category description of a Japanese restaurant by
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the owner hoping that the business may appear in the search results for the
query “Korean Restaurants" as well as for the query “Japanese restaurants".
However, the owner would not add many Korean menu items to the content.
Hence, we expect that cosine_sim(d, c) will be high when c is a primary
category of d and low otherwise. Indeed, this hypothesis is verified in the
experimental results which show that the centroid-based features are very
effective for our classification problem.

To reduce the dimension of the document vectors and minimize the noise
in the centroids, we propose another similarity feature based on new centroids
generated by the χ2 method [36]. The χ2 statistic score χ2(t, c) for a term t
and a category c is

N(Nr+Nn− −Nr−Nn+)
2

(Nr+ +Nr−)(Nn+ +Nn−)(Nr+ +Nn+)(Nr− +Nn−)

where Nr+ is the number of times t and c co-occur, Nn+ is the number of
times t occurs without c, Nr− is the number of times c occurs without t, Nn−
is the number of times neither c nor t occurs, and N is the total number of
documents. If the χ2 statistic score for t is high, it belongs to characteristic
vocabulary of c.

Using χ2 statistic scores, we generate a reduced set of terms T ′c = {t ∈
T | χ2(t, c) ≥ α} for each category c. Then, we generate a new centroid
filtered by the reduced terms:

Centroid′c = (M c)(Centroidc)

where M c is a diagonal matrix with M c
ii = 1 if ti ∈ T ′c and 0 otherwise. We

obtain a new similarity feature:

cosine_simfiltered_tfidf (d, c) =
d · Centroid′c
||d|| ||Centroid′c||

(3)

Alternatively, we can directly use χ2 statistic scores as weights for a fil-
tered centroid. Let Centroid′′c be a vector where the i-th element is χ2(ti, c)
if χ2(ti, c) ≥ α and 0 otherwise. Then, we obtain another feature:

cosine_simfiltered_χ2(d, c) =
d · Centroid′′c
||d|| ||Centroid′′c ||

. (4)

The complexity for computing this feature is O(
∑

d∈D |Cd||Td|) where |Td|
is the number of terms in d. We note that this computation can be effortless
implemented within a map-reduce distributed framework such Hadoop.
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3.3.2. Click-based Features
In local search category queries such as “Restaurants" are very common.

User clicks on business listings in the search results page provide crucial
information about the relationship between the query and the clicked listings:
The more clicks on a listing, the more likely the listing is to be about the
query. The key observation is: When a query q matches a category name c,
clicks on a listing d in the search results page for q can be translated into
a positive relationship between d and c. In this section, the features for a
category c are obtained from click statistics for c as a query in click logs.

The simplest form of a click-based feature is the click-through rate

CTR(d, c) =
clicks

views
(5)

where clicks refers to the number of times the url of the listing d was clicked,
and views the number of times d appeared in a result page when a user issued
c as a query. It is well known that CTR suffers from the position bias, this
is, the results at higher positions get more clicks regardless of their relevance.
To address the position bias problem, we use the following two click measures
in addition to CTR.

COEC(d, c) =

∑N
i=1 clicksi∑N
i=1 aCTRpi

(6)

where clicksi ∈ {0, 1} denotes if d was clicked in the i-th session out of N
sessions in which d appeared for c, pi is the position of d in the i-th session and
aCTRp is the aggregated CTR (over all queries and sessions) for position p,
this is

∑S
i=1 clicksi/viewsi, where clicksi and viewsi are the clicks and views

on the position i on the search results pages, summed over all queries S.

SKIP_CTR(d, c) =
clicks

clicks+ skips
(7)

where skips is the number of sessions in which d was not clicked but some
other results below d were clicked. Note that SKIP_CTR is a good approxi-
mation of so-called attractiveness, defined to be the probability of a click on
a document given that the document is examined by the user.
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3.3.3. Adding Normalized Features
The hypothesis that there is at least one primary category for each d sug-

gests that we need to consider the relationships among the categories in Cd.
To this end, we propose to add a normalized feature normalized(feature(d, c))
for each feature feature(d, c):

normalized(feature(d, c)) =
feature(d, c)

maxc′∈Cd
feature(d, c′)

For example, let Cd = {c1, c2} be the category set for d and CTR(d, c1) = 0.4,
CTR(d, c2)= 0.2 . Then, normalized (CTR(d, c1))= 1 and normalized(CTR(d, c2))
= 0.5. The intuition behind this normalization is that the category cmax =
argmaxc′∈Cd

feature(d, c′) is likely to be a primary category regardless of its
feature value according to the above hypothesis. The relative information
provided by the normalized features combined with the original features in-
creases the predictive power of our classifier because the deviation between
among different examples (listings) might be very large. By adding the ratio
of the feature over the maximum value in the example the classifier can learn
to compare ratios across examples and not among distributions over numbers
that have a large variance.

3.3.4. Exploiting Category Relationships
Many multi-label classification methods ignore the relationships among

different categories. Those methods predict each label separately based on
the probability decomposition:

p(yi, . . . , y|C||x) =
∏
i

p(yi|x).

This decomposition is possible due to the assumption that all labels are
independent given a document.

However there are rich relationships among categories that can be lever-
aged to improve classification. In our problem we focus on how the top
category (the most representative category among all primary categories for
a listing) affects the probabilities of other categories. For example, consider
the following categories “electronics retailers" � { “computer software" , “mu-
sic stores" }. We can assume that given knowledge of whether “electronics
retailers" occurs, knowledge of whether “music stores" occurs provides no
information on the likelihood of “electronics retailers" occurring, and vice-
versa.
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Therefore, we propose to relax the above dependence assumption and
make yi and yj independent given the top category y∗. This leads to the
probability decomposition:

p(yi, . . . , y|C||top_category = y∗,x)

=
∏
i

p(yi|top_category = y∗,x).

As a result of the above decomposition, we can predict each label sepa-
rately by modeling the probability as a function of the conditional probability
of the label given the top category:

p(yi|top_category = y∗,x)

= f̂(x, p(yi|top_category = y∗))

where x is a vector of features that are introduced in this section and f̂ is a
classifier. The probability p(yi|top_category = y∗) can be easily estimated if
y∗ is known by counting the number of listings that contain y∗ also contain
yi. However, the problem is that we have to also predict y∗, even before we
have f̂ . It turns out that the selection of the top category is not difficult
and any reasonably good classifier (or ranker) can predict the top category
accurately. Thus, we use one of the features as a function to select y∗. For
example, y∗ = argmaxc∈Cd

cosine_sim(d, c).

3.4. Classifier Training
Given training data {(x1, y1), (x2, y2), . . .}, we use the gradient boosting

method (GBDT) [13] to train a classifier f(d, c). Each feature vector x con-
sists of the features defined in the previous section: x = {cosine_sim(d, c),
normalized (cosine_sim(d, c)), CTR(d, c), normalized(CTR(d, c)), . . .}.

The major difference between our framework and typical text categoriza-
tion frameworks is that there are much fewer features in our framework but
each feature is much stronger. Most classifiers for text categorization use a
set of terms as features. On the other hand, we use a small number of very
strong features for the classifier. Each feature used in our classifier can be
even considered as a stand-alone model. In Section 5, we show that each fea-
ture performs reasonably well as a classifier. In this sense, the training step
in our framework can be viewed as combining multiple models to improve
prediction.
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Algorithm 1 Iterative method for primary category prediction
Input: Listings D, Categories Cd for each d ∈ D, Training data: {(x1, y1),

(x2, y2), . . .}
Output: Filtered categories Cn

d for each d ∈ D
1: C0

d = Cd for each d ∈ D
2: R0 = {(x1, y1), (x2, y2), . . .}
3: for i = 0, . . . , n− 1 do
4: Train a classifier fi(x) using Ri.
5: for each d ∈ D do
6: Ci+1

d = {c|c ∈ Ci
d, fi(x) > γ}

7: end for
8: Obtain new training data Ri+1 using {Ci+1

d |d ∈ D}.
9: end for
10: return {Cn

d |d ∈ D}

3.5. Iterative Method
The classifier that has been learned can be applied to not only new listings

but also to the existing listings D to filter out irrelevant categories. After we
obtain a classifier f(d, c), the categories in Cd can be adjusted by the classifier:
If a category c ∈ Cd is classified as an irrelevant one, it is eliminated from Cd.
Since the categories in Cd are used to generate features for the classifier, the
updated Cd generates different values of the features. Then, we can train a
new classifier based on the new feature values. Furthermore, it is possible to
repeat this process to further improve prediction. We may have a situation
in which all categories given by the owner are filtered out. In this case,
we first augment the category set for the document by adding some related
categories (based on the category-category relationships in the corpus) and
then, we apply the classifier to the augmented category set.

Algorithm 1 formally describes the iterative method, which is similar in
spirit to other algorithms that build centroid-based vector representations of
learning examples [32, 28]. It repeats Classifier training - Update centroids
- Update features cycles. The cycle may be repeated a fixed n times or the
algorithm may stop when a certain condition is satisfied (e.g., if Ci+1

d = Ci
d for

all d ∈ D). The algorithm always stops, since the d ∈ D have a finite number
of categories and at every iteration the algorithm only removes categories,
this is, Ci+1

d ⊆ Ci
d.

Under soft-conditions, the algorithm also converges and improves an up-
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per bound on the deviations of errors made by the classifier. Following [30],
we study the properties of the maximal deviation of error frequencies, when
some of the class labels employed by the learner are wrong. We limit this
analysis to binary classifiers that minimize the empirical risk.

Let δ be the indicator function used for classification:

δ(f,x) =

{
1 if f(x > γ)

0 otherwise

Let us assume a data set

Z2l = {(x1, y1), (x2, y2), . . . (xl, yl), (xl+1, yl+1) . . . (x2l, y2l)} (8)

of 2l labels, split into train and test halves. Let us denote by ν1(Z
2l) the

frequency of errors in the first half of the data and ν2(Z2l) the frequency of
errors in the second half of the data:

ν1(f, Z
2l) =

1

l

l∑
i=1

|yi − δ(f,xi)| (9)

and

ν2(f, Z
2l) =

1

l

2l∑
i=l+1

|yi − δ(f,xi)| (10)

The maximal error deviation of a classifier learned from a class of func-
tions F is [30]:

sup
f∈F

(ν1(f, Z
2l)− ν2(f, Z2l)) (11)

Now, let us consider a corrupted dataset in which half of the labels have
been flipped y (in the case of binary classification yi = 1 − yi), this is yi =
yi∀ 1 < i ≤ l. The classifier will try to minimize the loss

L(f) =
1

l

(
l∑

i=1

(yi − δ(f,xi))2 +
2l∑

i=l+1

(yi − δ(f,xi))2
)

(12)

Since we assume that labels and classification decisions are binary

(yi − δ(f,xi))2 = 1− (yi − δ(f,xi))2 (13)
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Then,

L(f) = 1− 1

l

l∑
i=1

(yi − δ(f,xi))2 +
1

l

2l∑
i=l+1

(yi − δ(f,xi))2 (14)

Minimizing L(f) is equivalent to maximizing:

1

l

l∑
i=1

(yi − δ(f,xi))2 −
1

l

2l∑
i=l+1

(yi − δ(f,xi))2 (15)

which supremum is equivalent to that of

ν1(f, Z
2l)− ν2(f, Z2l) (16)

The maximum deviation of errors of the classifier is obtained when the
set that contains half of the labels flipped is used for learning. The objective
function in Eq. 15 can be computed for sets of varying number of flipped
labels, being monotonically increasing with the number of y wrong labels
until they amount up to l. Provided that the classifier decides to discarding
wrong labels (i.e., flips y’s) with some confidence ε,

p (f(x) < γ, y = 0) > ε (17)

then the error deviation is decreased. If the initial probability of success
ε is high enough, in the limit, the classifier learnt by the iterative algorithm
will make more accurate decisions and εi+1 ≥ εi, providing a lower number
of errors.

4. Improving Ranking Relevance

In this section, we show how to improve search ranking relevance using
the primary category classifier described in Section 3. We first describe a
learning to rank framework for search. Then, we propose a new rank feature
based on the primary categories represented as weights.

4.1. Training a Ranking Function
Given a query q, let Dq = {(x1, y1), ..., (xn, yn)} be the training data of

n documents where xi ∈ Rm is the feature vector and yi is the relevance
label of the i-th document. In a ranking problem, Dq is given as input and a
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permutation τ of {1, . . . , n} is returned as output. xi is ranked higher than
xj if τ(xi) < τ(xj) and this means xi is more relevant to q than xj. Typically,
a ranking function f : Rm → R is trained and applied to Dq. A permutation
or ranking τ is generated by ordering the f(xi) in the descending order.

Many learning to rank methods have been proposed to improve ranking
relevance based on machine learning [4, 6, 12, 16, 37]. Since our focus is to
develop a new feature that can be used in any learning to rank methods, we
use a simple GBDT method [13].

We remark that the learning procedure for our ranking function is equiv-
alent to that for the classifier in Section 3.4 once the training data is pro-
vided. The difference is that the feature vector for the classifier is defined for
a document-category (or category-document) pair while the feature vector
for the ranking function is defined for a query-document pair. Queries in-
clude category names, but not vice versa. For example, category names such
as “japanese restaurants" are commonly used as queries, but queries such as
“best pizza" do not belong to category taxonomy. Another difference is that
there are much more features (e.g., text match features, click-based features,
etc) for the ranking function than the classifier. Hence, the training data for
the ranking function is much larger than that for the classifier.

4.2. Matching in Category Space
In this section, we develop a method to utilize the primary category classi-

fier to improve ranking quality. A straightforward approach may be to create
a new text field for each document that contains the categories selected by
the classifier and generate a set of new ranking features for the new text field
(such as text match features), which can be used as part of training data
for a ranking function. This simple approach relies on exact term match
between a query and a document. Thus, when a query does not belong to
category taxonomy (e.g., “best pizza"), the improved category information
by our classifier does not provide much help. Also, in a ranking problem
setting, it is desirable to exploit subtle differences among the predicted cate-
gories than simply treating each category equally even if those categories are
predicted to be primary categories by our classifier.

To address the above problems, we propose to map queries and documents
(listings) to category space and perform matching in the same category space.
The mapping is done as follow.

1. Map a document (listing) d to category space:
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LCVd = (w1, . . . , w|C|) where wi = f(d, ci) if ci ∈ Cd and wi = 0
otherwise.

2. Map a query q to category space:
QCVq =

∑
d∈Sq

r(q, d)LCVd where Sq is the set of all documents that
appear in the search results for q in the search logs and r(q, d) is a
relevance measure (e.g., CTR of d given q) for (q, d).

3. Perform matching between q and d in category space:
CATSIM(q, d) = QCVq ·LCVd

||QCVq || ||LCVd||

A listing-category vector (LCV ) for d contains the output values of the
classifier f(d, c) for each c ∈ C. A query-category vector (QCV ) for q is
the weighted sum of LCV s of all the documents that appear in the search
logs for q. The weight r(q, d) is multiplied to each LCV to exclude irrele-
vant documents. r(q, d) can be any relevance measure between q and d. In
this work, we use COEC as the weight. Finally, we obtain a scalar value
CATSIM(q, d) for q and d, which we use as a new feature to train a ranking
function.

As an example, consider a query “best pizza". In the search results, some
irrelevant results such as “best buy" may appear since the document con-
tains the term “pizza" (as part of “pizza oven"). On the other hand, most
pizza restaurants do not have the term “best" in the business title (it may
appear in user reviews). Thus, given the query “best pizza", there is not
much difference between “best buy" and “pizza hut" in terms of syntactic
match. So, if we do not know if the query is related to the category “pizza"
or “electronics retailers", the ranking quality for this query may be poor.
How does our method solve this problem? The “best buy" stores are not
likely to be clicked on by users for the query, so the weight r(q, “best buy")
will be close to 0 while r(q, “pizza hut") � 0. So, QCV“best pizza" will be
collinear to the LCV s of pizza restaurants. In this way, QCV“best pizza" cor-
rectly captures the true category intent of users. Consequently, we have
CATSIM(“best pizza", “pizza hut")� CATSIM(“best pizza", “best buy").

5. Experiments

In this section, we present experimental results to validate our methods.
We conduct two types of experiments: We evaluate the performance of our
primary category classifier described in Section 3. Then, we evaluate the
effect of the new feature described in Section 4 for ranking.
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Figure 2: Precision vs. recall of different models. Each point corresponds to a threshold
value for the output of a model.

5.1. Primary Category Classification
We first demonstrate that our proposed primary classifier achieves a very

high precision-recall and significantly outperforms a baseline centroid-based
method.

5.1.1. Data
We use data sets from a commercial local search engine. There are 20M

business listings, 2K categories and 53M terms in total. That is, ||D|| =
20M, ||C|| = 2K and ||T || = 53M. We obtain labels from human judges
for 42K (listing, category) pairs. We generate 15 features for the 42K (list-
ing, category) pairs in the editorial judgment data. The 15 features include
9 centroid-based similarity features and 6 click-based features. Each of 3
similarity features introduced in 3.3.1 has 3 variations: the original form, a
normalized form and a hybrid form combining the two. Each of 3 click-based
features in 3.3.2 has two forms: the original form and a normalized form.
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Each feature has 2K dimensions (the number of categories). However, in
our framework, we need to compute the feature value only for the categories
given in the document. To generate click-based features in Section 3.3.2, we
use 6-month click logs in the local search engine. We use 50% of the data
as training data and the rest as test data. Our experiments were performed
using a Hadoop-based implementation, and it took around 8 hours to com-
pute the final models using approximately 5K nodes to process over 150GB
of data.

5.1.2. Results
We evaluate the classifier trained as described in Section 3.4 using precision-

recall as the evaluation metric. To see the effectiveness of our proposed
method, we compare it with each of the features as a baseline:

• gbdt: our proposed method described in Section 3.4

• centroid: centroid-based similarity defined in Eq. (2)

• centroid_f_w_tfidf : centroid-based similarity with χ2 filtering de-
fined in Eq. (3)

• centroid_f_w_chisquare: centroid-based similarity with χ2 filter-
ing defined in Eq. (4)

• ctr: CTR defined in Eq. (5)

• coec: COEC defined in Eq. (6)

• skip_ctr: SKIP_CTR defined in Eq. (7)

• linear: linear regression trained on the same features used by gbdt

• gbdt_no_cat_rel: gbdt model trained without the category rela-
tionship feature described in Section 3.3.4

Figure 2 shows the comparison of different models based on precision-
recall. Our proposed classifier gbdt significantly outperforms all baselines.
The results show some interesting characteristics of each feature. In general,
click-based features (ctr, coec and skip_ctr) show very high precision.
However, click-based features suffer from a sudden drop in precision as recall
decreases. This happens since a very high CTR, for example, is likely to
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Figure 3: Effect of updating centroids with the iterative method. gbdt_i is the model
after the i-th iteration in Algorithm 1.

be due to a very small number of views (with a similar number of clicks).
Also, we can see that click-based features have limited recall compared to
centroid-based features: They can never achieve recall higher than 60%. On
the other hand, centroid-based features are able to achieve a significantly
higher recall (over 60%).

We also observe that the χ2-based term filtering (both centroid_f_w_tfidf
and centroid_f_w_chisquare) improves prediction. Comparing cen-
troid_f_w_tfidf and centroid_f _w_chisquare, we find that cen-
troid_f_w_chisquare outperforms centroid_f_w_tfidf in the high re-
call region but suffers from a sudden drop in precision as recall decreases.
This shows a problem of using χ2 statistics scores alone as weights. The co-
sine similarity for centroid_f_w_chisquare can be increased by having
only a few terms with high χ2 statistics scores. The results show that it is
important for a document to have the term distribution similar to the term
distribution in a centroid.

Although each model (or feature) has the pros and cons as mentioned
above, our final classifier can combine the models effectively to improve clas-
sification. The experimental results clearly show that our classifier combines
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the benefits of different models.
Effect of the category relationship feature: Figure 2 also shows

that the category relationship feature described in Section 3.3.4 improves
classification. gbdt_no_cat_rel does not use the category relationship
feature and performs clearly worse than gbdt using all features.

Iterative method: Figure 3 shows the result of the iterative method
described in Section 3.5. As expected, the performance improves after the
first iteration. However, after the second iteration, the results do not improve.
It is because the model after the first iteration f0(x) removes most of the
irrelevant categories from C0

d . Thus, after the second iteration, f1(x) affects
only a small number of documents. So, C2

d ≈ C1
d .

Table 2 shows the ordered categories by gbdt for “Red Lobster" in Figure
1. The primary category of the business “Seafood Restaurants" is on top
while a irrelevant category “Carry Out & Take Out" is on bottom.

5.2. Ranking and Filtering
In this section, we evaluate the effectiveness of the method described in

Section 4 for search ranking. We are also interested in how our method affects
another task, filtering for local search results included in a Web search results
page (SERP). In this task, the goal is to remove irrelevant results from the
section in a Web SERP showing local search results. We show that the new
feature CATSIM improves both ranking and filtering.

5.2.1. Data and Evaluation Metrics
We use data sets from a commercial local search engine. In the training

data, there are 64K feature vectors (query-document pairs). The test data
has 16K feature vectors. In each feature vector, there are 651 features includ-
ing text match features, click-related features, etc. For each query-document
pair, we collect editorial judgments using 3 grades (Good, Fair and Bad).
The evaluation is based on three metrics DCG1, DCG3 and DCG5. DCGk is
defined to be

DCGk =
k∑
i=1

Gi

log2(i+ 1)

where Gi denotes the numeric value of the label of the document at position
i.
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Category
Seafood Restaurants

Restaurants
Steak Houses

American Restaurants
Carry Out & Take Out

Table 2: Categories sorted by the gbdt
outputs for “Red Lobster" in Figure 1.

DCG1 Gain DCG3 Gain DCG5 Gain
1.02% 0.99% 0.66%

Table 3: Ranking relevance gains by us-
ing the new feature CATSIM . Gains are
statistically significant (t-test, p-value <
0.05).

5.2.2. Results
We compare the following two ranking functions.

• catsim: the ranking function trained on the existing features and the
new feature CATSIM described in Section 4.2

• no_catsim: the ranking function trained without CAT SIM

Ranking: Table 3 shows the DCG gains of catsim over no_catsim.
Considering the size of the existing training data and the fact that we are
adding a single feature, the DCG gains around 1% are not small improve-
ments.

Filtering: In order to remove bad results from the local search results
section in a Web SERP, we typically set a threshold for the score of the
local search ranking function: If the score of the ranking function for a docu-
ment falls below the threshold, the document is filtered out. To measure the
performance of filtering, we treat “Good" as a positive label and “Fair" and
“Bad" as a negative label. Thus, the filtering problem can be considered as
a classification problem and we use precision-recall as the evaluation metric.
Figure 4 shows the precision-recall comparison of the two ranking functions
in which catsim clearly outperforms no_catsim.

6. Conclusions

In this paper we presented a solution to a large-scale multi-label classifica-
tion problem in the context of finding primary categories of local businesses.
We showed that we can combine multiple label sources effectively to train
a highly accurate classifier and demonstrated that our classifier outperforms
a Centroid-based method. We also proposed a new ranking feature based
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Figure 4: Effect of the new feature CATSIM for filtering.

on the mapping of query and document to category space and showed that
the proposed rank feature clearly improves ranking and filtering for local
search results. Future work will further explore the use of our taxonomy de-
rived features in other classification and search tasks, to determine whether
this document representation technique generalizes well enough in scenarios
different than the one we approached in this study.
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