
IntoNews: Online News Retrieval using Closed Captions

Roi Blancoa, Gianmarco De Francisci Moralesa, Fabrizio Silvestria

a
Yahoo Labs, Barcelona – Spain

Abstract

We present IntoNews, a system to match online news articles with spoken

news from a television newscasts represented by closed captions. We formalize

the news matching problem as two independent tasks: closed captions segmen-

tation and news retrieval. The system segments closed captions by using a

windowing scheme: sliding or tumbling window. Next, it uses each segment

to build a query by extracting representative terms. The query is used to re-

trieve previously indexed news articles from a search engine. To detect when a

new article should be surfaced, the system compares the set of retrieved articles

with the previously retrieved one. The intuition is that if the di↵erence between

these sets is large enough, it is likely that the topic of the newscast currently on

air has changed and a new article should be displayed to the user. In order to

evaluate IntoNews, we build a test collection using data coming from a second

screen application and a major online news aggregator. The dataset is manually

segmented and annotated by expert assessors, and used as our ground truth. It

is freely available for download through the Webscope program. Our evaluation

is based on a set of novel time-relevance metrics that take into account three

di↵erent aspects of the problem at hand: precision, timeliness and coverage.

We compare our algorithms against the best method previously proposed in

literature for this problem. Experiments show the trade-o↵s involved among

precision, timeliness and coverage of the airing news. Our best method is four

times more accurate than the baseline.

Email addresses: roi@yahoo-inc.com (Roi Blanco), gdfm@yahoo-inc.com (Gianmarco

De Francisci Morales), silvestr@yahoo-inc.com (Fabrizio Silvestri)

Preprint submitted to Elsevier November 29, 2013

Closed
Captions

Segmentation

News
Retrieval
Engine

Segments
Queries

News
Articles

News
Archive

Figure 1: Conceptual schema of IntoNews.

1. Introduction

Television has been the most important communication medium of the last

century. However, in the last few years the Web has started to take over this role

thanks to a wider o↵er of content and the possibility of interaction. Recently,

a new breed of applications for mobiles and tablets has started appearing on

the market, o↵ering the so-called “second screen” experience. The goal of these

applications is to enhance the TV-watching experience by providing additional

content related to the program airing at the moment, thus bridging the TV

and Web worlds. By allowing the audience to interact with the program on TV,

second screen applications ultimately aim at increasing user engagement. These

applications are the natural evolution of a widely recognized trend: between 75%

and 85% of TV viewers use another device at the same time.1

1
http://www.guardian.co.uk/technology/appsblog/2012/oct/29/social-tv-second-

screen-research

2

second screen2 from Yahoo! is an example of a second screen application,

and the focus of the current work. When second screen launched in 2011, users

immediately acclaimed this application as a fun way of watching TV programs.

The user experience for people watching TV program is greatly improved. For

instance, while watching a football game on TV it can show statistics about

the teams playing, or show the title of the song performed by a contestant in

a talent show. Other services include forums, episode synopsis, real-time meme

generator (CapIt), polls and much more. second screen aims at enhancing the

experience of watching TV transforming it into a “large scale” social activity.

The additional content provided by second screen is a mix of editorially curated

and automatically selected one.

From a research perspective, one of the most interesting and challenging use

cases for these applications is related to news programs (newscasts). When a

user is watching a newscast, they might want to delve deeper into the news

airing at the moment. This work presents IntoNews, a system that finds an

online news article that matches the piece of news discussed in the newscast

currently airing on TV, and displays it to the user in real-time.

The main problem underlying IntoNews is matching di↵erent data sources

that speak about the same piece of news. On one side we have the text from

online news articles. On the other, we obtain the content of the newscast cur-

rently airing from the streams of Closed Captions (cc) broadcasted along with

it by television networks.

The challenges in making IntoNews e↵ective are multiple. The news article

we surface to the user must match exactly the news currently airing. The

problem is even more challenging given that the matching article has to be

selected among the thousands published online every day. The language used on

TV and in news articles has di↵erent characteristics. Furthermore, the cc tend

to be noisy, lack proper capitalization and contain many typos and misspellings.

Finally, and most importantly, news articles must be surfaced as soon as possible

2
http://www.intonow.com

3

to be valuable to the user.

We propose a solution based on techniques from the realm of information

retrieval (IR). Figure 1 shows the conceptual schema of the components of our

system and how they interact with each others. We decompose the main news

matching task into two sub-tasks: find a good segmentation of the stream of

cc, and retrieve relevant news for the segment as soon as possible. We model

a newscast as a series of contiguous segments, each matching a single cohesive

topic. The segmentation problem consists in finding the boundaries of these

news segments in the stream of cc. The retrieval problem consists in formulat-

ing a query given a segment, and issuing the query to an underlying IR engine.

There are di↵erences between this problem and those faced by traditional

IR systems. Users of a typical IR system issue queries to retrieve a set of top-k

most relevant items from a collection. We can identify three distinct phases in a

typical IR process: (i) the user formulating the query and issuing it, (ii) the IR

system processing the query and retrieving the top-k items, and (iii) the user

checking a subset of the resulting items to satisfy their information need.

IntoNews di↵ers in phases (i) and (iii). First, it does not require the user

to formulate a query, rather the system “implicitly” formulates one for the user

by using the content of the newscast airing on TV. In fact, formulating a query

by observing only a continuous stream of text without any indication on topic

boundaries, query keywords, important concepts or entities is a challenging task,

which is fundamentally di↵erent from typical IR tasks.

Second, the user sees a small number of results that are continuously chang-

ing as new cc arrive. Usually, IR quality assessment only evaluates the amount

of relevant documents ranked at the top of the result list. However, IntoNews

has to account for when a news item is displayed, as the system should surface

a matching item before the newscast has changed topic. Therefore, we evaluate

the quality of the system in terms of both relevance and timeliness.

Given that in our setting timeliness directly impacts the relevance of results,

we need to design a proper evaluation testbed. We build a ground truth dataset

consisting of a day’s worth of cc from a news channel. We manually segment

4

the dataset, associate each segment with a set of news items, and annotate

the segments with relevance judgements. Furthermore, we propose a family of

time-dependent metrics that evaluate the e↵ectiveness of retrieval with respect

to timeliness. These metrics discount the value of a relevant result with time,

i.e., the sooner the more relevant. We experiment with four instances of the

metric that use di↵erent decay factors.

To the best of our knowledge the only attempt made so far to address the

problem presented in this work is discussed by Henzinger et al. [16] and it is

summarized in Section 2. The best solution of Henzinger et al. is our baseline

which we compare to in Section 6.

Preliminary results of this work were previously presented by the same au-

thors [7]. In this paper we provide a proper formalization of the problem, a

novel technique to detect a change of topic in the stream of cc, extensive ex-

perimentation for the proposed methods, and a publicly-available dataset used

as our testbed.

The research contributions presented can be summarized as follows:

• We investigate the task of matching online news articles to news airing on a

newscast;

• We formalize the problem, and present a framework that models the task as

two separate sub-tasks:

(i) Find a topically-homogeneous segmentation of the stream of cc;

(ii) Retrieve relevant news as soon as possible;

• We design an evaluation testbed for the problem that takes into account the

timeliness of the solution;

• We provide the dataset used in our testbed to the research community to

foster research on this topic;

• We discuss several options to solve the segmentation and retrieval problems

and we conduct a thorough experimentation for assessing the performance

of our solutions.

5

The remainder of the paper is structured as follows. Section 2 reviews related

literature. We formalize our problem and present a framework to address it in

Section 3. Section 4 discusses our evaluation framework and we describe the

ground truth dataset in Section 5. Section 6 presents our experimental results,

while Section 7 presents our conclusions and future directions for research.

2. Related Work

As mentioned in the introductory section, Henzinger et al. [16] study the

same news matching problem. They show how to extract a query from a stream

of cc text and submit it to a news search engine. The methods they present are

variations of a simple tf · idf scheme and all the methods work by considering

non-overlapping segments of the cc stream. When a query has been generated,

the current text portion is discarded and a new query is generated from the

subsequent terms in the cc stream (in some variations called history-based,

they keep terms from previously generated queries). The results are then post-

processed to eliminate news articles that have been already shown to the user.

The system is evaluated by measuring how relevant a matching news is for

a given portion of cc text. While the idea presented by Henzinger et al. is

similar to the one presented in this paper, the realization is di↵erent. First of

all, our goal is the timely generation of matching news items. For this reason,

our evaluation discounts the relevance of an item by the time needed by the

algorithm to find a match. Also, di↵erently from Henzinger et al., we value only

perfect matches. Finally, in addition to tf · idf -based methods, we generate

queries on the basis of entities contained in the news and we decide when to

start a new query on the basis of the feedback results from the news retrieval

engine.

Castillo et al. [10] describe a system that uses closed captions to find match-

ing news and songs. The system relies on a machine-learned supervised clas-

sification model to find matchings, and does not take into account timeliness.

However, the system is not available, and it is only described from a functional

point of view. Therefore it is not possible to compare against it.

6

A related field of research is information filtering (IF) [22], where textual

information flows continuously through the system, which has to select the most

important documents for a given user’s profile. Historically, work on selective

dissemination of information started by a 1958 article of Luhn [19]. Even if

the term information filtering was not used in that paper, the goal of the sys-

tem described was exactly that of selecting the best document, or documents,

according to a user’s profile. The term Information Filtering, in fact, became

popular after a paper by Denning [13] who argued that emails should be filtered

and sorted according to their importance. In the IR community, information

filtering approaches have mostly dealt with finding an appropriate model for

describing users’ profiles [21], and on improving filtering e↵ectiveness [17]. In

particular, e�ciency of those systems were studied in order to make the IF ap-

proaches usable in practice [5, 28]. Belkin and Croft [4] study the relationship

between IR and IF in more detail.

This stream-based news retrieval task is di↵erent from traditional informa-

tion filtering since we are not given a stream of documents, rather we are given

a stream of text from which queries have to be extracted and submitted.

Some of the ideas related to topic segmentation have been drawn from the

Topic Detection and Tracking (TDT) realm. TDT systems discover the topical

structure in unsegmented streams of news as they appear across multiple me-

dia. One particularly interesting sub-task of TDT is story segmentation which

detects changes between topically cohesive sections of multimedia or spoken

data [15]. Allan [1] provides a good overview on existing approaches to TDT.

Another related field of research is that of New Event Detection (NED) in

streams of text [24]. The goal of NED is to analyze a stream of text documents,

possibly coming from di↵erent sources, and to “group” documents related to

the same event together. The most prevailing approach of NED was proposed

by Allan et al. [2], Yang et al. [29], Brants et al. [8], in which documents are

processed by an on-line system. Among these approaches, tf · idf is a popular

heuristic to build ranking functions over streaming data. Farahat et al. [14]

employ a model that updates incrementally term weights using tf · idf on di↵er-

7

ent data sources, and similarly Kumaran and Allan [18] employ an incremental

variant of tf · idf to detect news events.

It is worth pointing out that NED is only loosely related to our problem of

segmenting the stream of cc. In fact, our problem is to find boundaries of the

text that describes an event in a stream of text containing multiple events. The

di↵erence is even more evident if we relate this task with the more general task

of retrieving associated news articles. In this case, we want to detect an event

as soon as possible and to build and issue a query to the underlying IR engine.

3. Problem formulation

In this section we present our notation, provide a statement of the prob-

lem, and describe a framework that decomposes the problem in smaller, more

manageable tasks.

The primary input is represented by an unbounded stream of cc lines C =

hc1, c2, . . .i. Each cc line c = (t, l) is composed by a timestamp t 2 T and a

short piece of text l. The timestamp t increases monotonically in the stream,

and represents the time at which the cc text is available to our system, i.e.,

ci � cj () ti < tj .

We assume that at any given time there exist a finite number of topics N ,

which represent noteworthy news events. We further assume the existence of

a function L
cc

: C ! N that maps each line of cc in the stream C to a topic

n 2 N . IntoNews does not have access to the function L
cc

.

The secondary input is a collection of documents D, which may have any

format; the only requirement is that they can be indexed and searched via an

underlying IR engine. Similarly to cc lines, we assume that each document

d 2 D can be mapped to a topic n 2 N by a function LD : D ! N . The system

has no access to this function either.

Let us now formally state the problem:

Problem 1. We are given as input an unbounded stream of closed caption lines

C and a collection of documents D. We assume the existence of a set of topics

8

N , and two functions L
cc

and LD that map, respectively, closed caption lines

and documents to topics. The problem is to find, 8c 2 C, k documents Rk ⇢ D

such that L
cc

(c) = LD(d), 8d 2 Rk.

Note that Problem 1 does not seek neither to identify the topics nor to

approximate the topic functions L. Rather, it only asks to find matching docu-

ments for each line of cc, or, equivalently, for each timestamp t.

We avoid defining an optimization objective in the problem formulation,

instead we simply state the characterization of an ideal solution. The discussion

of issues related to evaluation is deferred to Section 4.

The challenges in Problem 1 originate from two sources: (i) we do not have

access neither to the topics N nor to the functions L, and (ii) we see the

input stream line by line (i.e., the solution requires an online algorithm). In

practice, a solution needs to deal with unspecified topics that might include

loose boundaries, and make online decisions based on local information.

3.1. Proposed Solution

As already mentioned, we take an IR approach in designing IntoNews. In

order to employ traditional IR techniques, both for solving the problem and

for evaluation, the solution is restricted to finding ranked lists of documents

rather then sets; with abuse of notation, we denote with Rk a ranked list of

k documents. Therefore, the system can be regarded as a function f

D
IntoNews

:

C ! {Dk} that matches to each cc line ci 2 C a document list Rk
i ⇢ D, while

optimizing a relevance function as defined in Section 4.

In practice, as shown in Section 5, topics arrive in segments in the stream,

where contiguous lines of the segment belong to the same topic. Rather than

trying to match a list of news items to each cc line, we focus on finding the

boundaries between two di↵erent topics in the stream. Therefore the goal be-

comes to detect the boundaries of the topics as soon as possible, and minimize

the duration of the topic mismatch between C and Rk.

We identify three di↵erent sub-problems of Problem 1. First, the system

has to identify segments of consecutive lines in C that belong to the same topic.

9

This can be thought of as identifying a pair of points in time (t1, t2) that bound

the segment, with a function fseg : C ! {T ⇥ T }. These bounds implicitly

define a sequence of cc lines: S = {(ti, li) | t1  ti < t2}. Secondly, we need to

construct a query from the sequence of lines with a function fq : S ! S. The

query should adequately represent the topic in order to be matched against the

document collection. Here we use a representation based on words, but more

generally the query could comprise di↵erent units, possibly capturing higher

order semantics (e.g., named entities). In its simplest form, fq can be the

identity function, but as we discuss next there are benefits in a more compact

representations of the query. Lastly, the system needs to rank documents in the

collection for the query with a function frank : S ! {D}. The former function

(fseg) represents the closed caption segmentation component of Figure 1, while

the latter two functions (fq and frank) together represent the news retrieval

engine in our schema.

Summarizing, in order to solve Problem 1 we have to tackle two tasks. The

first one consists in selecting a segment of cc text such that a retrieval oracle

would be able to retrieve the corresponding matching documents for the topic,

and we call this problem the segmentation problem. The oracle is just a concep-

tual tool, therefore we also have to design an e↵ective retrieval method. Given

an optimal solution to the segmentation problem (i.e., a segment that corre-

sponds to a single topic), a e↵ective retrieval method should return documents

associated with the same topic. We call this problem the news retrieval problem.

To build the final system we can optimize the two problems independently.

However, as we detail in Section 3.4, we study the two problems in a more

organic way, by leveraging the feedback of the news retrieval engine to decide

on segment boundaries.

3.2. The Segmentation Problem

The system is presented with a continuous stream of cc lines that are added

to a bu↵er B for building the query. There are several strategies for managing

B.

10

The simplest strategy is to use a windowing approach to build candidate seg-

ments. We explore two di↵erent fixed-size variants of the windowing approach:3

(i) a sliding window approach (sw�), and (ii) a tumbling window approach

(tw�). The parameter � is the size of the window in seconds. sw� trims the

oldest cc line from B when its size exceeds �, and therefore builds a new candi-

date segment of maximum duration � for each new cc line in the stream. tw�

builds adjacent windows of fixed size �, that is, it proposes a new candidate

segment and empties B whenever adding a line to B would make it exceed �.

Therefore, it proposes a candidate segment every � seconds at most.

Formally, the fseg functions implemented by the two windowing approaches

are the following.

sw�(C) = {(ti, tj) | tj � ti = �}

tw�(C) = {(ti, tj) | ti = k · �, tj = ti + �, k 2 N}

The main motivation to choose these approaches is that they are computa-

tionally inexpensive and simple to implement. Furthermore, as we shall see in

Section 6, they perform well in practice when combined with other methods for

generating discriminative queries and retrieving results.

3.3. The News Retrieval Problem

In the remainder of the paper, and for the sake of experimentation, There-

fore, whenever referring to the underlying IR engine we consider BM25F as the

retrieval model in use by frank [25].

Once the bu↵er B has been built by fseg, we need to retrieve the news asso-

ciated with it. A näıve implementation of fq is the identity function. However,

this kind of query is too noisy and lengthy for our dataset. Furthermore, the

processing time needed for very long queries may be prohibitive for a real-time

retrieval application.

The solution proposed here is to transform B into a more e↵ective and

e�ciently-processable query. Therefore, we aim at reducing the bu↵er B to

3
We defer adaptive windowing to a following study.

11

a more compact version B̃ while maintaining the same amount of expressive-

ness. We select the k terms with highest tf · idf to build the query, where k is

a parameter of fq. The term frequency is computed in the bu↵er B, while the

inverse document frequency is computed from the document collection D.

3.4. Topic Change Detection

An important issue is when to submit a new query to the underlying IR

engine, given that candidate queries are generated continuously by the system.

The simplest option is to issue each and every query, and we refer to this variant

as plain tf-idf.

A smarter design involves trying to detect when the topic in the bu↵er has

changed. We refer to this technique as Topic Change Detection (tcd). Formally,

a tcd scheme is a function fq that returns a new bu↵er B̃ only if it detects a

topic change, otherwise it returns the same bu↵er B returned at the previous

invocation.

There are a number of strategies to implement a tcd scheme, ranging from

Natural Language Processing to Machine Learning [3, 11]. Here we explore an

IR approach.

Our tcd schemes leverage the underlying IR engine for feedback. They

query the underlying IR engine with the current candidate query, and they

decide whether there has been a change in the topic by analyzing the results

of the query. If the result set has changed “considerably” from the results of

the last returned query, the scheme detects a topic change and returns the new

query.

We propose three di↵erent variants of tcd that use di↵erent ways of mea-

suring change in the result set: Result Jaccard Overlap (rjo), Entity Jaccard

Overlap (ejo) and Entity Jensen-Shannon Divergence (ejs). All the strategies

measure the distance between the candidate query and the last returned query,

and are parameterized by a threshold ✓ 2 [0, 1] that determines their sensitivity.

rjo measures the topic distance by the Jaccard overlap between the result

sets of the queries. In this case, each news article in the result list is considered

12

as an item in a set. It detects a topic change when the overlap between the sets

falls below the threshold.

ejo measures the topic distance by the Jaccard overlap between the sets of

entities extracted from results of the queries. This methods builds a set from

the entities extracted by each news article in the result list. As the previous

method, it detects a topic change when the overlap falls below the threshold

ejs measures the topic distance by the JS divergence between the distribu-

tions of entities extracted from results of the queries. This method computes

the distribution of entities extracted from the news articles in the result list. In

this case, it detects a topic change when the divergence is over the threshold.

4. Quality Metrics

The problem defined in Section 3 bears some resemblance to information

filtering, recommender systems and traditional information retrieval. In fact,

the result of our system is a ranked list of news items that has to be returned

with particular e�ciency constraints. In fact, time plays an important role in

our application scenario and it must be included in the metrics used to assess

the quality of our proposed methods.

Given these requirements, we quantify the solution to our problem with a

higher-order utility function �(S, f) ! R that measures the relevance of a set

of ranked lists of documents for a given segment S. Our problem can then be

seen as optimizing the utility function �:

f

IntoNews

= argmax
f2F

� (S, f(c)) , 8c = (t, l) 2 S ,

where F is the space of possible solutions. In the remainder of this section we

present our considerations for � for a single segment S, and assume the evalua-

tion is performed on average across all segments. For simplicity of notation, we

assume the boundaries of the segment S to be [0,�].

To correctly evaluate the system, we need to take into account two con-

flicting goals: (i) to provide news items that are relevant for the topic of the

13

current segment, and (ii) to provide these matchings as soon as possible. Pro-

viding results sooner means having less data available to create a query for the

current segment, which in turn can introduce noise and degrade performance.

Conversely, providing relevant results only when the current cc segment is over

is of little value to the user since by then the topic has already changed. The

function � has to capture this trade-o↵.

Time-based relevance. We let the value of a match for a single segment

depend on two factors: its relevance and the duration for which it is displayed

on the screen of the user. For this reason, we define the relevance value of a

news match for a segment to be the integral of its point-wise relevance:

�(S, f) =

Z �

0
⌫ (f(t, l)) dt

where ⌫(·) measures the value of a single ranked list of documents Rk for the

segment S, independent of time.

However we want to capture the notion that a match given at an earlier time

is more valuable than the same match given at a later time. Therefore, we use

a convolution with a time discount function (t).

�(S, f) =

Z �

0
⌫ (f(t, l)) (t) dt

The time discount function (t) is a positive, monotonically non-increasing

function with values between zero and one, that is, it has the following charac-

teristics:

 (0) = 1; (t) � 0, 8t; d

dt

 (t)  0, 8t

Given that we have di↵erent segment durations, we actually want a family

of functions parameterized by �, and we add an additional constraint:

 �(�)  ", "⌧ 1 (1)

The results provided by the system change at discrete times, so we can

transform the integral into a discrete sum:

�(S, f) =
NX

i=0

⌫i

�
Rk

i

�
 �(ti)

14

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

f(
t)

Step

Logarithmic

Linear

Exponential

Figure 2: Time discount functions.

where Rk
i = f(ti, li) is i-th results list Rk

i provided by our system, and ti is the

time at which it is provided.

We experiment with di↵erent options for the functions �(t) and ⌫(·).

We use four di↵erent time discount functions �(t). All functions are defined

for 0  t  � and are zero elsewhere:

Step : �(t) = sgn(�� t)

Linear : �(t) = 1� t

�

Logarithmic : �(t) = 1� log�(1 + t⇥ �� 1

�
)

Exponential : �(t) = e

�t 10
�

Figure 2 shows a visual representation of the four functions for � = 10. Given

that the area below each curve is di↵erent, values computed with di↵erent time

discount functions are not directly comparable.

We use Mean Average Precision (MAP) as the main measure for the value

function ⌫(·). We ignore unjudged results, which, as shown by Sakai [26], is a

15

better alternative than b-pref [9] when dealing with a result list with a high

fraction of documents without relevance labels. However, we also explore the

use of a measure based on Normalized Discounted Cumulative Gain (NDCG)

to make use of unjudged results.

NDCG. As proposed by De Francisci Morales et al. [12], we use the NDCG

measure in order to circumvent the limited size of the human judgements avail-

able from the ground truth. Rather than having binary relevance judgements,

we consider 5 levels of relevance, from 0 to 4.

Our goal is to compute a relevance value for any news article (even unjudged

ones) for a given segment. To do so, we use the entities in the news article as a

proxy for its content and we bootstrap the procedure by using our ground truth

as follows. For each segment S, let RES be the set of all the entities of the news

articles judged relevant by human assessors (Section 5 explains how entities are

extracted). We name RES the relevant entity set for the segment. Then, we

define the relevance of a news article n with entities En for a segment S as:

Rel(n, S) =

⇠
| En \RES |

| En | ⇥ 5

⇡

That is, we bin the value of Rel(n, S) in 5 levels (0.2, 0.4, 0.6, 0.8, 1.0) according

to the fraction of entities in the news items that are also in the relevant entity

set, and assign value 0 to 4 to each level. Finally we compute NDCG for the

result list with the relevance values computed as described above.

Coverage. Sometimes the system is not able to provide suggestions in time,

mostly because the segment is too short or because the system misses the change

in topic. For this reason we also assess the system in terms of how many

segments have at least one suggestion. We define coverage to be the fraction

of segments in the ground truth for which we provide at least one matching.

We also assess the suggestion ratio, the number of di↵erent results provided for

each segment in the ground truth. The suggestion ratio gives an estimate of the

“overhead” of the method.

16

0 200 400

50

100

150

Lines

F
re
q
u
e
n
c
y

0 1000 2000 3000

50

100

150

Words
0 500 1000

50

100

150

Seconds

Figure 3: Segment length distribution

5. Dataset

This section describes the dataset we used for testing the IntoNews system.

First, we extract from the internal archives of a second screen application a whole

day worth of cc data from a very popular news TV network. We manually

clean the closed captions by removing advertisements4 and programs unrelated

to news (e.g., talks shows).

We collect the news articles from a major online news aggregator spanning

the two weeks preceding the date of the captions. These articles constitute the

pool from which we draw the matching news. We represent the news articles

by their full-text content and by named entities extracted with SuperSense tag-

ger5. Following the approach of Matthews et al. [20], we index these entities in

addition to the full text, and process title and body separately.

We then proceed to build a ground truth for the cc segments. Our ap-

4
Advertisement detection is left as future work.

5
http://sourceforge.net/projects/supersensetag

Table 1: Ground truth dataset characteristics.

Number of lines ⇡ 36k
Number of segments 720
Avg. No. of words per segment ⇡ 280
Avg. segment duration ⇡ 97s
Avg. No. of relevant news per segment ⇡ 5.3
No. of news articles ⇡ 180k

17

plication depends on how the stream of text is segmented, thus this step is

fundamental. We manually segment the stream of cc lines into coherent pieces

of texts that refer to the same topic. It is worth noting that the definition of

topic is ambiguous and thus prone to errors. How general (or particular) should

a topic be? How comprehensive should it be? What if one topic gradually and

naturally leads to another? Is it a single topic or should it be split into two

di↵erent topics?

We opt to be as general as possible, and define a topic as an event concerning

a single subject. To give an example, consider the following fragment of text:6

>>> a new celebrity caught up in the chris brown

drake bar fight. tony parker says he suffered a

scratched retina in the fight and now has to put

off training with the french olympic basketball

team. also new, the new york city club where the

fight started has been shut down. police say eight

people were injured including singer chris bro

brown. witnesses told officers the fight started

when drake’s entourage confronted brown as he was

leaving that club.

The text refers to a bar fight between singers Chris Brown and Drake, in

which professional basketball player Tony Parker su↵ered a scratched retina;

because of the fight, the club was also shut down. In this case, we judge the

text as belonging to a single topic with a single subject, the fight. A finer

segmentation could divide the fragment above into two di↵erent parts. The

first one on Parker’s injuries and the second one on the causes and e↵ects of

the fight at the disco. These seemingly ambiguous segments are common in our

dataset and it is this ambiguity that makes the task harder than it appears.

We manually segmented the cc data and resolved any disagreement inter-

nally after discussions, or by majority voting if an agreement could not be

reached. The sequence of segments so created constitutes our ground truth for

the segmentation problem.

The next step is to find matching news in the pool of articles for each seg-

6
This is a real piece of text extracted from our dataset.

18

ment. Given the size of the document collection (see Table 1), a fully-manual

approach is not a viable option. Therefore, we automatically create queries

for each segment and submit them to the IR engine to retrieve a set of candi-

date news articles to be judged. We create the queries by following the process

described in Section 3.3.

Each segment-news pair is individually assessed by expert human raters. In

total about twenty expert human assessors evaluate the pairs of cc segments

and news articles, and assign binary relevance judgements to them. We ask

assessors to give a positive judgement only if the news matches exactly, and to

give negative judgement when in doubt.

We compute the inter-rater agreement by drawing a random sample of judg-

ments and repeating the assessment independently. Cohen’s Kappa coe�cient

on the sample for the binary judgments between the authors on one side and

the assessors on the other side is approximately 0.63. This value indicates sub-

stantial agreement, and is higher than the agreement found in other domains

such as entity retrieval (0.57) [6], sentence retrieval (0.55) [27], or opinion re-

trieval [23] (0.34). This result shows that the task is less subjective than, for

instance, assessing relevant opinions.

As an example of a segment-news pair, consider the following text:

>>> a giant leap for china. a chinese spacecraft

successfully docked with a orbiting space

laboratory this morning. this makes china to

complete a manned space docking behind the

united states and russia. the mission also sent

the country’s first female astronaut into space.

The news article in Figure 4 is considered a match by the assessors. In-

deed, the content of the news item describes exactly the same event as the one

described by the captions.

Table 1 reports the characteristics of our dataset. Figure 3 shows the distri-

bution of segment lengths measured in number of lines, words and seconds. It

is evident that the distribution is skewed and heavy tailed. Many segments are

short, but a significant fraction is longer than average.

19

Figure 4: A matching news article with respect to the fragment in the example.

6. Experiments

In order to evaluate our system, we experiment with the variants described

in Section 3, and we explore the e↵ects of the window size parameter � and of

the tcd threshold parameter ✓. We select the ranking model’s parameters in

a separate validation set (this is, setting weights for entities, title and body)

and fix the parameter values of BM25F for the rest of the study, given that

the ranking function is not the main focus of the paper. Similarly, for all the

experiments in this paper we use k = 10 as the parameter for tf-idf (number

of terms per query). The underlying IR engine we use is Apache Solr,7 modified

to adopt the BM25F model, and we retrieve the top-100 results.

We first observe that given the constraint in Eq. 1 for the time function

 �(t), a system that uses a segmentation oracle (oracle) always gets a value

close to zero on any evaluation function. Indeed, the oracle selects the words

that compose the query for the IR engine from all the words in the segment,

and thus cannot possibly submit the query before all the words in the segment

7
http://lucene.apache.org/solr

20

Table 2: Linear MAP score of sliding vs. tumbling window.

Variant tf-idf ejo0.2 ejs0.8 rjo0.2

sw10 0.195 0.172 0.195 0.183

tw10 0.185 0.145 0.185 0.183

sw30 0.251 0.307 0.252 0.240

tw30 0.208 0.217 0.208 0.205

sw60 0.253 0.175 0.261 0.256

tw60 0.195 0.066 0.195 0.187

have appeared, i.e., t = � and, consequently, the segment is already over. Nev-

ertheless, we use the result obtained by the oracle as an upper bound on the

performance of our retrieval scheme. In the rest of the section, we normalize

results with respect to the MAP score obtained by the oracle, i.e., 0.658.

Baseline. We compare against the best algorithm proposed by Henzinger et al.

[16], i.e., the one attaining the highest score of news “exactly on topic” (R+) on

both datasets. The authors call this algorithm A1-BASE15. In our terminology

this corresponds to a tw15-tf-idf strategy with queries of two terms, followed

by a filtering step to remove near duplicates. We refer to this algorithm as

baseline.

Segmentation strategies. We compare the two segmentation methods, the

tumbling window approach (tw) and the sliding window approach (sw). For

sake of clarity, Table 2 shows results only for the Linear time function given that

all the other measures follow the same pattern. The experiments prove that the

sliding window approach gets better results across various window sizes � and

across most tcd variants. The reason behind this result is that sw keeps all the

text and is thus more likely to detect the correct segment boundary. Table 2

also shows that larger values of � lead to larger di↵erences in terms of objective

function between the two approaches. Therefore, in the rest of the paper we

focus on the results obtained with sw.

Topic Change Detection. We evaluate the e↵ectiveness of the more sophisti-

cated Topic Change Detection (tcd) schemes compared to the näıve tf-idf one

21

Table 3: Linear MAP score of TCD variants.

Variant First Linear

baseline 0.114 0.072

sw10-tf-idf 0.108 0.195
sw60-tf-idf 0.064 0.253

sw30-ejo0.2 0.593 0.307

sw10-ejs0.2 0.116 0.194
sw60-ejs0.2 0.101 0.262

sw30-rjo0.2 0.296 0.240
sw60-rjo0.8 0.099 0.260

and the baseline. Table 3 shows the best variant for each tcd scheme we were

able to obtain for di↵erent values of ✓ and � and compares it to plain tf-idf. We

show two results for each variant, the one with the highest First MAP to assess

the detection of topic change, and the highest Linear MAP as a global quality

indicator. First MAP measures the Mean Average Precision by evaluating only

the first new match Rk for each segment, that is, it evaluates the behavior of the

algorithm near the boundaries. Although this evaluation measure lies outside

our evaluation framework, it is nonetheless useful to understand the behavior

of the di↵erent variants.

ejo is clearly the best performing variant as it gets results as high as 60%

of the oracle. Surprisingly, ejo has also the highest MAP value for both

categories. However, as we shall see, such a high precision comes at the expense

of a lower coverage. Finally, the ejs variant performs similarly to plain tf-

idf. Given that the ejo uses entities as well, the cause is the di↵erent way by

which they measure topic distance. Our hypothesis is that by using a multi-set

measure (JS divergence) rather than a set measure (Jaccard overlap) the results

get influenced by repetitions of similar articles in the result list which decreases

the detection performance.

The rjo variant seems to perform well compared to tf-idf. Using larger

windows increases the overall performance but decreases the responsiveness in

detecting the topic change. In fact, all the methods with higher Linear MAP

22

Table 4: Coverage analysis.

Variant Coverage Suggestion ratio

baseline 0.904 5.389

sw30-ejo0.2 0.135 0.150
sw30-ejo0.4 0.489 0.863
sw30-ejo0.6 0.829 3.440
sw30-ejo0.8 0.933 6.818

sw30-rjo0.2 0.933 6.568
sw30-rjo0.4 0.981 13.133
sw30-rjo0.6 0.994 19.861
sw30-rjo0.8 0.999 24.149

sw30-tf-idf 1 39.153

score apart from ejo have a large window size � = 60. As with many other real-

time applications, there is a tradeo↵ between being responsive and filtering out

noise. We point out that baseline is the worst performing strategy in terms of

Linear MAP. The technique of Henzinger et al. [16] does not consider timeliness

among the goals. Queries are issued only when the window is full and thus it

may be too late with respect to the beginning of the topic segment.

Coverage analysis. Table 4 shows the coverage and suggestion ratio for sev-

eral methods. Ideally, one would like to have both measures as close to one

as possible, as this would mean that we have identified the segment exactly.

However, there is a trade-o↵ involved: by being too conservative, as in the case

of the ejo strategy, we get high precision and low overhead but low coverage as

well. On the other hand, tf-idf obtains perfect coverage but at the expense of

a very high suggestion ratio of nearly forty.

For the tcd methods it is possible to tune the similarity threshold in order

to get the desired coverage trade-o↵, and the ejo method seems more sensitive

to its parameter, compared to rjo. In either case, it is possible to achieve a

coverage around 93% with a number of suggestion ratio as low as seven. This

result is more than acceptable for our envisioned application scenario. Note

that baseline performs acceptably at the price, though, of a lower relevance of

23

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
M
A
P

Step Linear Logarithmic Exponential First

SW10-RJO0.2

SW10-RJO0.4

SW10-RJO0.6

SW10-RJO0.8

SW30-RJO0.2

SW30-RJO0.4

SW30-RJO0.6

SW30-RJO0.8

SW60-RJO0.2

SW60-RJO0.4

SW60-RJO0.6

SW60-RJO0.8

Figure 5: MAP values for various window sizes � and TCD thresholds ✓.

retrieved results.

Time Functions. The relative performance of the di↵erent variants depends

on the time discount function in use. Table 5 shows MAP scores for all time

discount functions for ejo and rjo with di↵erent values of the threshold ✓. By

increasing the threshold, the algorithm becomes more aggressive (i.e., only very

similar text is considered belonging to the same topic). While the Step and

Linear scores increase with the parameter, the Logarithmic and Exponential

scores decrease with it.

This behavior might seem counterintuitive at first glance, although consis-

tent throughout our experiments. The explanation is that a more aggressive

topic detection su↵ers from high noise levels at segment boundaries, when tran-

sitioning from a topic to the next one. At these points, it pays o↵ to refrain from

submitting a query until most of the window overlaps with the new segment to

get accurate results. Segment boundaries are also the most profitable regions for

the Logarithmic and Exponential functions, thus these functions favor getting

a correct result right at the onset of a segment. On the other hand, a more

aggressive topic detection is able to recover faster from incorrect guesses made

at the beginning. Therefore the higher values for the Step and Linear functions

for larger ✓.

To test our hypothesis, we also show the First MAP score, which is computed

by taking into account only the first suggestion per segment in the ground truth.

Results are shown in the rightmost column in Table 5, where the score is raw,

24

Table 5: Performance with di↵erent time functions.

Variant Step Linear Log. Exp. First

baseline 0.134 0.072 0.012 0.015 0.114

sw30-ejo0.2 0.419 0.307 0.083 0.124 0.593

sw30-ejo0.4 0.479 0.295 0.058 0.074 0.565
sw30-ejo0.6 0.464 0.260 0.047 0.056 0.373
sw30-ejo0.8 0.482 0.259 0.045 0.052 0.274

sw30-rjo0.2 0.422 0.240 0.050 0.062 0.296

sw30-rjo0.4 0.447 0.242 0.044 0.056 0.210
sw30-rjo0.6 0.468 0.245 0.043 0.052 0.147
sw30-rjo0.8 0.491 0.252 0.043 0.050 0.109

i.e., not weighted by any time function. It is evident that less aggressive topic

detection performs as much as three times better.

Additionally, Table 5 shows how a more aggressive topic detection tends,

in the limit, to the same behavior as tf-idf. It is important to remark that

MAP values weighted with di↵erent time discount functions are not directly

comparable to each other, because of the di↵erence in the area below each

curve (i.e. their integral). ejo is an exception for Linear, because this result is

influenced by variation in coverage of the method due to its sensitivity to ✓.

As we already pointed out in the previous section, baseline does not take

into account timeliness among the constraints to meet. For this reason, the

quality of baseline is consistently worse than the methods we propose in this

work.

� and ✓. Figure 6 shows how the window size � and the tcd threshold ✓

interact with each other. We plot the Linear and Exponential MAP scores for

ejo with two values for the threshold (✓ = 0.2 and ✓ = 0.8) while varying �

from zero to 90 seconds. When using a more aggressive threshold (0.8) the MAP

score is far less sensitive to variations of �.

This behavior stems from the fact that with a less aggressive threshold less

queries are fired, thus the content of the bu↵er B can change considerably be-

tween two consecutive queries. Therefore, the size of the bu↵er has a greater

influence on the content of the query, and thus on the results. On the other

25

10 20 30 40 50 60 70 80 90

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Γ

M
A
P

sc
o
re

Linear MAP EJO0.2

Exponential MAP EJO0.2

Linear MAP EJO0.8

Exponential MAP EJO0.8

Figure 6: Interaction between window size � and TCD threshold ✓.

hand, with a more aggressive threshold the method issues more queries, and

thus the content of B often has a large overlap between two consecutive queries.

Consequently, the size of the bu↵er becomes less relevant. From the figure it is

also apparent that � = 30 is an optimal value for ejo when using a threshold

✓ = 0.2.

Figure 5 shows the combined e↵ects of enlarging the window size and using

a more aggressive TCD threshold. While Linear and Step value increase, Log-

arithmic and Exponential value decrease. The cause of this behavior is clearly

shown in the rightmost group, where we plot the First MAP score.

By using a more aggressive (larger) threshold it is easier to correct the query

even after the topic has started, thus leading to a better ranking and MAP score.

However, only methods that do not penalize late matchings excessively, such as

Step and Linear, can take advantage of it. On the contrary, an aggressive

threshold makes the method very sensitive to small changes and thus increases

the noise around topic boundaries, which are the critical part for Logarithmic

and Exponential given their sharper decrease, and for First given that they are

the only part considered.

26

1 2 3 4 5 6 7 8 9 10
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

K

N
D
C
G
@
K

ORACLE

SW10-EJO0.8

SW10-RJO0.8

SW10-TF-IDF

SW30-EJO0.8

SW30-RJO0.8

SW30-TF-IDF

SW60-EJO0.8

SW60-RJO0.8

SW60-TF-IDF

Figure 7: NDCG@K

Note that given that all the methods reach a coverage higher than 0.933 the

comparison among them is fair.

NDCG. Figure 7 shows the NDCG values for a subset of the variants we ex-

perimented with. In this case, for the sake of clarity, we report only the results

obtained by using the Step time function, although using other functions does

not change the qualitative results. The best variants achieve a value of 0.70

while the oracle gets up to 0.95. For the oracle this result only means that

the results are quite consistent and we have few outliers. On the other hand, the

best variants achieve a value as high as 70% of the ideal one when suggesting

related news.

Most of the variants are quite close to each other, so there is no clear winner

here. This suggests that the system is able to find a large fraction of related

news for most of the segments, and this behavior is consistent across di↵erent

variants and parameters.

27

7. Conclusions and Future Work

In this paper we tackled the task of matching articles from a repository of

news to a stream of closed captions coming from a newscast. We defined and

formalized the problem and proposed a range of solutions, mainly borrowing

techniques from information retrieval. We performed extensive experiments

by using editorially assembled ground truth out of real-world data. The best

performing strategy for segmenting closed captioning data is to use a fixed-

width sliding window. On the other hand the best strategy to decide whether

to issue a query to retrieve news articles, was based on ejo (Entity Jaccard

Overlap) between result sets. Evaluation of the final retrieval quality has to

trade-o↵ two competing metrics: coverage and precision. When the main goal

is coverage, then the best strategy results to be a sliding window of 30 seconds

over the stream of cc text with a rjo topic change detection strategy when

40% overlap between new and old result set is detected, i.e., sw30-rjo0.4. In

fact, this strategy has a high coverage (more than 98%) with a relatively low

suggestion ratio (i.e., about 13.1 suggestions per chunk) and a high MAP score.

If the goal is high precision, the best strategy is sw30-ejo0.2, which obtains

a coverage of 0.135 with a very low suggestion ratio of 0.15 (i.e., approx. 87

times smaller) and a high quality in terms of linear MAP of 0.307. In all

the experiments, we are able to improve consistently over the state-of-the-art

baseline described in Henzinger et al. [16]. This behavior is consistent thorough

all the time-dependent relevance metrics, which account for the timeliness of

retrieved news items using di↵erent discount functions.

Future work. Topic change detection is a research line that deserves a greater

deal of attention, specially in the case of continuous streams of closed captions.

We plan to investigate further this aspect in order to optimize the amount of

information displayed to users. Close captioning data analysis using more so-

phisticated techniques could lead to a new breed of second screen applications,

such as displaying more fine-grained information about topics or people (enti-

ties) mentioned on newscasts or other TV programs. Finally, assessing through

28

a user study to what extent the time-discount functions are representative of

the utility of the retrieved news items, and under what conditions one function

would be preferred over another.

References

[1] James Allan, editor. Topic detection and tracking: event-based information

organization. Kluwer Academic, 2002.

[2] James Allan, Ron Papka, and Victor Lavrenko. On-line new event detection

and tracking. In SIGIR, pages 37–45, 1998.

[3] Doug Beeferman, Adam Berger, and John La↵erty. Statistical models for

text segmentation. Mach. Learn., 34(1-3):177–210, 1999.

[4] Nicholas J. Belkin and W. Bruce Croft. Information filtering and informa-

tion retrieval: two sides of the same coin? Comm. ACM, 35(12):29–38,

1992.

[5] Timothy A. H. Bell and Alistair Mo↵at. The design of a high performance

information filtering system. In SIGIR, pages 12–20, 1996.

[6] Roi Blanco, Harry Halpin, Daniel M. Herzig, Peter Mika, Je↵rey Pound,

Henry S. Thompson, and Thanh Tran Duc. Repeatable and reliable search

system evaluation using crowdsourcing. In SIGIR, pages 923–932, 2011.

[7] Roi Blanco, Gianmarco De Francisci Morales, and Fabrizio Silvestri. To-

wards leveraging closed captions for news retrieval. In Proceedings of the

22Nd International Conference on World Wide Web Companion, WWW

’13 Companion, pages 135–136, Rio de Janeiro, Brazil, 2013. ISBN 978-

1-4503-2038-2. URL http://dl.acm.org/citation.cfm?id=2487788.

2487853.

[8] Thorsten Brants, Francine Chen, and Ayman Farahat. A system for new

event detection. In SIGIR, pages 330–337, 2003.

29

[9] Chris Buckley and Ellen M. Voorhees. Retrieval evaluation with incomplete

information. In SIGIR, pages 25–32, 2004.

[10] Carlos Castillo, Gianmarco De Francisci Morales, and Ajay Shekhawat.

Online Matching of Web Content to Closed Captions in IntoNow. In SIGIR,

2013.

[11] Freddy Y. Y. Choi. Advances in domain independent linear text segmen-

tation. In NAACL, pages 26–33, 2000.

[12] Gianmarco De Francisci Morales, Aristides Gionis, and Claudio Lucchese.

From Chatter to Headlines: Harnessing the Real-Time Web for Personal-

ized News Recommendation. In WSDM, pages 153–162, 2012.

[13] Peter J. Denning. Electronic junk. Comm. ACM, 25(3):163–165, 1982.

[14] Ayman Farahat, Francine Chen, and Thorsten Brants. Optimizing story

link detection is not equivalent to optimizing new event detection. In ACL,

pages 232–239, 2003.

[15] Alexander G. Hauptmann. Story segmentation and detection of commer-

cials. In ADL, page 24, 1998.

[16] Monika Henzinger, Bay-Wei Chang, Brian Milch, and Sergey Brin. Query-

free news search. In WWW, pages 1–10, 2003.

[17] David A. Hull, Jan O. Pedersen, and Hinrich Schütze. Method combination

for document filtering. In SIGIR, pages 279–287, 1996.

[18] Giridhar Kumaran and James Allan. Text classification and named entities

for new event detection. In SIGIR, pages 297–304, 2004.

[19] H. P. Luhn. A business intelligence system. IBM J. of Research and De-

velopment, 2(4):314–319, 1958.

[20] Michael Matthews, Pancho Tolchinsky, Peter Mika, Roi Blanco, and Hugo

Zaragoza. Searching through time in the new york times. HCIR, 2010.

30

[21] Masahiro Morita and Yoichi Shinoda. Information filtering based on user

behavior analysis and best match text retrieval. In SIGIR, pages 272–281,

1994.

[22] Douglas W. Oard. The state of the art in text filtering. User Modeling and

User-Adapted Interaction, 7(3):141–178, 1997.

[23] Deanna Osman, John Yearwood, and Peter Vamplew. Automated opinion

detection: Implications of the level of agreement between human raters.

Inf. Process. Manage., 46(3):331–342, 2010.

[24] Ron Papka. On-line New Event Detection, Clustering, and Tracking. PhD

thesis, University of Massachusetts, 1999.

[25] M. Taylor S. Robertson, H. Zaragoza H. Simple BM25 extension to multiple

weighted fields. In CIKM, pages 42–49, 2004.

[26] Tetsuya Sakai. Alternatives to bpref. In SIGIR, pages 71–78, 2007.

[27] Ian Soboro↵ and Donna Harman. Novelty detection: the trec experience.

In HLT, pages 105–112, 2005.

[28] Christos Tryfonopoulos, Manolis Koubarakis, and Yannis Drougas. Infor-

mation filtering and query indexing for an information retrieval model.

ACM Trans. Inf. Syst., 27(2):10:1–10:47, 2009.

[29] Yiming Yang, Tom Pierce, and Jaime Carbonell. A study of retrospective

and on-line event detection. In SIGIR, pages 28–36, 1998.

31

