
A comparative performance evaluation of different
implementations of the SOAP protocol

José A. Garcı́a, Roi Blanco, Antonio Blanco and Javier Par´ıs
Department of Computer Science

University A Coruña
A Coruña, Spain

Email: {josegarcia, rblanco, blanco, javierparis}@udc.es

Abstract—This paper presents a study evaluation of the SOAP
[1] protocol performance between two different implementations:
Java (Axis2) [2] and Erlang. This comparison has been carried
out using several testbeds with input and output data of different
sizes. More concretely, we developed three different web services
representing typical scenarios likely to be found in real environ-
ments. The evaluation is two-fold: we measured both the number
of requests per second answered (throughput) by each server
and the response to a common server workload, mixing stress
and stand-by phases. The Erlang [3] functional programming
language claims to be especifically designed and suited for
distributed, reliable and soft real-time concurrent systems. Morever,
its built-in lightweight processes management and easeness of
replication within distributed environments stand out Erl ang as
an appealing choice for service oriented architectures (SOAs) [4].
On the other hand, we compared this new approximation with
the well-known Apache Axis2 project, as it is widely employed on
the Web Services field by the Java community. This work allows
us to conclude that the Erlang server is more suitable when the
computational cost of the web service is low, whereas the Axis2
server is more efficient as the service workload increases.

I. I NTRODUCTION

Many companies need to offer interoperable services to their
customers. The use of SOA architectures provides a solution
for this problem by means of a standard protocol called SOAP.
The main goal of this work is to assess the viability of using
a SOAP server developed in Erlang to communicate hetero-
geneus applications. Achieving an adequate performance at
this layer of the SOA architecture would allow the transparent
use of Erlang for higher layers. The reason is that many of the
requirements of SOA, like process replication or fault tolerance
are built-in into Erlang.
SOA provides a high number of specifications dealing with
several problems like the orchestration of registered services,
security issues and the quality of the deployed services. The
quality of these services and their coordination are two of the
main points in this work. Moreover, this work tries to provide
a new approach to the construction of SOA architectures by
supporting the use of the functional programming language
Erlang.
To perform the evaluations, we selected several web services
that comprise inputs and outputs of a service in a real
environment. Additionally, we chose several different requests

Partly supported by MEC TIN2005-08986

for each service to add a degree of variability in the requests
launched by the cluster of clients.

A. The Simple Object Access Protocol

SOAP can be coarsely described as a messaging protocol
for web services. It provides a communication protocol used
to access different web services trough a loosely coupled
infrastructure that provides scalability and flexibility using
different implementation technologies and network transports.

The SOAP protocol allows the interoperability among dif-
ferent systems by providing a standard communication chan-
nel. Many of the new desktop applications, embedded systems
or PDA applications need this protocol to comunicate in an
homogeneus way.

B. Erlang

Erlang is a concurrent programming language and runtime
system that provides a virtual machine and several libraries. It
was designed by Ericsson to develop distributed, fault tolerant,
soft real time, non stop applications. It supports hot swapping
so code can be changed without stopping the system.
Concurrency is implicit in Erlang. The use of processess as a
basic abstraction is due to the design of Erlang as a language
for the development of fault tolerant systems.
Erlang has not constructors inducing side effects to an implicit
store with the exception of communications among threads
(processes, in Erlang terminology). With Erlang’s primitives
for concurrency, it resembles formal calculi such as Milner’s
CCS[5] or Hoare’s CSP[6].
In Erlang, new threads can be created with the primitive
spawn. Once evaluated, it returns theprocess identifier(PID),
of the newly created lightweight process. In other to allow in-
teraction among processes, a couple of asynchronous message
passing primitives are available:

• Asynchronous send:

Pid ! Msg

Msg is sent to process Pid without blocking the sending
process. If Pid exists, the message is stored in Pid’s
mailbox. Any valid Erlang value can be sent to other
processes.

• Mailbox pattern matching:
receive

Pat1 -> Expr1;
...

PatM -> ExprM

end.
It searches the process mailbox looking for a message that
matches one of the patternsPat1, ..., PatM sequentially.
If no such message exists, the process blocks until it
arrives. The result is the evaluation ofExpri with the
bindings carried out inPati.

The use of Erlang in this work is based on observations and
results of previous works from different researchers [7] and
in our own experience using the Java platform to develop
applications using the SOA architecture [8].

II. PREVIOUS WORKS

Support for the SOAP Protocol in Erlang has been develop-
ing in recent years. Much of this work has been done by the
Erlang community without official support. This interest has
been fueled by the need for a simple and interoperable way to
communicate different commercial applications, which SOAP
provides.
The first approach studied in this work is the Xmerl project[9].
Xmerl is a library included within the Erlang/OTP package,
with a complex lexical analyzer which can be used to work
with XML documents. One of the drawbacks of Xmerl is that
it lacks support for XML schemas. The SOAP protocol uses a
standard XML schema to define all the possible components
of a request. For that reason, providing SOAP support using
Xmerl is difficult because all the request must be processed
just to know if its structure conforms to the SOAP standard.
This makes Xmerl inadequate to use with SOAP.

Another interesting approach is theerlsoap 0.3.x[10]
project. Erlsoap is a library developed by Erik Reitsma in
2002. It works by dividing each incoming request into more
fine grained components using Xmerl. Its main drawbacks are
the use of the Xmerl library, which as was explained before,
lacks support for XML schemas. Furthermore, some of the
data types in the SOAP specification are not supported by
this library. Despite all these drawbacks, the erlsoap project is
among the first approaches that trie to provide SOAP support
in Erlang from a global point of view. Therefore, erlsoap
is not an ad-hoc solution to a specific situation but a full
aproximation to the developement of a SOAP server.
Nowadays theErlsomproject[11] developed by Wilem de Jong
allows for the use of SOAP and other specifications thanks to
its support for XML schemas. This library includes a lexical
analyzer which provides a representation of the XML schema
which can be easily used in Erlang.

On the other hand, most previous works on SOAP per-
formance deal with the comparison of different available
implementations. For example, the work of Dan Davis and
Manish Parashar [12] makes a interesting comparison of the
latency of many different implementations. In this works, the

authors measure the latency of each different implementation
trying to detect the most inefficient scenarios of the SOAP
protocol. In our work we do not try to determine which the
most innefficient scenarios are but rather to empirically check
if our Erlang server is able to provide comparable performance
to a commercial implementation.
In [13], Florian Rosenberg defines a set of web services to
compare without knowing their implementation. This approach
is not used in our work, because the knowledge about the
implementation of the web service can be used to know its
behaviour beforehand.

III. SOAP SERVER ARCHITECTURE

Fig. 1. SOAP server in Erlang

Figure 1 shows the structure of our Erlang server. For every
HTTP request, the server creates a process (soap customer)
responsible of the communication with the Erlang server
process (soap server). Furthermore, the figure also presents
the different kind of interactions occurring inside the Erlang
server whenever a SOAP request arrives.
Once the erlang client process ¡oalgo¿ the server stands by
waiting for the answer to come. Every request made by a
client process is assigned a new lightweight process in the
server, in charge of processing the incoming SOAP request.
This way, that new process is in charge of answering to the
client process, thus the server remains available longer.

Another advantageous consequence of the Erlang server
design would be that it leaves open the possibility of creating
the new processes on a different machine. Hence, the memory
and CPU load of the server can be freed at any moment. The
reply to clients will be made by the new lightweight process
created by the Erlang server following the behaviour shown
in figure 1.

In [14] Armstrong presents a comparative study showing the
goodness of Erlang inter-process communication with respect
to Java or C#. That study also reveals the fact that when several
Erlang processes have a high workload, the performance of the
server falls-out quickly. We also confirmed empirically this
fact, (figure 10). In our Erlang server there is a performance
drop because the system is not able to process all the incoming
requests and it starts to accumulate them in the server mailbox.

SOAP server replication is almost inmediate, as it only
involves the creation of another soapserver process (be it in

the same or in a different machine), and notify the clients so
they redirect their messages to this new process instead to the
old one (figure 1).

Fault tolerance is built in the language, and defined based on
a supervision tree. This is a process structuring model based
on the idea of workers and supervisors. Workers are processes
which perform computations, that is, they do the actual work.
Supervisors are processes which monitor the behaviour of
workers. A supervisor tree is a hierarchical arrangement of
code into supervisors and workers, making it possible to
design and program fault-tolerant software. In this case, the
supervisor is in charge of starting the SOAP server up again
in case of a system failure. It is possible to define and enable
different acting policies in case of a general failure. As itcan
be seen in figure 2, the different Erlang processes, in case of
being more than one, are observed as well by a root proccess
that assesses the monitors the behaviour of the system and
manages any fails thay may occur.

Server SOAP

 1

Supervisor

Server SOAP

 2

Fig. 2. Supervisor

IV. EXPERIMENTS AND RESULTS

A. Data Set

The data set we employed in this paper comes from the
implementation of three different use cases described in [15].
They can be used to assess and conform a significative set
of the possible interactions supported by a web services
framework.
The first web service designed and deployed is a credit card
service, where the input and output data are small. In this
particular case, the output is restricted to a boolean value
indicating whether the operation was successful or not. The
input values are a reduced simple dataset representing the
typical values in a bank-account operation, like the account
number, user id., etc.
The second web service proposed falls into the small data
input - big data output class. Concretely, the service modelled
is a web news server. It is fed some input parameters, like
day range and information sources, and retrieves the headlines
from each one of the information sources.
Finally, the last test web service proposed is an online shop.
It allows for the lookup of a reference for several providers
by introducing a product characteristics, like product key,
property list, expiration date, etc. This kind of service has a

medium input and output data. The three examples presented
encompass most of the possible variants one can expect from
a web service. On one hand, there is a small web service
(in terms of its input) with a boolean ouput value. The second
service is a classical example of an RSS input [16] that allows
for the retrieval of a big amount of information based on
a small query like a string of text. Lastly, the service with
moderate input and output is considered as the most common
web service in a real environment.

B. Load test

This study established two different workload sets that will
allow for evaluating easily the performance of each one of the
servers. The sets embody different client request ratio over
time, presented in the figures below.

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300

u
se

rs
/s

ec

unit = sec

Test1

Fig. 3. Load test(test1)

Figure 3 shows the first request scheme over time. We have
established a five minutes workload test where new petitions
are requested following the pattern presented in the figure.For
example, during the first phase of the test, the client cluster
will perform a request every 0.01 seconds to the server during
a lapse of one minute. It follows an stress phase, where the
server will have to handle 240 users per second during one
minute as well. This process will take place once again and
the test will end with a non-stress phase so it may finish all
the client cluster requests open.
This test aims at collating stress and repose phases, in order
to find out what the performance of both servers in areal
environmentwould be, where the ratio request variance is quite
high.

The second test (figure 4) establishes ten phases, each one of
them running for 30 seconds. This test increases progressively
the number of requests, starting in 100 request/second until the
final phase is reached, with 1000 requests/second. The main
goal of this test is to try to detect the saturation point and the
effective throughput of both servers.

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300

u
se

rs
/s

ec

unit = sec

Test 2

Fig. 4. Load test (test2)

C. Execution environment

We present now the configuration of the environment in
which the experiments were run (network and machines).
Using an Internet connection undoubtely introduces a great
number of parameters (like network latency, routing time),
that would possibly distort the obtained results. This is the
reason we opted to employ three machines connected through
a LAN, with a 100MB commuted Ethernet. This approach
is more likely to yield accurrate results than a global-based
(Internet) communication within the client cluster and the
server.
Over this network topology we will set up two machines
playing the client role; this will be the client cluster in this
study. The third of the machines will act as the SOAP server
(both Axis2 and Erlang).

client 1 client 2 server
CPU (MHz) 1700 2800 1800
Cache size(KB) 256 512 128
RAM Memory(MB) 512 1024 1024

Fig. 5. Characteristics of the three machines

As well as topological specifications, we introduced some
parameters in order to optimize the performance of both
servers. For instance, in the Axis2 server we increased the
thread pool size up to 150 threads, and the thread alive
time (threadKeepAliveTime) for every process in the pool.
The number of processes the Erlang server is able to create
has been increased up to 500000 and in both servers we
established a HTTP connection timeout of 20 seconds.

D. Results: load test (test1)

Table 6 shows the results obtained after executing the first
workload test described, over the three web sevices scenarios.

OsService CardService NewsService
Erlang Axis2 Erlang Axis2 Erlang Axis2

http-200(Highest Rate) 165.2 230 229.2 234.4 32.4 234.1
http-200 (Total) 39987 37479 37818 38061 11910 38973
Error (timeout) 70 0 0 0 28410 0
Size sent (MB) 273.62 256.85 26.76 27.30 18.76 57.24
Size rcv (MB) 27.11 22.77 13.74 11.36 327.46 1078.15

Fig. 6. Test 1 results

The first row of the table shows the highest number of
successfully answered request per second. The second row
stands for the total number of answers the server was able to
answer sucessfully within the execution time established for
the test. Next row shows the number of errors in each server.
Finally, the last two rows of the table indicate the total size
in megabytes of the input and output messages, respectively,
in each server.
Differences obtained among the servers in the first test are
not significative and therefore none of the technologies shall
be completely ruled out. In the online shop web service
OsService, the one that has a moderate input and output,
differences are not very significative as well. However, the
number of successful requests answered is higher for the
Erlang case (> 2000). This scenario represents the prototype
of a standard web service, web input and ouput are medium-
grained and thus, conclusions may be directly transferableto
a generic web service.

The bottleneck observed in the Erlang server (fig.7) is
mostly due to the increase of the computational workload of
the process, and the associated serialization and deseralization
cost of the SOAP message. As it is explained in section
III, each time a client asks for a request, the Erlang server
creates a process in onder to answer it. If the wait time
of this process is high, every eventual clients that might
arrive to the server next stay idle in a wait state, forcing
the server to handle every queued waiting process and those
under execution. Also, the WSDL document associated to
news service (and that may be found at [17]) shows that the
message structure is more complex than in the other services.
This is the reason why the serialization and deserialization
times are higher, as the parser in the Erlang server is not as
optimized as the Axis2 parser.

The Axis2 parser, called AXIs Object Model (AXIOM)
[18], is an XML object model designed to improve both
memory use and performance during XML processing and
is based on pull parsing. By using the Streaming API for
XML (StAX) pull parser, AXIOM (also referred to as OM)
can control the parsing process to provide deferred building
support. Deferred building is the ability of AXIOM to partially
build the object model while the rest of the model is built based
the user’s needs.

However, for the Erlang case, the client request is parsed
on its entirety therefore the longer client answer times.

Figure 7 presents a comparison of the results obtained after

executing the first test on the news web service scenario. The
upper-left graph show the number of answers obtained in the
client cluster. It may be noticed that during the first phase of
test 1 (figure 3), the Axis2 server is able to anwer correctly
every request sent. During the second phase of the test, the
number of clients accessing the web service increases over
time.

On the other hand, the Erlang server is only able to answer
30 requests/second. The lower-left graph states the fact that
as the test phases advance, the clients are queued in the
server in order for their requests to be attended. This is the
reason for the Erlang server to overload at the beginning
of the test. The bottom-right graph shows that the server
discards requests from the client cluster. It is worth pointing
out that the timeout graph (the lower one) agrees with the
different phases established in the workload test (figure 3). As
a consequence of the client enqueing situation, some requests
time-out and consecuently errors start taking place (figureto
the right)

Results obtained after executing the first test over the credit
card web service show slight non-signiticative differences
between servers. This behaviour is plotted in figure 8. In this
case, a noteworthy point of the process is that the system is
flawless, mostly due to the low computational execution costs
of the service, and the small boolean output. This is the reason
why the system is not overloaded though the whole test, and
the behaviour of both servers is very similar.

Figure 9 presents the results for the online store web service.
The upper left graph, just like the other two services, shows
the number of successfully answered requests measured in
the client cluster. As in the news web service, the Erlang
server is overloaded during the first stress phase, and thus
in the first non-stress phase (120-180 seconds) the server is
still answering requests from the previous one. Something else
to consider is, like in the news case, the number of clients
connected simultaneoulsy to the server. The users connect to
the Erlang server during the first stress phase (phase two of the
test) and are queued in order for their requests to be processed
by the server. Once the server handles its request, it creates a
new process in charge of managing the domain-logic offered
by the web service and answering the client, leaving the server
idle to keep on answering requests. The number of errors
(timeout) shown in the botom-rigth figure are not significative
for the global test.

E. Results: load test (test2)

As it is commented in section IV-B this test tries to measure
the behaviour of both servers in the case of increasing the
client workload over time.

Results presented in table 11 allow us to conclude that the
news web service presents a bad behaviour under this stress
workload schema execution. It is worth pointing out that the
number of errors is up to 62.000 requests; this value is higher
than the one obtained in the first test (around 28.000) and

OsService CardService NewsService
Erlang Axis2 Erlang Axis2 Erlang Axis2

http-200(Highest Rate) 166,5 315,9 689,5 486,3 30,1 236
http-200 (Total) 63371 78699 72518 79378 17135 76970
Error (timeout) 18000 800 0 0 62000 3375
Size sent (MB) 437,07 539,33 51,22 56,93 27,28 113,04
Size rcv (MB) 42,97 53,59 26,35 27,98 471,62 2130,30

Fig. 11. Test 2 Results

goes accordingly with those results (the number of clients per
second is higher). The perfomance of the Erlang server in
the credit card service is remarkable. In this case, the com-
putational workload and the serialization and deserialization
processes are low. Therefore, it is possible to conclude that
the Erlang server is able to create and destroy efficiently a
higher number of processes than the Axis2 server.

Finally, the online store web service has a good performance
in both servers. The Axis2 server has a number of errors
(timeout) not significative with respect to those observed in
the Erlang server.

In figure 12, it can be seen that the Erlang server handles
over 600 succesful replies per second in the final stage of the
test. This performance is much higher than in Axis2, which
serves 400 per second. The main reason for this numbers
can be seen in the lower graph, which shows the number of
simultaneously connected users to each server. In this case, the
Erlang server has around 600 simultaneously connected users,
while the Axis2 server has 3500. This good performance show
that the Erlang virtual machine is very good at creating and
destroying large numbers of processes. The top right graph
in figure 12, shows that all arriving requests to the Erlang
server are processed inmediately. This does not happen with
the Axis2 server, whose behaviour is irregular in the final part
of the test. This web service has a much lower computational
load than the previous ones, and so it behaves like a ping
service that can be used to measure the latency between the
cluster of clients and the server.

In figure 13 it can be seen that the trend observed intest1
can also be seen intest2. The lower graph shows that the
Erlang server reaches peak performance in the 100th second
of the test. From that moment the Erlang server will process
150 requests per second until the end of the test.

On the other hand, the Axis2 server peaks at the 200th
second, when the number of users waiting increases. In that
moment, the load of the server is 100%, which means that the
server has no spare capacity for new requests, and the new
arriving ones have to wait.

V. OPTIMIZATION ISSUES IN ERLANG SERVER

This experiment showed that the Axis2 server has better
performance due to having a very efficient processing model
called AXIOM (Axis Object Model).
To try to reduce the problem in the Erlang server, we have
tried a simple approach. The Erlang server does not create new
processes when the request is the same as a previous one, that
is, the server creates a response cache to reduce the number

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300 350 400

n
u
m

b
er

/s
ec

unit = sec

Code http-200 News rate (test1)

Axis2 HTTP/200
Erlang HTTP/200

 0

 5000

 10000

 15000

 20000

 25000

 0 50 100 150 200 250 300 350 400

co
n
n
ec

te
d
 u

se
rs

unit = sec

 Users simultaneous (test1)

Axis2 users
Erlang users

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300 350 400

ra
te

unit = sec

Request rate (test1)

Axis2 request
Axis2 connect
Erlang request
Erlang connect

 20

 40

 60

 80

 100

 120

 140

 160

 0 50 100 150 200 250 300 350 400

n
u
m

b
er

/s
ec

unit = sec

Errors (test1)

Erlang error timeout

Fig. 7. News Service test1

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300

n
u
m

b
er

/s
ec

unit = sec

Code http-200 Card rate (test1)

Axis2 HTTP/200
Erlang HTTP/200

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250 300

co
n
n
ec

te
d
 u

se
rs

unit = sec

 Users simultaneous (test1)

Axis2 users
Erlang users

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300

ra
te

unit = sec

Request rate (test1)

Axis2 request
Axis2 connect
Erlang request
Erlang connect

Fig. 8. Card Service test1

of processes created and prevent an explosive growth. This
optimization also shows an efficiency problem in the parser
that processes the XML requests in Erlang.

Fig. 14. Erlang server (Cache)

As it can be seen in figure 14, in the first request of a set
of identical ones a process is created to reply to the client.
This server adds the reply to the cache so that new incoming
requests which are identical do not create new processes, and
thus prevent a performance decrease due to the saturation of
the server as in the news web server.

When a new client of the web service sends a request the
server first checks if there is an indentical one in the caché. If
there is none, the server creates a new process following the
approach shown in figure 1. On the other hand, if the request
has already been made before, the server itself will retrieve
the reply from the cache and send it to the client. As a result
the cache reduces the number of concurrent processes which
helps the server achieve better performance.
In order to see if this change delivers better performance than
the previous one, we test both the medium load case (web
service for an online store) and the high load case (news web
service). The test used istest2(figure 4) which increases the
number of new clients as the tests goes on.

As it can be seen in the results, the new approach (figures
15 and 16) provides an increase in performance(both reducing
the number of errors and increasing the number of correct
answers) in the news web service, which was one of the worst
cases for the Erlang server. However, the server peaks at
around 150 clients per second. The main reason for this limit
is not in the processing to generate the replies as most of them
are already in the cache, but rather in the use of an inefficient
serialization-deserialization process. The performancehit is
bigger for WSDL documents with a complex structure, as

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300 350 400

n
u
m

b
er

/s
ec

unit = sec

Code http-200 Online Store rate (test1)

Axis2 HTTP/200
Erlang HTTP/200

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 50 100 150 200 250 300 350 400

co
n
n
ec

te
d
 u

se
rs

unit = sec

 Users simultaneous (test1)

Axis2 users
Erlang users

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300 350 400

ra
te

unit = sec

Request rate (test1)

Axis2 request
Axis2 connect
Erlang request
Erlang connect

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 260 270 280 290 300 310 320

n
u
m

b
er

/s
ec

unit = sec

Errors (test1)

Erlang error timeout

Fig. 9. Online Store service test1

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300 350

n
u
m

b
er

/s
ec

unit = sec

Code http-200 News rate (test2)

Axis2 HTTP/200
Erlang HTTP/200

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 50 100 150 200 250 300 350

co
n
n
ec

te
d
 u

se
rs

unit = sec

 Users simultaneous (test2)

Axis2 users
Erlang users

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350

ra
te

unit = sec

Request rate (test2)

Axis2 request
Axis2 connect
Erlang request
Erlang connect

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 50 100 150 200 250 300 350

n
u
m

b
er

/s
ec

unit = sec

Errors (test2)

Axis2 error timeout
Erlang error timeout

Fig. 10. News service test2

in the news web service. In this case, the mean serialization
time for the reply to the client is 25ms, which is too high
to prevent an accumulation of clients when the client arrival
rate is high (as intest2). Due to this, in figure 7 the Erlang
server peaks at 30 replies per second.

For the online store service the tests shows that the number
of served requests in the last stage of the test by the Erlang
server is much larger than the Axis2 server. the Erlang server
peaks at 700 requests per second, while the Axis2 server only
servers 200 requests per second. The higher performance of
the Erlang server is due to the low computational load of this
example, and that Erlang is better suited for managing a large
number of concurrent processes. In addition, the Axis2 server
had several timeouts which are not important for the result of
the tests.

VI. CONCLUSIONS

The work presented in this paper shows that the performance
of the Erlang server is good when the computational load of
the services provided is low. The reason is that the running
time of the process that creates the reply is low, and the parser
inefficiency is not so important because the structure of the

WSDL document is simple.
Likewise, the Erlang server has an adequate performance when
the load of the service is moderate. Again, this is due to a
not very complex WSDL document and a moderate running
time for generating the reply. The figure 9 shows that the
performance for this kind of service is similar in both servers.

However, when the computacional load of the service is
high and the structure defined by the WSDL document is
complex, the performance of the Erlang server is low because
our server does not have an efficient parser. The parser needs
an average of 25ms to build the SOAP reply for a complex
request. This time limits the maximum number of requests that
can be served in a second to 40, which is the reason for the
performance problems shown in figure7.

VII. F UTURE WORK

In the near future, we plan to test the Erlsom partes with
different WSDL document structures looking for inefficiencies
in the project. This will lead to performance improvements in
the worst part of our server: the parser.
Another research line is developing a communication layer
for processes using the BPEL [19] specification included in

 0

 100

 200

 300

 400

 500

 600

 700

 0 50 100 150 200 250 300 350 400

n
u
m

b
er

/s
ec

unit = sec

Code http-200 Card rate (Test2)

Axis2 HTTP/200
Erlang HTTP/200

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 50 100 150 200 250 300 350 400

co
n
n
ec

te
d
 u

se
rs

unit = sec

 Users simultaneous (test2)

Axis2 users
Erlang users

 0

 100

 200

 300

 400

 500

 600

 700

 0 50 100 150 200 250 300 350 400

ra
te

unit = sec

Request rate (test2)

Axis2 request
Axis2 connect
Erlang request
Erlang connect

Fig. 12. Card Service test2

 0

 50

 100

 150

 200

 250

 300

 350

 0 100 200 300 400 500 600

n
u
m

b
er

/s
ec

unit = sec

Code http-200 Online Store rate (test2)

Axis2 HTTP/200
Erlang HTTP/200

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 100 200 300 400 500 600

co
n
n
ec

te
d
 u

se
rs

unit = sec

 Users simultaneous (test2)

Axis2 users
Erlang users

 0

 50

 100

 150

 200

 250

 300

 350

 0 100 200 300 400 500 600

ra
te

unit = sec

Request rate (test2)

Axis2 request
Axis2 connect
Erlang request
Erlang connect

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 250 300 350 400 450 500 550 600

n
u
m

b
er

/s
ec

unit = sec

Errors (test2)

Axis2 error timeout
Erlang error timeout

Fig. 13. OnlineStoreService test2

the SOA architecture, moving the implementation layer into
Erlang.

REFERENCES

[1] N. Mitra, “SOAP version 1.2 part 0: Primer,” W3C, W3C Recommen-
dation, June 2003.

[2] Axis2 homepage. [Online]. Available: http://ws.apache.org/axis2/
[3] Erlang homepage. [Online]. Available: http://www.erlang.org
[4] M. E. J. Ang and A. Arsanjani., “Patterns: Service-oriented architecture

and web services.” Tech. Rep., 2004.
[5] R.Milner, A Calculus for communication processes. Stinger Verlag,

1980.
[6] C. A. R. Hoare,Communicating sequential processes. Upper Saddle

River, NJ, USA: Prentice-Hall, Inc., 1985.
[7] M. N. J Halén, R Karlsson, “Performance measurements ofthreads in

java and processes in erlang,” Tech. Rep., November 1998. [Online].
Available: http://www.sics.se/ joe/ericsson/du98024.html

[8] J. A. Garcı́a, A. Blanco, and R. Blanco, “Incorporating applications
to a service oriented architecture,” inProceedings of 5th WSEAS
International Conference on SYSTEM SCIENCE and SIMULATIONin
ENGINEERING (ICOSSE06) December 16 - 18, 2006, December 2006,
pp. 401–407.

[9] U. Wiger, “Xmerl - interfacing xml and erlang,” inProceedings of Sixth
International Erlang/OTP User Conference, 2000.

[10] Erlsoap homepage. [Online]. Available:
http://forum.trapexit.org/viewtopic.php?t=6331

[11] Erlsom homepage. [Online]. Available:
http://sourceforge.net/projects/erlsom

[12] D. Davis and M. P. Parashar, “Latency performance of soap implemen-
tations,” ccgrid, vol. 0, p. 407, 2002.

[13] F. Rosenberg, C. Platzer, and S. Dustdar, “Bootstrapping performance
and dependability attributes ofweb services,” inICWS ’06: Proceedings
of the IEEE International Conference on Web Services (ICWS’06).
Washington, DC, USA: IEEE Computer Society, 2006, pp. 205–212.

[14] J. Armstrong. Concurrency oriented programming in erlang. [Online].
Available: http://www.guug.de/veranstaltungen/ffg2003/papers/ffg2003-
armstrong.pdf

[15] N. Wickramage and S. Weerawarana, “A benchmark for web service
frameworks.” inIEEE SCC, 2005, pp. 233–242.

[16] “Rss 2.0 specification,” 2006. [Online]. Available:
http://www.rssboard.org/rss-specification

[17] N. Wickramage and S. Weerawarana. A benchmark for web service
frameworks. [Online]. Available: http://www.cse.mrt.ac.lk/ narada/

[18] Apache axiom. [Online]. Available:
http://ws.apache.org/commons/axiom/index.html

[19] P. Wohed, W. M. van der Aalst, M. Dumas, and A. H. ter Hofstede,
“Pattern based analysis of bpel4ws,” 2002. [Online]. Available:
citeseer.ist.psu.edu/556822.html

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 0 50 100 150 200 250 300 350 400

n
u
m

b
er

/s
ec

unit = sec

Code http-200 News rate (test2)

Axis2 HTTP/200
Erlang HTTP/200

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 50 100 150 200 250 300 350 400

co
n
n
ec

te
d
 u

se
rs

unit = sec

 Users simultaneous (test2)

Axis2 users
Erlang users

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350 400

ra
te

unit = sec

Request rate (test2)

Axis2 request
Axis2 connect
Erlang request
Erlang connect

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 50 100 150 200 250 300 350 400

n
u
m

b
er

/s
ec

unit = sec

Errors (test2)

Axis2 error timeout
Erlang error timeout

Fig. 15. News Service test2

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 50 100 150 200 250 300 350 400 450 500

n
u
m

b
er

/s
ec

unit = sec

Code http-200 Online Store rate (test2)

Axis2 HTTP/200
Erlang HTTP/200

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 50 100 150 200 250 300 350 400 450 500

co
n
n
ec

te
d
 u

se
rs

unit = sec

 Users simultaneous (test2)

Axis2 users
Erlang users

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 50 100 150 200 250 300 350 400 450 500

ra
te

unit = sec

Request rate (test2)

Axis2 request
Axis2 connect
Erlang request
Erlang connect

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 440 445 450 455 460 465 470 475 480

n
u
m

b
er

/s
ec

unit = sec

Errors (test2)

Axis2 error timeout

Fig. 16. Online StoreService test2

