A comparative performance evaluation of different
Implementations of the SOAP protocol

José A. Garcia, Roi Blanco, Antonio Blanco and JaviendPar’
Department of Computer Science
University A Coruiia
A Corufia, Spain

Email: {josegarcia, rblanco,

Abstract—This paper presents a study evaluation of the SOAP
[1] protocol performance between two different implementdions:
Java (Axis2) [2] and Erlang. This comparison has been carrié
out using several testbeds with input and output data of diférent
sizes. More concretely, we developed three different web rséces
representing typical scenarios likely to be found in real emiron-
ments. The evaluation is two-fold: we measured both the numdr
of requests per second answered (throughput) by each server
and the response to a common server workload, mixing stress
and stand-by phases. The Erlang [3] functional programming
language claims to be especifically designed and suited for
distributed, reliable and soft real-time concurrent systems. Morever,
its built-in lightweight processes management and easeresf
replication within distributed environments stand out Erl ang as
an appealing choice for service oriented architectures (S&s) [4].
On the other hand, we compared this new approximation with
the well-known Apache Axis2 project, as it is widely employe on
the Web Services field by the Java community. This work allows
us to conclude that the Erlang server is more suitable when th
computational cost of the web service is low, whereas the As@
server is more efficient as the service workload increases.

I. INTRODUCTION

blanco, javierpd@udc.es

for each service to add a degree of variability in the request
launched by the cluster of clients.

A. The Simple Object Access Protocol

SOAP can be coarsely described as a messaging protocol
for web services. It provides a communication protocol used
to access different web services trough a loosely coupled
infrastructure that provides scalability and flexibilitysing
different implementation technologies and network tramtgp

The SOAP protocol allows the interoperability among dif-
ferent systems by providing a standard communication chan-
nel. Many of the new desktop applications, embedded systems
or PDA applications need this protocol to comunicate in an
homogeneus way.

B. Erlang

Erlang is a concurrent programming language and runtime
system that provides a virtual machine and several litsatie
was designed by Ericsson to develop distributed, faultaoie
soft real time, non stop applications. It supports hot svrapp

Many companies need to offer interoperable services to thg code can be changed without stopping the system.
customers. The use of SOA architectures provides a soluti@Bncurrency is implicit in Erlang. The use of processess as a
for this problem by means of a standard protocol called SOAFjsic abstraction is due to the design of Erlang as a language
The main goal of this work is to assess the viability of usingyr the development of fault tolerant systems.

a SOAP server developed in Erlang to communicate hetefrang has not constructors inducing side effects to aniaitpl
geneus applications. Achieving an adequate performancesgfre with the exception of communications among threads
this layer of the SOA architecture would allow the transpareprocesses, in Erlang terminology). With Erlang’s prires
use of Erlang for higher layers. The reason is that many of thg concurrency, it resembles formal calculi such as Mier

requirements of SOA, like process replication or faulttatee
are built-in into Erlang.

CCSJ[5] or Hoare’'s CSPI[6].
In Erlang, new threads can be created with the primitive

SOA provides a high number of specifications dealing witshawn Once evaluated, it returns tipgocess identifie(PID),

several problems like the orchestration of registeredicesy

of the newly created lightweight process. In other to allow i

Security issues and the qua“ty of the deployed services. Tlléraction among processes, a Couple of asynchronous neessag

quality of these services and their coordination are twdhef t
main points in this work. Moreover, this work tries to progid
a new approach to the construction of SOA architectures

supporting the use of the functional programming language

Erlang.
To perform the evaluations, we selected several web servi

that comprise inputs and outputs of a service in a real

environment. Additionally, we chose several differenturests

Partly supported by MEC TIN2005-08986

passing primitives are available:
« Asynchronous send:
Pid ! Mg
Msg is sent to process Pid without blocking the sending
process. If Pid exists, the message is stored in Pid's
mailbox Any valid Erlang value can be sent to other
processes.

by

ce

« Mailbox pattern matching: authors measure the latency of each different implememtati

receive trying to detect the most inefficient scenarios of the SOAP
Pat1 -> Expril; protocol. In our work we do not try to determine which the
o most innefficient scenarios are but rather to empiricallyath
Pat M - > ExprM if our Erlang server is able to provide comparable perforoean

end to a commercial implementation.

It searches the process mailbox looking for a message tllpc\t[13]’ Flo_?han tFlz(osenbert?] G!efmels a sett t(')f W_T_E. serwct:ss o
matches one of the patter#%ity, ..., Paty; sequentially. compare without knowing their implementation. 1his apjfoa

If no such message exists, the process blocks untiliﬁ not used in our work, because the knowledge about the
arrives. The result is the e\,/aluation &frpr; with the implementation of the web service can be used to know its
. (2

bindings carried out irPat;. behaviour beforehand.
The use of Erlang in this work is based on observations and 1. SOAP SERVERARCHITECTURE
results of previous works from different researchers [7dl an

in our own experience using the Java platform to develop
applications using the SOA architecture [8].

From,!{SOAP response}}

request http

Il. PREVIOUS WORKS

Support for the SOAP Protocol in Erlang has been develop-
ing in recent years. Much of this work has been done by the
Erlang community without official support. This interestsha . T _)
been fueled by the need for a simple and interoperable way to \ R D (L .68
communicate different commercial applications, which $FOA
provides. < -
The first approach studied in this work is the Xmerl projelct[9
Xmerl is a library included within the Erlang/OTP package,
with a complex lexical analyzer which can be used to work
with XML documents. One of the drawbacks of Xmerl is that Figure 1 shows the structure of our Erlang server. For every
it lacks support for XML schemas. The SOAP protocol usesHIT TP request, the server creates a procesaff customey
standard XML schema to define all the possible componemésponsible of the communication with the Erlang server
of a request. For that reason, providing SOAP support usipgocess foap serve). Furthermore, the figure also presents
Xmerl is difficult because all the request must be processtid different kind of interactions occurring inside the
just to know if its structure conforms to the SOAP standarderver whenever a SOAP request arrives.

This makes Xmerl inadequate to use with SOAP. Once the erlang client process joalgo¢, the server stands by

Another interesting approach is therlsoap 0.3.K10] waiting for the answer to come. Every request made by a
project. Erlsoap is a library developed by Erik Reitsma iglient process is assigned a new lightweight process in the
2002. It works by dividing each incoming request into morserver, in charge of processing the incoming SOAP request.
fine grained components using Xmerl. Its main drawbacks arais way, that new process is in charge of answering to the
the use of the Xmerl library, which as was explained beforelient process, thus the server remains available longer.
lacks support for XML schemas. Furthermore, some of the Another advantageous consequence of the Erlang server
data types in the SOAP specification are not supported dgsign would be that it leaves open the possibility of crepti
this library. Despite all these drawbacks, the erlsoapgutds the new processes on a different machine. Hence, the memory
among the first approaches that trie to provide SOAP suppartd CPU load of the server can be freed at any moment. The
in Erlang from a global point of view. Therefore, erlsoapeply to clients will be made by the new lightweight process
is not an ad-hoc solution to a specific situation but a fullreated by the Erlang server following the behaviour shown
aproximation to the developement of a SOAP server. in figure 1.

Nowadays th&rlsomproject[11] developed by Wilem de Jong In [14] Armstrong presents a comparative study showing the
allows for the use of SOAP and other specifications thanksdoodness of Erlang inter-process communication with retspe

its support for XML schemas. This library includes a lexicalo Java or C#. That study also reveals the fact that whenalever
analyzer which provides a representation of the XML schenialang processes have a high workload, the performanceof th
which can be easily used in Erlang. server falls-out quickly. We also confirmed empirically sthi

On the other hand, most previous works on SOAP pehct, (figure 10). In our Erlang server there is a performance
formance deal with the comparison of different availabldrop because the system is not able to process all the ingomin
implementations. For example, the work of Dan Davis amgquests and it starts to accumulate them in the server oxailb
Manish Parashar [12] makes a interesting comparison of theSOAP server replication is almost inmediate, as it only
latency of many different implementations. In this workse t involves the creation of another soagrver process (be it in

client

Fig. 1. SOAP server in Erlang

the same or in a different machine), and notify the clients snedium input and output data. The three examples presented

they redirect their messages to this new process instedtto éncompass most of the possible variants one can expect from

old one (figure 1). a web service. On one hand, there is a small web service
Fault tolerance is built in the language, and defined based @mterms of its input) with a boolean ouput value. The second

a supervision tree. This is a process structuring modeldbaservice is a classical example of an RSS input [16] that alow

on the idea of workers and supervisors. Workers are prosesk® the retrieval of a big amount of information based on

which perform computations, that is, they do the actual worlk small query like a string of text. Lastly, the service with

Supervisors are processes which monitor the behaviour mbderate input and output is considered as the most common

workers. A supervisor tree is a hierarchical arrangement wkb service in a real environment.

code into supervisors and workers, making it possible to

design and program fault-tolerant software. In this cake, tB. Load test

supervisor is in charge of starting the SOAP server up agai

in case of a system failure. It is possible to define and enat%\'ﬁ’ow for evaluating easily the performance of each one ef th

glfferenr': ?rftfling rpolzlmtehs lr(;i?fafen(t)fEeilggnerral failure. ,ié;]san servers. The sets embody different client request ratiod ove
€ see gure =, the difiere ang processes, In casg;fle presented in the figures below.
being more than one, are observed as well by a root proccess

that assesses the monitors the behaviour of the system and

Mhis study established two different workload sets that wil

manages any fails thay may occur. Testl
250 : ; ; ; :
Buper vi sor 200 + ““ “\ ““ “\ 4

users/sec

100 Jooe] I I

Server SOAP Server SOAP

1 2 50
. 3 0 1 1 1 1 1
Fig. 2. Supervisor 0 50 100 150 200 250 300
unit = sec
IV. EXPERIMENTS AND RESULTS Fig. 3. Load test(test1)

A. Data Set

The data set we employed in this paper comes from theFigure 3 shows the first request scheme over time. We have
implementation of three different use cases described5h [Lestablished a five minutes workload test where new petitions
They can be used to assess and conform a significative &kt requested following the pattern presented in the figtoe.
of the possible interactions supported by a web servicesample, during the first phase of the test, the client aluste
framework. will perform a request every 0.01 seconds to the server dgurin
The first web service designed and deployed is a credit cardapse of one minute. It follows an stress phase, where the
service, where the input and output data are small. In ttéerver will have to handle 240 users per second during one
particular case, the output is restricted to a boolean valognute as well. This process will take place once again and
indicating whether the operation was successful or not. THee test will end with a non-stress phase so it may finish all
input values are a reduced simple dataset representing tihe client cluster requests open.
typical values in a bank-account operation, like the actouhhis test aims at collating stress and repose phases, im orde
number, user id., etc. to find out what the performance of both servers imeal
The second web service proposed falls into the small daavironmentvould be, where the ratio request variance is quite
input - big data output class. Concretely, the service nmedel high.
is a web news server. It is fed some input parameters, like
day range and information sources, and retrieves the mesdli The second test (figure 4) establishes ten phases, each one of
from each one of the information sources. them running for 30 seconds. This test increases progedgsiv
Finally, the last test web service proposed is an online shdpe number of requests, starting in 100 request/seconktiveti
It allows for the lookup of a reference for several providerfinal phase is reached, with 1000 requests/second. The main
by introducing a product characteristics, like product,kegoal of this test is to try to detect the saturation point drel t
property list, expiration date, etc. This kind of servicestaa effective throughput of both servers.

OsService CardService NewsService

Test 2 Erlang Axis2 Erlang | Axis2 Erlang Axis2
1000 http-200(Highest Rate) | 165.2 230 229.2 234.4 324 234.1
' ' ' ' R hitp-200 (Total) 39987 | 37479 | 37818 | 38061 | 11910 | 38973
| Error (timeout) 70 0 0 0 28410 0
“ Size_sent (MB) 273.62 | 256.85 26.76 27.30 18.76 57.24
800 r L] Sizerov (MB) 2711 | 22.77 | 13.74 | 11.36 | 327.46 | 1078.15
|
3 600 “‘f Fig. 6. Test 1 results
z — \
Q / |
5 400 / H , .
St \ The first row of the table shows the highest number of
/ \ successfully answered request per second. The second row
200 + M 1
e \ stands for the total number of answers the server was able to
answer sucessfully within the execution time establishad f
O 1 1 1 1 1 .
0 50 100 150 200 250 300 th_e test. Next row shows the number qf errors in each server.
nif = sec Finally, the last two rows of the table indicate the totalesiz
in megabytes of the input and output messages, respegtively
Fig. 4. Load test (test2) in each server.

Differences obtained among the servers in the first test are
not significative and therefore none of the technologiedl sha
C. Execution environment be completely ruled out. In the online shop web service

.)] OsService the one that has a moderate input and output,
We present now the configuration of the environment igitrerences are not very significative as well. However, the

which the experiments were run (network and machines). nymper of successful requests answered is higher for the
Using an Internet connection undoubtely mtroduces a gredfiang case ¥ 2000). This scenario represents the prototype
number of parameters (like network latency, routing time)s 4 standard web service, web input and ouput are medium-

that would possibly distort the obtained results. This is ﬂbrained and thus, conclusions may be directly transfertable
reason we opted to employ three machines connected thro'é%‘eneric web service.

a LAN, with a 100MB commuted Ethernet. This approach
is more likely to yield accurrate results than a global-base The bottleneck observed in the Erlang server (fig.7) is

Sgrt\%?et) communication within the client cluster and thfahostly due to the increase of the computational workload of

. . .__the process, and the associated serialization and deseiati

Over this net_vvork topolqu we will set up two ma.chme%ost of the SOAP message. As it is explained in section
playing the client role; this will be the client cluster inigh lll, each time a client asks for a request, the Erlang server
study. The third of the machines will act as the SOAP serv ;aates a process in onder to answer |t If the wait time
(both Axis2 and Erlang). of this process is high, every eventual clients that might
arrive to the server next stay idle in a wait state, forcing

client 11 client 2 | server the server to handle every queued waiting process and those
CPU (MH2z) 1700 2800 | 1800 under exe_cution. Also, the WSDL document associated to
Cache size(KB) 556 517 128 news service (and _that may be found at [17]) shows that_the
RAM Memory(MB) 512 1024 | 1024 message structure is more complex than in the other services

This is the reason why the serialization and deserialinatio
times are higher, as the parser in the Erlang server is not as
optimized as the Axis2 parser.

As well as topological specifications, we introduced some) _
parameters in order to optimize the performance of both The Axis2 parser, called AXIs Object Model (AXIOM)
servers. For instance, in the Axis2 server we increased fi8]: iS an XML object model designed to improve both
thread pool size up to 150 threads, and the thread ali@¢mory use and performance during XML processing and
time (threadKeepAliveTimefor every process in the pool.'S based on pull parsing. By using the Streaming API for
The number of processes the Erlang server is able to cre&ML (StAX) pull parser, AXIOM (also referred to as OM)
has been increased up to 500000 and in both servers %@ control the parsing process to provide deferred bugdin
established a HTTP connection timeout of 20 seconds. ~ SUPPOrt. Deferred building is the ability of AXIOM to pariiya
build the object model while the rest of the model is builtdabs
the user’s needs.

However, for the Erlang case, the client request is parsed
Table 6 shows the results obtained after executing the figst its entirety therefore the longer client answer times.
workload test described, over the three web sevices somnari Figure 7 presents a comparison of the results obtained after

Fig. 5. Characteristics of the three machines

D. Results: load test (testl)

. . . . OsService CardService NewsService
executing the first test on the news web service scenario. The Effang | AXs2 | Erang | Axis2 | Eflang | Axis2

upper-left graph show the number of answers obtained in thew-zoorighest rate) | 166,5 | 3159 | 6895 | 486,3 | 30.1 236

. . : . http-200 (Total) 63371 | 78699 | 72518 | 79378 | 17135 76970
client cll_Jster. It may be _notlced thgt during the first phase e— == —750500 800 5 5 52000 3375
test 1 (figure 3), the Axis2 server is able to anwer correct]y sizesent (e 437,07 | 539,33 | 51,22 | 56,93 | 27,28 | 113,04
every request sent. During the second phase of the test, ttheszr e | 42,97 | 5359 | 26,35 | 27,98 | 47162 | 2130,30
number of clients accessing the web service increases over
time.

Fig. 11. Test 2 Results

On the other hand, the Erlang server is only able to answgdes accordingly with those results (the number of clieets p
30 requests/second. The lower-left graph states the fatt tSecond is higher). The perfomance of the Erlang server in
as the test phases advance, the clients are queued in tHecredit card service is remarkable. In this case, the com-
server in order for their requests to be attended. This is thgtational workload and the serialization and deserititina
reason for the Erlang server to overload at the beginnipgocesses are low. Therefore, it is possible to conclude tha
of the test. The bottom-right graph shows that the servgfe Erlang server is able to create and destroy efficiently a
discards requests from the client cluster. It is worth pp@t higher number of processes than the Axis2 server.
out that the timeout graph (the lower one) agrees with thefrinally, the online store web service has a good performance
different phases established in the workload test (figuréd8) in both servers. The Axis2 server has a number of errors
a consequence of the client enqueing situation, some requgmeout) not significative with respect to those observed i
time-out and consecuently errors start taking place (figore the Erlang server.
the right) In figure 12, it can be seen that the Erlang server handles

over 600 succesful replies per second in the final stage of the

Results obtained after executing the first test over theitcregbst. This performance is much higher than in Axis2, which
card web service show slight non-signiticative differesiceserves 400 per second. The main reason for this numbers
between servers. This behaviour is plotted in figure 8. Ia thtan be seen in the lower graph, which shows the number of
case, a noteworthy point of the process is that the systemsijgultaneously connected users to each server. In this itase
flawless, mostly due to the low computational executionostrlang server has around 600 simultaneously connected,user
of the service, and the small boolean output. This is theoreasyhile the Axis2 server has 3500. This good performance show
why the system is not overloaded though the whole test, afiht the Erlang virtual machine is very good at creating and
the behaviour of both servers is very similar. destroying large numbers of processes. The top right graph

Figure 9 presents the results for the online store web srvigy figure 12, shows that all arriving requests to the Erlang
The upper left graph, just like the other two services, showgrver are processed inmediately. This does not happen with
the number of successfully answered requests measuredhié Axis2 server, whose behaviour is irregular in the finat pa
the client cluster. As in the news web service, the Erlang the test. This web service has a much lower computational
server is overloaded during the first stress phase, and thgigd than the previous ones, and so it behaves like a ping
in the first non-stress phase (120-180 seconds) the servegdsvice that can be used to measure the latency between the
still answering requests from the previous one. Somethi®y ec|uster of clients and the server.
to consider is, like in the news case, the number of clients|n figure 13 it can be seen that the trend observetk#tl
connected simultaneoulsy to the server. The users conmectdn also be seen itest2 The lower graph shows that the
the Erlang server during the first stress phase (phase tWweof Erlang server reaches peak performance in the 100th second
test) and are queued in order for their requests to be predesgf the test. From that moment the Erlang server will process
by the server. Once the server handles its request, it sr@ate150 requests per second until the end of the test.
new process in charge of managing the domain-logic offered
by the web service and answering the client, leaving theeserv On the other hand, the Axis2 server peaks at the 200th
idle to keep on answering requests. The number of errggcond, when the number of users waiting increases. In that
(timeout) shown in the botom-rigth figure are not signifieati moment, the load of the server is 100%, which means that the
for the global test. server has no spare capacity for new requests, and the new

E. Results: load test (test2) arriving ones have to wait.

As it is commented in section IV-B this test tries to measure V- OPTIMIZATION ISSUES IN ERLANG SERVER
the behaviour of both servers in the case of increasing theThis experiment showed that the Axis2 server has better
client workload over time. performance due to having a very efficient processing model
Results presented in table 11 allow us to conclude that tballed AXIOM (Axis Object Model).
news web service presents a bad behaviour under this strésdry to reduce the problem in the Erlang server, we have
workload schema execution. It is worth pointing out that thieied a simple approach. The Erlang server does not create ne
number of errors is up to 62.000 requests; this value is higlgrocesses when the request is the same as a previous one, that
than the one obtained in the first test (around 28.000) ais]l the server creates a response cache to reduce the number

Code http-200 News rate (testl) Request rate (test1) Code http-200 Card rate (test1) Request rate (test1)
250 250 300 300

Axis2 HTTP/200 —&— Axis2 request —@— Axis2 HTTP/200 —&— Axis2 request —@—
Erlang HTTP/200 Axis2 connect Erlang HTTP/200 Axis2 connect
request il Erlang request il
m yﬁ» Eflangconnect & Erlang connect
250 250
200 200
.4
Ko "f ;
-
200 / 200
150 150
]]
2 % 2 150 g 150
£ €
H H
E E
100 'J w 100 ;J g@%
100 a ! 100
V; ‘A‘v ““v
50
50 50
L'
E -T..
0 0 Sase 0
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 0 50 100 150 200 250 300
unit = sec unit = sec unit = sec unit = sec
Users simultaneous (test1) Errors (testl) Users simultaneous (testl)
25000 160 5
Axis2 users —@— Erlang error timeout —#— Axis2 users —@—
Erlang users Erlang users
140
20000 4
120
15000 3
g L 100 £
E 2 E
2 = 2
H 2 H
F £ F
£ H £
3 80 3
10000 2
60
5000 1 P
]
40 E
20 > 0— 06— 00 edds
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300
unit = sec unit = sec unit = sec
Fig. 7. News Service testl Fig. 8. Card Service testl

of processes created and prevent an explosive growth. TWien a new client of the web service sends a request the
optimization also shows an efficiency problem in the parsserver first checks if there is an indentical one in the catthé
that processes the XML requests in Erlang. there is none, the server creates a new process following the
approach shown in figure 1. On the other hand, if the request
has already been made before, the server itself will regriev
the reply from the cache and send it to the client. As a result
the cache reduces the number of concurrent processes which
helps the server achieve better performance.

In order to see if this change delivers better performanas th
the previous one, we test both the medium load case (web
service for an online store) and the high load case (news web
service). The test used test2(figure 4) which increases the
number of new clients as the tests goes on.

N J As it can be seen in the results, the new approach (figures
15 and 16) provides an increase in performance(both reducin
the number of errors and increasing the number of correct
answers) in the news web service, which was one of the worst
As it can be seen in figure 14, in the first request of a seases for the Erlang server. However, the server peaks at
of identical ones a process is created to reply to the cliearound 150 clients per second. The main reason for this limit
This server adds the reply to the cache so that new incomiisgnot in the processing to generate the replies as most of the
requests which are identical do not create new processds, are already in the cache, but rather in the use of an inefficien
thus prevent a performance decrease due to the saturatiosesfalization-deserialization process. The performalhnites
the server as in the news web server. bigger for WSDL documents with a complex structure, as

From !{SOAP response}

request http

SOAP server ! {SOAP response}

SERVER WEB HTTP/1.

Fig. 14. Erlang server (Cache)

Code http-200 Online Store rate (test1) Request rate (test1) Code http-200 News rate (test2) Request rate (test2)

250 250 250 300
Axis2 HTTP/200 —— Axis2 request —6— ‘Axis2 HTTP200 —— AXis2 request ——
Erlang HTTP/200 Axis2 connect Erlang HTTP/200 Axis2 connect
Erlang request -l Erlang request -
?i Eglangonneet @ Erlang connect
1
{ \
! 250
200 200 ﬂ 200
¢
1
E | >
{
200 i
r"-b'- ol y
150 150 150 4
{
o o i
8 ﬂ 2 1
2 % | 3. 2 g 150
E E
5 5
E H E
100 100 f @?@ 100
'd L
. 100 4
4
50 50 50
50
g a
H m_DOgg®Ogan,
I @& u
1
0 e 0 0 0
050 100 150 200 250 300 350 400 050 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
unit = sec unit = sec unit = sec unit = sec
Users simultaneous (test1) Errors (test) Users simultaneous (test2) Errors (test2)
3000 5 30000 110
Axis?2 users —6— Erlang érror tinjeout —m— AXis2 users —@— AXiS2 error timeout —@—
Erlang users Erlang users Erlang error timeout
100
2500 25000
90
2000 20000
80
2 3] H
T 1500 H T 15000 2
8 H 8 E
£ 2 £ 2
60
1000 10000 b
50
500 5000
40
e 000 0 30
050 100 150 200 250 300 350 400 260 270 280 290 300 310 320 050 100 150 200 250 300 350 0 50 100 150 200 250 300 350
unit = sec unit = sec unit = sec unit = sec
Fig. 9. Online Store service testl Fig. 10. News service test2

in the news web service. In this case, the mean serializat/dfSDL document is simple.
time for the reply to the client is 25ms, which is too higtLikewise, the Erlang server has an adequate performance whe
to prevent an accumulation of clients when the client afrivéhe load of the service is moderate. Again, this is due to a
rate is high (as irtestd. Due to this, in figure 7 the Erlang not very complex WSDL document and a moderate running
server peaks at 30 replies per second. time for generating the reply. The figure 9 shows that the
performance for this kind of service is similar in both sesve
For the online store service the tests shows that the numbeHowever, when the computacional load of the service is
of served requests in the last stage of the test by the Erlanigh and the structure defined by the WSDL document is
server is much larger than the Axis2 server. the Erlang sernadmplex, the performance of the Erlang server is low because
peaks at 700 requests per second, while the Axis2 server oplyt server does not have an efficient parser. The parser needs
servers 200 requests per second. The higher performanceamfaverage of 25ms to build the SOAP reply for a complex
the Erlang server is due to the low computational load of thiequest. This time limits the maximum number of requests tha
example, and that Erlang is better suited for managing & largan be served in a second to 40, which is the reason for the
number of concurrent processes. In addition, the Axis2esenperformance problems shown in figure7.
had several timeouts which are not important for the redult o

the tests. VIl. FUTURE WORK

VI. CONCLUSIONS In the near future, we plan to test the Erlsom partes with

The work presented in this paper shows that the performardifferent WSDL document structures looking for inefficiéas
of the Erlang server is good when the computational load f the project. This will lead to performance improvemenmts i
the services provided is low. The reason is that the runnitlte worst part of our server: the parser.
time of the process that creates the reply is low, and theeparénother research line is developing a communication layer
inefficiency is not so important because the structure of tli@ processes using the BPEL [19] specification included in

number/sec

connected users

Code http-200 Card rate (Test2) Request rate (test2)

700 700

Axis2 HTTP/200 —#— AXis2 request ——

Erlang HTTP/200 Axis2 connect -

Erlang request
Erlang connect
600 600
500 500)
400 400 &
300 300
g" .
200 200]
f‘ (] 1
Py ad

"
100 J"r- 100
0 v 0 &'ﬁ

0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
unit = sec unit = sec
Users simultaneous (test2)
4000
Axis2 users —4—

Erlang users
3500
3000
2500
2000
1500
1000 4
500 A}

0

unit = sec

Fig. 12. Card Service test2

350

200

number/sec

150

30000

25000

20000

connected users

10000

5000

the SOA architecture, moving the implementation layer inta2]
Erlang.

(1]
(2]
(3]
(4]
(5]
(6]

(7]

(8]

(9
[10]

[11]

REFERENCES

N. Mitra, “SOAP version 1.2 part 0: Primer,” W3C, W3C Recmen-
dation, June 2003.

Axis2 homepage. [Online]. Available: http://ws.apaabrg/axis2/
Erlang homepage. [Online]. Available: http://wwwamb.org

M. E. J. Ang and A. Arsanjani., “Patterns: Service-oteh architecture
and web services.” Tech. Rep., 2004.

R.Milner, A Calculus for communication processesStinger Verlag,
1980.

C. A. R. Hoare,Communicating sequential processedUpper Saddle
River, NJ, USA: Prentice-Hall, Inc., 1985.

M. N. J Halén, R Karlsson, “Performance measurementthidads in
java and processes in erlang,” Tech. Rep., November 1998linf).
Available: http://www.sics.se/ joe/ericsson/du98024lh

J. A. Garcia, A. Blanco, and R. Blanco, “Incorporatingpications
to a service oriented architecture,” iRroceedings of 5th WSEAS
International Conference on SYSTEM SCIENCE and SIMULATIION
ENGINEERING (ICOSSE06) December 16 - 18, 2@dé&cember 2006,
pp. 401-407.

U. Wiger, “Xmerl - interfacing xml and erlang,” ifProceedings of Sixth
International Erlang/OTP User Conferenc2000.

Erlsoap homepage. [Online]. Available:
http://forum.trapexit.org/viewtopic.php?t=6331
Erlsom homepage. [Online]. Available:

http://sourceforge.net/projects/erlsom

(23]

[14]

[15]
[16]
[17]
(18]

[19]

Code hitp-200 Online Store rate (test2) Request rate (test2)

350

Axis2 HTTP/200 —#—
Erlang HTTP/200

Axis2 request ——
Axis2 connect

Erlang request -
Effang nnect @

300

250

200

rate

150

Lo
8

0 100

15000

-~ 0
200 300 400 500 600 0

unit = sec

100 200

300 400 500 600
unit = sec

Users simultaneous (test2) Errors (test2)

180

Axis2 users —@—
Erlang users

Axis2 error timeout —@—
Erlang error timeout

140

100

number/sec

A\

—— Y- 0 ¥
0 100 200 300 400 500 600 250 300 350 400 450 500 550 600

unit = sec unit = sec

Fig. 13. OnlineStoreService test2

D. Davis and M. P. Parashar, “Latency performance opsogplemen-
tations,” ccgrid, vol. 0, p. 407, 2002.

F. Rosenberg, C. Platzer, and S. Dustdar, “Bootstrappierformance
and dependability attributes ofweb services, 1@WS '06: Proceedings
of the IEEE International Conference on Web Services (IQB)S’
Washington, DC, USA: IEEE Computer Society, 2006, pp. 202-2
J. Armstrong. Concurrency oriented programming iragl [Online].
Available: http://www.guug.de/veranstaltungen/ffg208apers/ffg2003-
armstrong.pdf

N. Wickramage and S. Weerawarana, “A benchmark for wetvise
frameworks.” inIEEE SCGC 2005, pp. 233-242.

“Rss 2.0 specification,” 2006. [Online].
http://www.rssboard.org/rss-specification

N. Wickramage and S. Weerawarana. A benchmark for webicge
frameworks. [Online]. Available: http://www.cse.mrt.tké¢ narada/
Apache axiom. [Online]. Available:
http://ws.apache.org/commons/axiom/index.html

P. Wohed, W. M. van der Aalst, M. Dumas, and A. H. ter Hedst,
“Pattern based analysis of bpeldws,” 2002. [Online]. Aakiié:
citeseer.ist.psu.edu/556822.html

Available:

number/sec

connected users

280

Code http-200 News rate (test2)

240

220

200

180

120

100

Axis2 HTTP/200 —#—
Erlang HTTP/200 -

0

30000

L
0 50 100

50 100 150 200 250 300 350 400
unit = sec

Users simultaneous (test2)

Axis2 users —@—
Erlang users

150 200 250 300 350 400

unit = sec

Fig. 15.

Request rate (test2)

250

200

rate

150

Axis2 connect
Erlapg fequest

Axis2 request —&—
-—

e

0 50 100 150 200 250 300 350 400

unit = sec

Errors (test2)

45

number/sec

Axis2 error timeout —4—
Erlang error timeout -

0
0 50 100 150 200 250 300 350 400

unit = sec

News Service test2

number/sec

connected users

500

0

9000

8000

7000

6000

5000

4000

3000

2000

1000

Code http-200 Online Store rate (test2)

Axis2 HTTP/200 —#—
Erlang HTTP/200

]

0 50 100 150 200 250 300 350 400 450 500
unit = sec

Users simultaneous (test2)

Axis2 ug
Erlang uff

rs ——
TS =

0 .
050 100 150 200 250 300 350 400 450 500

unit = sec

rate

number/sec

500

0
050 100 150 200 250 300 350 400 450 500

20

Request rate (test2)

Axis? request ——
Axis2 connect =4~
Erlang request -
Erlanéionncc(

unit = sec

Errors (test2)

Axis2 error timeout —4—

0 2 g
440 445 450 455 460 465 470 475 480

unit = sec

Fig. 16. Online StoreService test2

