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ABSTRACT

The Web is rapidly transforming from a pure document collection
to the largest connected public data space. Semantic annotations
of web pages make it notably easier to extract and reuse data and
are increasingly used by both search engines and social media sites
to provide better search experiences through rich snippets, faceted
search, task completion, etc. In our work, we study the novel prob-
lem of crawling structured data embedded inside HTML pages.
We describe Anthelion, the first focused crawler addressing this
task. We propose new methods of focused crawling specifically
designed for collecting data-rich pages with greater efficiency. In
particular, we propose a novel combination of online learning and
bandit-based explore/exploit approaches to predict data-rich web
pages based on the context of the page as well as using feedback
from the extraction of metadata from previously seen pages. We
show that these techniques significantly outperform state-of-the-art
approaches for focused crawling, measured as the ratio of relevant
pages and non-relevant pages collected within a given budget.

Categories and Subject Descriptors

H.3.3 [INFORMATION STORAGE AND RETRIEVAL]: Infor-
mation Search and Retrieval — Selection process, Relevance feed-
back; 1.2.6 [ARTIFICIAL INTELLIGENCE]: Learning

1. INTRODUCTION

The adoption of markup languages for structured data has reached
considerable levels in recent years due to the increasing support
by large consumers and publishers of web content. In early 2010,
Facebook announced the so-called Open Graph Protocol (OGP) for
marking up the header of HTML pages with simple structured data
such as the type of the page and a thumbnail image. Later in 2010,
the major web search engines — Bing, Google, Yahoo, followed by
Yandex — have joined forces to provide a common vocabulary for
more complex markup, the so-called schema.org vocabulary, which
allows complex descriptions of the most common types of objects
appearing in web pages (videos, reviews, recipes, addresses, per-
sonal profiles, product descriptions, etc.) As of today, large search
engines are exploiting this markup for providing richer snippets,
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vertical search experiences such as Google’s Recipe Search! as
well as support for task completion such as checking in to a flight
directly from the search results page (e.g. Yandex Islands®). Social
media sites such as Facebook, Twitter and Pinterest primarily use
the structured data extracted from web pages for richer displays of
the content that is being shared.

Recent data from Google shows that over 15% of web pages are
using schema.org markup, containing over 25 billion descriptions
of objects [13] and the number of pages with OGP markup is stip-
ulated to be even larger [4]. Large search engines collect this data
during their regular crawls of the Web, while social media sites ex-
tract it at the time an item is first shared. These commercial web
collections are not publicly available however, despite the multi-
tude of potential applications of these data outside of web search
and social media. For example, small e-commerce sites can bene-
fit from additional information about the products they are selling,
such as specifications from the manufacturer’s website, ratings and
reviews from social media, alternative offers from other vendors,
etc. Entirely new vertical search engines can be built by having
comprehensive, up-to-date information from across the Web about
all items of a given type. At the same time, current web crawler
implementations and publicly available web collections such as the
CommonCrawl® data are not targeted at maximizing the amount
and value of the structured data in their collections.

In this paper, we introduce the first focused crawler specifically
aimed at crawling structured data. As the field of crawlers is well-
established, we build on existing methods to the largest extent pos-
sible, but design our crawler to maximize the value of the data
collected as opposed to maximizing the number of pages crawled.
In particular we devise and implement new crawling policies that
learn the characteristics of data rich pages and web sites, and steer
the crawler toward them. To achieve this, we propose a novel com-
bination of online classification and a bandit-based page selection.
The former approach overcomes the problem of absence of a-priori
knowledge about whether a newly discovered page contains struc-
tured data or not. With the latter approach we address the problem
of exploitation versus exploration, allowing the crawler to perform
random walks and fetch pages potentially better than those already
discovered.

This paper thus makes the following contributions:

1. To the best of our knowledge, we are first to introduce the
idea of a crawler focusing on semantic data, embedded in
HTML pages using markup languages as microdata, micro-
formats or RDFa.

lhttp://www.google.com/insidesearch/features/
recipes/

2http://beta.yandex.com/
3http://commoncrawl.org/



We show that state-of-the-art online classification approaches
employed for topical-focused crawling can be adapted for
this goal, being able to gather over 10% more relevant pages
within the same budget than approaches making use of pre-
trained static classifiers.

We introduce a new approach to focused crawling using a
bandit-based selection process to overcome the problem of
exploitation versus exploration.

We combine online classification and a bandit-based selec-
tion and show that we can further improve on online clas-
sification by 26%, and improve on a standard Breadth-First
Search policy by 131%.

We demonstrate that our method can also be adapted in order
to crawl for more fine-grained embedded semantic data.

We make the implementation of our crawler publicly avail-
able.*

The paper is structured as follows: In the following section we
give a brief introduction into web crawling and focused crawlers.
We also discuss related work in the areas of online learning and
bandit-based selection. In Section 3, we describe our methodol-
ogy and the corresponding implementation. We then outline our
experiments and we present the outcomes in Section 5. Lastly, we
describe future ideas and open challenges.

2. RELATED WORK

2.1 Web Crawlers and Focused Crawlers

The purpose of web crawling is to gather a collection of use-
ful web pages as quickly and efficiently as possible, while provid-
ing at least the required features for respecting the limitations im-
posed by publishers (politeness) and avoiding traps (robustness).
Dhenakarn and Sambanthan [10] provide a brief overview about
the four policies whose combination is influencing the behavior of
a web crawler. We inherit from an existing crawler implementation
to define the policies for re-visits, parallelization, and politeness.
We will mainly focus on implementing a novel selection policy,
i.e. determining the order in which new URLSs are discovered and
processed. The selection policy of web crawlers typically use vari-
ations of the PageRank [26] algorithm with the aim to collect the
most popular pages within the Web, as they are also more likely
to be searched for. Even though by definition all crawlers aim to
build a collection useful for a given purpose, focused crawlers as
described in the literature target pages relevant to a particular topic.
Focused crawlers were first mentioned by Menczer [22] who mod-
eled the problem inspired by work on agents adapting to different
environments. Later, Chakrabarti et al. coined the term focused
crawler and introduced an approach using a pre-trained classifier
to assign topic-labels to new URLs based on features which could
be extracted from the URL itself [7]. Other classification features
have been obtained using different NLP techniques [16, 17, 19, 29].
Furthermore, Diligent ef al. used information collected using web
search engines in order to gather additional features for classifica-
tion [11]. Aggarwal et al. incorporated information gathered dur-
ing crawling to steer the direction of the crawler and maximize the
number of retrieved relevant pages [1]. They use features extracted
from the content of the father of the page (i.e. the page where we

4http://webdatacommons.org/structureddata/
anthelion
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found the link), retrieving tokens from unseen URL strings and fea-
tures collected from sibling pages (i.e. whose URLSs were discov-
ered in the same page as the one to be crawled). After crawling a
page, the probability of the different feature groups for a given ropic
is evaluated and the combined probability is used to update the pri-
orities of unseen pages. Although this model makes use of features
gathered during the crawling process, the probabilistic model needs
to be manually adjusted beforehand, which Chakrabati et al. try to
overcome when first introducing an online classification approach
for focused crawling [6]. Chakrabarti et al. crafted two classifiers,
one static, pre-trained from an upfront collected and tagged cor-
pus, and one online, which was used to improve former decisions
based on features extracted from the document object model, e.g.
the anchor text in links of crawled pages. Four years later, Bar-
bosa and Freire took on the main idea of incorporating information
gathered during crawling to steer the crawler with an extended fea-
ture set [2]. Besides the context of the page where a URL was
found, they made use of the graph-structure of web pages, for ex-
ample by distinguishing between direct features retrieved from the
father and the siblings of the page, which was later also used by
Zheng et al. [33]. Although they incorporate information gathered
during crawling, they only replace their classifier with an updated
version in batches, solely employing newly gathered information
and discarding formerly extracted information. Their results in-
dicate that sequentially updated classifiers lead to higher rates of
gathering web forms for certain topical domains. Umbrich et al.
proposed a pattern-based approach to classify pages, in order to
find specific media types in the Web [32]. Jiang et al. [15] used a
similar method to learn URL patterns that lead to relevant pages in
web forums.

The main difference from this work with respect to mainstream
focused crawling is that we are not aiming to perform topic-based
classification, but rather looking at the value of web pages from the
perspective of the data they contain. Web pages serving structured
data have unique characteristics; structured markup is more com-
mon to particular types of pages, e.g. item detail pages, and favored
by particular web sites, typically large dynamically generated sites
serving certain types of content. Our target is also distinct from
that of native semantic web crawlers that collect documents in RDF
document formats, which follow seeAlso and sameAs references to
related data items in order to discover new linked data sources and
information. Two examples are Slug and LDSpider [12, 14]. These
crawlers deal with the specific issues related to RDF data on the
Web such as support for various native RDF formats, supporting
various communication protocols etc. In contrast, our work fo-
cuses on structured data embedded inside HTML pages which has
recently grown into a more popular way of exposing data on the
Web. Recent studies have shown the increasing availability and di-
versity of data exposed this way [4, 24], offering a broad publicly
available data source with large potential for various applications.

2.2 Online Learning and Explore/Exploit for
Focused Crawling

State-of-the-art focussed crawlers partially make use of informa-
tion gathered during crawling which is incorporated into the classi-
fication process in order to improve the accuracy of the prediction
for unseen pages. In contrast to the aforementioned works, we pro-
pose an online learning method that continuously obtains feedback
during crawling and incorporates it directly in an online classifier,
rather than replacing the classifier from time to time. Such methods
have been used before whenever data is available as stream [34] and
the distribution of features within the data change over time [25].



Our underlying classification model will make use of all avail-
able feedback which can be successfully exploited for crawling for
structured data, independently from its topic, and gather the largest
number of relevant pages constrained to a given fetch budget.

Existing crawling policies implemented in the systems above fo-
cus largely on maximizing the immediate reward available to the
crawler and lack in the discovery of new pages which potentially
lead to more other relevant pages, but do not contain relevant in-
formation directly [9]. This problem can be described as the trade-
off between exploitation, the crawling of pages where the expected
value can be predicted with a high confidence and exploration, the
search for new sources of relevant pages [21, 18, 28]. We address
the issue of trading-off exploitation versus exploration by translat-
ing the problem of crawling into a bandit problem. We group newly
discovered, not yet crawled pages by their corresponding host, each
representing one bandit. During each iteration, where we want to
select a new page to be crawled, we either select a page from a
bandit, whose expected gain for a given objective function is max-
imal (exploitation) or select a page from a randomly chosen bandit
(exploration). This approach was analyzed using synthetic data by
Pandey et al. [27] and successfully applied by Li et al. in the con-
text of news article recommendation [20]. To our knowledge, its
value for focused crawling has not been established before.

3. METHODOLOGY

In the following, we are presenting the two general approaches to
machine learning (online classification and bandit-based selection)
that we adapt to the domain of focused crawling, and in particular
to the task of collecting structured data from web pages.

3.1 Online Classification

Crawling pages that embody markup data can be cast as a fo-
cused crawling task, as their general aim is to devise an algorithm to
gather as quickly as possible web pages relevant for a given objec-
tive function. Standard focused crawling approaches target pages
that include information about a given topic, like sports, politics,
events and so on. In our case, our primary objective function are
pages which make use of specific markup standards, although there
could be variants that narrow down this subset (see Section 5.3).

Focused crawlers make use of topic specific seeds and operate
by training a classifier that is able to predict whether a newly dis-
covered web page (before downloading and parsing its content) is
relevant for the given target or not. Thus, it is mandatory to as-
semble a training set, find suitable topic seeds and learn a classifier
before the crawling commences.

On the other hand, online learning approaches adapt the underly-
ing model used for classification on the fly with new labeled exam-
ples. In the case of a crawler this would be suitable provided that it
is possible to automatically acquire a label for a web page as soon
as the content of the crawled page has been parsed. This approach
is appealing because not only it is not necessary to create a training
set in advanced but also the classifier adapts itself over time. In the
case of the Web, where the distribution of single features is hard
to predict it might happen that, while discovering larger amounts
of pages the actual distribution differs strongly from the one of the
training set. This adaptability is useful to ensure suitable classifi-
cation results [25].

In order to predict the relevance of an unseen newly discovered
page it is necessary to extract features which the classifier can take
into account to make its prediction. We considered three major
sources of features which are (partly) available for a web page be-
fore downloading and parsing it:
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1. the URL, which can be handled using natural language pro-
cessing (NLP) techniques to transform them into a feature
vector.

. information coming from the parents of a page, whose con-
tent has been already downloaded and the relevance for a
given objective function is known.

3. information coming from the siblings of a page, meaning
other pages which were found on the parent page, and whose
relevance for a given target might already been known.

We note that these sources of features may become gradually
available during the crawling process. We will always know the
URL of candidate pages, but we might not have discovered every
parent of a page; furthermore, information about siblings could not
be available at all.

There are several possibilities to extract features from the URL
of a page. In general the URL is split into tokens whenever there
is a non alphanumeric character (punctuation, slashes and so on)
and these tokens can be directly used as features of the page. In
order to reduce the sparseness of the generated feature vectors, and
potentially improve the accuracy of the classifier, it is possible to
apply several pre-processing steps for the extracted tokens before
finally transforming them into features. Among standard transfor-
mations, for example, we include removing tokens consisting of too
few or too many characters. Another technique consists in mapping
different spellings of a given token into its normalized version, or
replacing tokens only made up by numbers with one static token
representing any number.

Importantly, crawlers may not be aware of the range of differ-
ent tokens (i.e., the dictionary) that can be extracted from the URL
of newly discovered pages, which makes it difficult to use a pre-
defined feature space for online learning. We overcome this prob-
lem by relying on the so-called Hash-Trick [30] and map all tokens
into a fixed feature space.

This approach receives a list of pre-processed URL tokens pre-
viously split, {¢} and it creates a feature vector V' with length k for
the new page. First, it initializes every component with 0 values.
Then, it maps each token ¢ within the list to z; € [0..(k — 1)] using
the hash-function described in Equation 1, where n is the number
of characters of ¢, k is the number of selected hashes and ¢[i] is the
numeric value of the character at position 4.> The corresponding
position within the feature vector will then be updated V' (z;) « 1.

I

This way we can ensure that the number of features remains
the same during the whole crawling process. Although the known
drawback of hash-functions is the potential information loss when-
ever a collision happens, the described approach achieved good re-
sults in our case, when hashing tokens from URLs.

We also extract features from the parents and siblings of a page.
These features are based on labels assigned to parent/sibling pages
previously. For example, we introduce as a feature the number of
parents/siblings labeled with the target class, and a binary feature
representing the existence of at least one parent or sibling labeled
with the target class.

The selection of features and classification algorithm will have a
major influence on the final page selection performance. In order

t[d] - 317
k

€]

Tt =

ini’s

>The numerator is equal to the hashCode-function implemented for
string objects in Java.



Table 1: Results of feature and classification pre-experiments

attribute max | avg runtime per
classifier | set accuracy | iteration (in ms)
HT a 0.7656 54.1
HT b 0.8165 1.2
HT c 0.7431 56.3
NB a 0.7146 4.0
NB b 0.7710 0.9
NB c 0.7147 2.0

to determine the most adequate combination of features, classifier
and parameter configuration (number of hashes, classifier depen-
dent settings, etc.), we ran a number of experiments on an indepen-
dent development set. The dataset we compiled for these experi-
ments was independently crawled and labels were acquired apply-
ing the method used in Section 4.2. The dataset consisted of 100K
pages from over 1K different hosts with a balanced distribution of
labels (same number of pages containing structured data and pages
without any structured data). We randomly selected one page after
the other, first letting the classifier predict the label and then train-
ing it with the real label.® We repeated this process ten times for
each different configuration and measured both the overall accu-
racy of the classifier and the running time needed for classification
and training of the whole dataset.

We experimented with two different online classification algo-

rithms, namely Naive Bayes (also used by [6]) and Hoeffding Trees [34],

and used three different major feature sets: (a) only tokens from the
URL, (b) features from parents and (c) the combination of both. We
engineered those features using a variety of configurations, for in-
stance filtering by token length and replacing number tokens by the
constant string [NUMBER]. Finally, we evaluated the performance
of the classifiers with the tokens hashed into different number of
features, ranging from 5K to 20K.

Table 1 outlines the results of some of these experiments. We
report the best performing configuration for each combination and
omit the remaining results due to space limitations. In every case,
ignoring tokens shorter than three characters and a replacement of
numbers by a constant string worked the best. Hoeffding Trees
(HT) performed overall better in comparison to Naive Bayes (NB)
but needed up to 10-times more time to finish processing the whole
dataset. In addition, we noticed that using 10K hashes produces
the best results. Finally, it is worth remarking that adding sibling
information into the feature set downgraded the performance con-
sistently, so we excluded them in subsequent experiments.

In the following Section, we introduce the notion of bandit-based
selection and explain how we combine online classification with
the bandit-based approach.

3.2 Bandit Approach

A bandit-based selection approach estimates the relevance of a
group of items for a given target, and performs this selection based
on the expected gain (or relevance) of the groups. The bandit op-
erates as follows: at each round ¢ we have a set of actions A (or
arms’), and we choose one of them a; € A; then, we observe a re-
ward r ¢+, and the goal is to find a policy for selecting actions such
as the cumulative reward over time is maximized. The main idea
is that the algorithm can improve its arm-selection strategy over
time with every new observation. It is important to remark that the
algorithm receives no feedback for unchosen arms a # a;.

®This reflects the real operating mode of a crawler, except that a
real crawler might have some delay in when feedback is available.
"Some bandits use confextual information as well [20].

An ideal bandit would like to maximize the expected reward
mazq E(r|a,0"), where 6 is the true (unknown) parameter. If we
just want to maximize the immediate reward (exploitation) we need
to choose an action to maximize E(r|a) = [ E(r|a,8)p(6|D)do,
where D is the past set of observations (a, 7). However, in an ex-
ploration/exploitation setting we want to randomly select an action
a according to its probability of being Bayes-optimal

/I {E(Ha,@) = mz}xE(r\a/,G) p(6]D)do , (2)

where Z is the indicator function. In order to avoid computing this
integral it suffices to draw a random parameter 6 at each round
t. One of the simplest and most straightforward algorithms is \-
greedy, where in each trial we first estimate the average payoftf of
each arm a. Then, with probability 1 — A, we choose the one with
the highest payoff estimate HAt,a and with probability A, we choose a
random arm. In the limit, each arm will be tried infinitely often and
the estimate ét,a will converge to the true value 6,. An adaptation
of this straightforward algorithm is the usage of a decaying A;. This
adaptation faces the problem of coming up with a large number of
random selection when the estimated ét,a is close to the true value
0.. A decaying )\ approaches 0 faster with each iteration. We will
later employ a linear decaying factor, As = A - 77—, where m is a
constant.

In the case of our crawler, we will use our bandit-based approach
to make a first selection of the host to be crawled. This is motivated
by the observation that the decision to use structured data markup
is performed at a host-level in most cases. Informally, we represent
each host with a bandit that represents the value of all discovered
pages belonging to this host. The available functions to calculate
the score for a host and by this the estimated relevance for a target
are diverse and described next. It is important to remark that select-
ing an arm (action) in this context would mean to select the host,
which at a given point in time ¢ has the highest expected value to
include pages which are relevant for our target. Once we have se-
lected the host, we follow by selecting a page from that host using
the online classifier described in the previous Section.

Formally speaking, each host h € H' represents one possible
arm, which can potentially be selected by the bandit at an iteration
t. Each h includes a list of all pages p belonging to this host. An
action a; € A within our approach is then defined as the selection
ahost h € H' based the estimated parameter 05, at a given ¢ and
A. In order to estimate 6}, for an arm, we can think about various
different combination of available features. Next we will introduce
the general approach and different functions to compute the score
s(h) using the following notation:

e s(h) is defined as the score of the host & (or, in bandit nota-
tion, the expected reward E(r|a, 6%)).

o Cuyu,n is the set of pages of h, which have already been
crawled.

o Cyood,n (respectively Chaq,n) is the set of pages of h (not)
belonging to the target class, which have already been crawled.

e R! is the set of pages of h, which was already discovered but
not yet crawled at iteration ¢. This means its part of the set
of pages in the bandit representing h.

e pred(p) is defined as the confidence value of p to belong to
the target class, based on the used classification approach.

Our general approach is to group all newly discovered pages into
the corresponding host. To select a new page, we first use the ban-
dit algorithm to identify the host of the page selecting the one with



the current highest score or one random (depending on the value of
At). From this selected host, we take the page with the highest con-
fidence for the target class. This process is depicted in Algorithm 1.
Note that the bandit is unable to use single pages as arms, given that
we only need to retrieve them once and the feedback loop would be
rendered useless. We also classify per-host pages to prioritize them
after a host is selected for crawling. (A pure bandit-based approach
would select a random page from within the host).

Data: Initial back-off probability A, initial seed set R}, decaying
factor m
At <= A, Cpad,n 0, Cyooa,n < O Vh € Ry,
fort < 1toT"do
Draw uniformly a random number n € [0..1]
if n > A then
for h € H' do
if | Rt | > 0 then
| Compute the score s(h)

end
end
Select host h = argmaxy,¢ gt s(h)
else
‘ Select a random host h where |Rm >0

end
p < h = argmax,/c g, pred(p’)
crawl p and observe reward 1, ¢
if rp, = 1 then

‘ add p to Cgood,h
else

‘ add p to Cbad,h
end
update H and Ry, with new p*, h retrieved from p
for V new h do

‘ Cbad,h <~ (Z)a Cgood,h —0
end

m
At<_>\t+7m

end
Algorithm 1: Adapted general K-armed Bernoulli A-greedy Ban-
dit for focused crawling, with a linear decaying factor.

We now define several functions to compute the score s(h).
Negative Absolute Bad function, where the score of a host is the
negative number of already crawled pages not belonging to the tar-
get class of this host s(h) = — |Chaa,n|
Best Score function, where the score of a host is defined by the
maximal confidence for the target class of one of its containing
pages s(h) = max,ep, pred(p) Vp € Ry,

Success Rate function, where the score of a host is defined by the
ratio between the number of pages crawled, belonging to the tar-
get class and those not belonging to this class. The ratio is ini-
tialized with prior parameters o and 8 which we set both to 1:
s(h) = (Cgood,n + @) /(Chaa,n + B).

Thompson Sampling function, where the score of a host is defined
as a random number, drawn from a beta-distribution with prior pa-
rameters « and 3. This function is based on the K-armed Bernoulli
bandit approach introduced by Chapelle ez al. [8] and described in
algorithm 1. In this case we take as the score at iteration ¢ the ran-
dom draw s(h) =Beta(Cyood,n + &, Crad,rn + ). We initialized
the prior with 1.

Absolute Good - Best Score function, where the score is the prod-

uct of the absolute number of already crawled relevant pages: |Cyood,h |

and the best score function.

Thompson Sampling - Best Score function, where the score is the
product of the thompson sampling function and the best score func-
tion.

Success Rate - Best Score function, where the score is the product
of the success rate function and the best score function.

Note that the reward depends on the target function of the bandit;
in general we assign a positive reward only if the page crawled
contains some form of markup data, but the process works similarly
for other different objective functions (see Section 5.3).

4. EXPERIMENTAL SETUP

In this Section we describe the architecture and the process flow
implementing the methodology discussed in Section 3. Next, we
introduce the dataset employed for our evaluation, and the different
experiments performed.

4.1 System Architecture & Process Flow

We implemented our solution as part of a full-fledged web crawler,
although our component is modular and can be integrated into other
existing systems.

As input the application takes a queue of newly discovered, al-
ready filtered URLs’ — named input queue Q;. The output of the
application is another queue where the URLs are ordered by the
expected relevance for a given target — called ready queue Qr.

URLSs coming from ) are internally grouped by their host h €
H. Whenever a host h is selected, it is enqueued into the ready host
queue Qm. Note that Qi can include the same h multiple times,
whereas Q1 and ) r consist of a list of unique p pages. Beside this,
the application orchestrates several sub-processes:

e A URL input handler Pjpnpy: that takes the next URL from
Q1 and adds it into its corresponding host h.

o A URL output handler Pyyipus that selects a URL from Q g
to be crawled, based on the targeting function and puts it into

Qr

o A bandit-based host handler Pyqnqic that selects the next h
based on a given function and inserts it into Q.

o Anonline classifier Pejqssifier that classifies new URLs based
on a given set of parameters and the target function.'

Figure 1 illustrates the flow throughout our approach. The crawl-
ing process starts with a number of initial seed pages (0), which are
fed into Q. Then, Pjnpu: pulls the first page p from Q. Be-
fore adding p into the corresponding h, the page is classified by
Priassifier- In the online setting, Peigssifier starts off with an
empty model as no training data (pages) are available so far. When-
ever |[H| # 0 and 3h € H : ’RH > 0, Pyandst selects one host
h based on the given s(h) and A (1). The selected h is inserted
into Qg and hosts in Q g are processed by Poutput. For each host,
the URL with the highest confidence for the target class is selected
and pushed into Qr (2). The reordered pages are now ready to be
handled by other components of the crawler. After downloading
(3) and parsing (4) the page, the newly found links are added into
Q71 (5). In addition, the label of the crawled pages is returned as
feedback to P.assifier Which updates its classification model (6).

This component is fully distributed in nature, which in practice
means that processes operate independently and some of them work
faster than others. We optimized all the underlying processes in
order to maximize the system throughput, this is, to minimize the
probability that Q r gets empty and the crawler has to wait for new

8The source code of the crawler is available at http://
webdatacommons.org/structureddata/anthelion.

By filtering we mean the removal of duplicate and unwanted pages
(like certain file extensions like videos, images, etc.).

"We use the MOA Java library 2012.08 from http://moa.cms.
waikato.ac.nz introduced by Bifet ez al. [3].
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Figure 1: The architecture of Anthelion

pages. Additionally, we implemented a mechanism to delay the
process Pyandit Whenever the crawler is busy, as it might occur a
slight delay in receiving the feedback for the action a; when the
system calculates the score for as1.

4.2 Dataset

In line with the related work, we employ a static dataset for our
experiments in order to isolate ourselves from changes in page con-
tent and the web graph, as well as other factors such as the avail-
ability of web page hosts. All the datasets we use in the follow-
ing experiments have been extracted from the publicly accessible
dataset provided by the Common Crawl Foundation. This dataset
consists of over 3.8 billion web documents, where over 3.5 billion
belong to the type fext/html gathered in the first half of 2012 [31].
We used two derived sub-datasets of this original crawl to create the
final datasets for our experiments: First, given that we require the
structure of the crawled part of the WWW, we use the web graph
dataset which was extracted by the WebDataCommons team, and it
is described by Meusel et al. [23]. The data consists of 3.5 billion
URLs with over 128 billion hyperlinks connecting them.'! From
this dataset we extracted a subset of around 5.5 million web pages
which are reachable from one root URL. This was randomly se-
lected from the URLS retrieved by crawling the pages of the Open
Directory Project.'* The dataset includes 455 848 different hosts.

Second, given that we also need to know which pages in our
extracted subsets is relevant to our objective function, we use the
structured data set, also extracted by the team of WebDataCom-
mons from the Common Crawl data set. This dataset was cre-
ated by parsing the HTML code of the crawled pages for the three

markup standards Microdata, Microformats and RDFa using Any23"?

and includes, among others, the number of embedded structured
data for each page [4]. From this dataset we extracted all web
pages which are also present in our 5.5 million subset containing
(a) at least one structured data statement and (b) more than four
statements embedded using Microdata. From (a) we acquired 1.5
million pages, which comprise 27.4% of the whole 5.5 million sub-
dataset. From (b) we acquired 179 383 pages, which is 3.25% of
the whole 5.5 million sub-dataset.

With the subset and the structured information retrieved in (a)
we will run most of the experiments to evaluate our approach for
the general task of gathering efficient structured data from the Web.
With the subset and the structured information retrieved in (b) we
will run a secondary experiment and show that our approach is
adaptable to different objectives in the area of structured data crawl-

ing.

11http://webdatacommons.org/hyperlinquaph
12http: //dmoz.org
13http: //any23.apache.org
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4.3 Experiments Description

Our first series of experiments aims to validate that our approach
can effectively steer a crawling process toward web pages that em-
bed any kind of structured data (Dataset a).

In the first step we compare our approach to a standard Breadth-
First Search (BFS) approach and the typical approach to building
focused crawlers for specific topics, i.e. using a static classifier.
‘We run our implementation on the described dataset with a static
classifier which we initially trained with 100K, 250K and 1 000K
pages, and in comparison we run several crawls that incorporate
online classifiers. In a second step we determine which scoring
function for the hosts leads to the highest number of crawled pages
that are relevant to our target function. We run several crawls incor-
porating different scoring functions for the bandit-selection, turn-
ing off the greedy component of the algorithm (A = 0). Likewise,
we selected the page with the highest confidence score from the
bandit-chosen host. In a next step, we try different static values for
A to report the influence of the randomness for the best perform-
ing scoring functions. Additionally we will show the effect of a
decaying )\ using different decaying factors m.

In a second series of experiments, we change the objective for
our crawling function. Therefore, we have defined relevant pages
as those that embed structured data within its HTML code regard-
less of its kind and quantity. We now narrow down further this
definition in order to measure the adaptability of our techniques
to different objective functions. We want to reward only pages that
embed at least five statements using the markup standard Microdata
(Dataset b). Pages using Microdata typically use the schema.org
vocabulary and provide more complex descriptions of the infor-
mation present in the page. The number of statements is a rough
quality criteria in that we filter out pages that provide only mini-
mal detail. As an example, a movie page that contains at least five
statements might include the facts that: (1) this page describes a
movie, (2) the movie has the title Se7en, (3) the movie has a rat-
ing of 8.7, (4) was published in 1995 and (5) this information was
maintained by imdb.com. Finally, we analyze the runtime of the
different scoring functions. This is an important consideration be-
cause crawling is essentially a matter of resources, and it might
happen that the crawler requires an unacceptably large time bud-
get in order to select a new page being crawled. We are aware that
this consideration depends on the crawling strategy and the imple-
mented policies, which have been optimized consciously.

4.4 Metrics

The main objective of focused crawlers is to maximize the num-
ber of relevant pages gathered while minimizing the number of not
relevant pages which are downloaded and parsed during the crawl.
In order to evaluate the effectiveness of our approach, we use a pre-
cision measure that reports on the ratio of retrieved relevant pages
to the total number of pages crawled. A page is considered to be
relevant when it supports the objective crawling function, this is,
whether the page contains structured data or not at all.

5. RESULTS

In the following we will present the results of the experiments
described before. We used the same dataset (a) and the same initial
seeds for each experiments for them to be comparable, except for
Section 5.3 where we used dataset (b). In addition, as a large num-
ber of our experiments depends on sampling — especially those that
test different bandit functions — we repeated each experiments up
to five times and reported the average. The curves in the drawings
within the result section are calculated using the smoothing spline
method.
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Figure 2: Percentage of relevant fetched pages during crawling
comparing batch and online Naive Bayes classification

5.1 Offline versus Online Classification

Static classification has been a dominant method for focused
crawling. Our first set of experiments compared the performance of
batch with online leaning in our domain of interest. We ran differ-
ent crawls using pre-trained classification models learned on a sub-
set of 100K, 250K and 1 000K randomly selected pages. Figure 2
shows the number of relevant retrieved pages of static approaches
(blue lines). The orange lines show the ratio of relevant pages gath-
ered by a crawler equipped with an adaptive online model which
was trained completely from scratch during the crawling process.
In addition we include the data series (black line) representing a
pure breadth-first search approach (BFS).

The performance numbers of static-based classification are slightly

higher than the number of BFS. Remarkably, online learning is
able to increase notably the amount of relevant pages crawled af-
ter 400K fetches. At the end of the crawl, the adaptive approach
is able to collect 539K relevant pages whereas the best static one
(trained with 250K examples) fails to collect 200K of those. This
trend is similar with Hoeffding Trees, although the difference in
performance diminishes when the model is trained with 1M pages.
Still, we note there is a decreasing performance rate for static clas-
sification approaches. The online learner also underperforms on
the first half of the crawl. This is because the model is empty at the
beginning and needs to be trained in subsequent iterations. On the
other hand, static models have a slight edge at the beginning which
is due to their knowledge advantage.

Figure 3 reports the accuracy over time of the classifiers present
in Figure 2. The x-axis shows the number of fetched websites,

whereas the y-axis describes the ratio of correctly classified to crawled

pages. The saturated accuracy of the static classification approaches
ranges between 0.55 and 0.45 where the adaptive model reaches
0.7 in the long run.

5.2 Evaluation of Different Bandit Functions

We now look into the interplay of bandit algorithms and the dif-
ferent functions to calculate the expected value of a host h (pre-
sented in Section 3). This first analysis will not include any ran-
domness (A = 0), to observe the real impact of the different setups,
and compare them against a random selection, a BFS approach and
the a pure online classification based selection (best score function).

Figure 4 shows the percentage of relevant pages retrieved during
the crawling of one million pages. Firstly, all tested functions lead
to higher number of retrieved relevant pages than the a pure random
selection (black line) or a BFS (grey line). Furthermore, except for
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Figure 3: Development of the classification accuracy of batch
and online Naive Bayes learning during crawling
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Figure 4: Percentage of relevant fetched pages during crawling
comparing different bandit functions (A = 0)

the Thompson Sampling based selection (TS) all the scoring func-
tions outperform online classification on its own (and therefore us-
ing static classification approaches). The highest performance rate
is achieved by the success rate function, which simply measures
the ratio between relevant and non-relevant pages for a host. Here
we are able to fetch around 628K relevant pages out of one mil-
lion. The three combinations of best score functions with (a) TS,
(b) absolute good and (c) success rate yield the second best results.
Regarding the TS based functions, we see a sharp increase in rel-
evant pages retrieved at early stages of the crawl. This decreases
toward the end of the measurement series ending up gathering be-
tween 550K and 600K relevant pages. In comparison the other
mentioned functions present a positive trend toward the end of the
series.

Having identified the best performing scoring functions we now
want to focus on the explore / exploit problem. We run the best per-
forming bandit-based selection functions, namely absolute good in
combination with the best score, the success rate and the combi-
nation of success rate and best score and measure the impact of
different values A\. We tested the named functions, using different
fixed values of A (we report on the best ones) and compared to the
corresponding gathering rate without any random selection. We did
not consider the TS approach, as it already includes an element of
randomness through sampling from a beta-distribution [8].

Figure 5 shows the impact of different A values for our three
selected functions. We can state that the usage of a random factor



in the cases of the best score and the absolute good function fails
to increase the number of crawled relevant pages. Regarding the
functions that include best score, using a fixed A greater than zero
reduces the number of relevant pages.
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Figure 5: Percentage of relevant fetched pages during crawling
pages comparing best performing bandit functions with differ-
ent )\ values

The above result may suggest that A greater than zero may not be
beneficial. Figure 6 zooms into the first 400K crawled pages and
shows that there is a positive impact of including a random factor
A > 0, lifting the relevant page rate from 0.3 to 0.4. However, this
effect diminishes when the amount of crawled pages reaches 1M.
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Figure 6: Percentage of relevant fetched pages during crawling
of first 400K pages comparing best performing bandit func-
tions with different )\ values

The above results support our initial intuition that a decaying
lambda may provide the best results overall. We now compare the
performance of linear decaying functions for A (described in sec-
tion 3), with a fixed m = 10K (value learned on an independent
development set). Figure 7 shows the number of crawled relevant
pages of the success rate function for the static and decaying As. In
addition to the already used A = 0.2 we also show the results of a
larger A = 0.5 in order to increase the randomness and potentially
learn more in the earlier stages of the crawl. Results show a posi-
tive impact of a decaying A for the percentage of fetched relevant
pages, achieving the maximum amount of relevant pages (673 K).
The positive effect is especially noticeable with A = 0.5 — with no
decaying factor, one out of two page selections are random (yield-
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Figure 7: Percentage of relevant fetched pages during crawling
comparing the success function with decaying and static A

ing the worst results), however when the decaying factor comes
into play this negative effect disappears in the long run.

The results in this Section are summarized in Table 2. The re-
sults show a 10% improvement of the best performing method for
online classification (Naive Bayes) over the best performing result
for static classification (HoeffdingTree with 1 000K training set)
and a 26% improvement of the best combined bandit-based ap-
proach (Success Rate with decaying A = 0.5) on top of online
classification alone.

5.3 Adaptability to more Specific Structured
Data Crawling Tasks

In this experiment we change the focus of our crawler and reward
only pages with at least five statements using microdata.

We compare the BFS approach and the best score function with
the best performing configuration from the former section: (1) ab-
solute good - best score A = 0.0, (2) success rate - best score
A = 0.1, (3) success rate A = 0.2 and (4) success rate with decay-
ing Ay = 0.5 and m = 10K. Figure 8 shows the percentages of
fetched relevant pages for the first one million crawled pages.

From the figure we can observe that all tested functions perform
remarkably better than the BFS approach. The overall achieved
rates are around five times smaller than the rates we reached for
the more general objective function. However, now the amount
of relevant pages among all the ones in the crawl is around eight
times lower (0.04 vs. 0.27). In addition, after crawling one mil-
lion pages, the bandit functions also outperform the online classi-
fication based selection strategy. Like in the previous experiment
using a success rate based function tend to gather the highest num-
ber of relevant pages, with the success rate function with A\ = 0.2
reaching a percentage of relevant crawled pages of 0.12 in the first
million crawled pages. In comparison, online classification based
selection ends up with a ratio of 0.08. Finally, in this experiment a
decaying A\ performed comparably to using a fixed A value.

5.4 Runtime

In the previous experiments we have shown that the combina-
tion of online classification and a bandit-based approach leads to
a higher percentage of relevant crawled pages for both tested ob-
jectives. We now assess what is the processing overhead incurred
by our classification approaches and the current implementation for
page selection. This time is critical, as when comparing to a BES
approach, we cannot venture to drop below the average processing
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Figure 8: Percentage of relevant fetched pages during crawling
aiming for pages with at least five Microdata statements.

Table 2: Overview of percentage of crawled relevant pages af-
ter one million crawled pages

Percentage of
Selection Strategy Relevant Pages
Random 0.159
BFS 0.291
Naive Bayes (100K Training Set) 0.312
Naive Bayes (250K Training Set) 0.316
Naive Bayes (1 000K Training Set) 0.311
Naive Bayes (Online) 0.534
HoeffdingTree (100K Training Set) 0.408
HoeffdingTree (250 K Training Set) 0.381
HoeffdingTree (1 000K Training Set) 0.482
HoeftdingTree (Online) 0.512
Thompson Sampling (A = 0.0) 0.452
Thompson Sampling - Best Score (A = 0.0) 0.562
Negative Absolute Bad (A = 0.0) 0.300
Absolute Good - Best Score (A = 0.0) 0.589
Success Rate (A = 0.0) 0.628
Success Rate - Best Score (A = 0.0) 0.550
Success Rate (A = 0.1) 0.628
Success Rate (A = 0.2) 0.600
Absolute Good - Best Score (A = 0.1) 0.558
Absolute Good - Best Score (A = 0.2) 0.590
Success Rate (decaying A\¢ = 0.2) 0.662
Success Rate (decaying A\t = 0.5) 0.673

time to crawl and parse a page as in this case the crawler process
would have to wait for our selection.

The theoretical time which is needed to select one page for crawl-
ing is mainly influenced by four factors: (1) the number of hosts,
as the bandit needs to go through all of them on each iteration, (2)
the runtime of the scoring function for the hosts, (3) the selection
of the final page from the selected host, which depends on the num-
ber of pages per crawl that are ready to crawl (4) the time to add
the feedback to the system — including training the classifier and
updating internal scores. In terms of a random selection (2) and (4)
are omitted.

Figure 9 shows the average time in milliseconds for the ban-
dit approaches presented before to determine the next page to be
crawled. To make results comparable we also include the fully ran-
dom selection approach. We can observe, that scoring functions not
making use of the Thompson Sampling, where internally a beta-
distribution needs to be calculated perform better than a pure ran-
dom selection. The average time to selection one page range below
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Figure 9: Average processing time to select one page over time

50ms for the dataset we used in our experiments. The two func-
tions, making use of a beta-distribution need up to 300ms to select
one page. Looking deeper into these functions we noticed that the
creation of the beta-functions and the selection of the random value
needs over 75% of the whole processing time.

In order to estimate the overhead of including our selection poli-
cies into a fully-fledged system one needs full measurements of the
standard crawling cycle: establishing a connection, downloading
the page, parsing and extracting new links. Taking a broad gen-
eral estimate from a existing BFS crawler Ubi-Crawler [5], which
needs 800ms to fully process one page per thread, our selection
policy would incur in an overhead of less than 10%, as we need not
more that 50m s for page selection. In comparison to this, we would
boost the percentage of crawled relevant pages by factor three.

6. CONCLUSIONS AND FUTURE WORK

This paper introduces Anthelion - the first focused crawler tar-
geting web pages containing markup standards for embedding struc-
tured data. Anthelion combines a bandit-based selection strategy
for web pages with online classification to steer a web crawler to-
wards relevant pages. The current implementation, which is pub-
licly available, is designed to replace the selection policy of exist-
ing crawlers. We have shown that the use of online classification,
in comparison to static classifiers, can achieve better results in this
domain being able to collect over 10% higher numbers of relevant
pages for a given objective function. Furthermore, our results show
that grouping pages based on their host and making use of features
shared by this group empowers the selection strategy for pages and
improves considerably the resulting percentage of relevant crawled
pages. We demonstrated that a bandit-based selection strategy, in
combination with a decaying learning rate (decaying \) overcomes
the explorelexploit problem during the crawling process. Our re-
sults show that it is possible to increase the percentage of relevant
crawled pages in comparison to a pure online classification-based
approach by 26% (see Table 2).

Narrowing the focus of our crawler to web pages using Micro-
data to embed richer structured data (where we can extract at least 5
statements) we have shown that our approach can gather 66% more
relevant pages within the first million than a pure online classifica-
tion based approach. In general, estimating the expected value of
an host using the success rate function in combination with always
selecting the pages with the highest confidence for the target class
tends to lead to the best results. Going beyond precision consider-
ations, we have analyzed the runtime performance needed by the



current implementation of our approach to select relevant pages for
crawling and showed that we need, in average, 50ms to select a new
page. The results presented in this paper demonstrate that a focused
crawler using a bandit-based selection with online classification is
capable of effectively gathering web pages embedding structured
data. The two techniques we have described allow for potential
improvements. Based on the idea of Lie et al. [20] we want to
explore the usage of a contextual bandit approach where the re-
sults of one bandit can influence the gain of the other bandits. We
could also consider extending the classifier to multi-class problems,
which would account for graded relevance of crawled pages. We
have shown that this approach can be adapted to more fine grained
objective functions in this domain, although we want to face further
objectives when gathering rich structured data using Microdata. A
natural extension of our work would be to take into further con-
sideration the quality of the data being crawled, e.g. considering
the extent to which the data conforms to the pre-defined schema or
to some model of the expected value of attributes. We could also
enable our crawler to answer complex queries while crawling. For
example, a used car dealer may be interested in only schema.org
Offer instances that are about cars and relate to older models of
certain brands, with a given price, etc. On the other side, we are
also interested if our approach can help to increase the percent-
age of relevant pages in the standard focused crawling task, when
searching topic related web pages.
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