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Abstract The evaluation of Recommender Systems is an area with unsolved
questions at several levels. Choosing the appropriate evaluation metric is one
of such important issues. Ranking accuracy is generally identified as a prereq-
uisite for recommendation to be useful. Ranking metrics have been adapted
for this purpose from the Information Retrieval field into the recommendation
task. In this article, we undertake a principled analysis of the robustness and
the discriminative power of different ranking metrics for the offline evaluation
of recommender systems, drawing from previous studies in the Information
Retrieval field. We measure the robustness to different sources of incomplete-
ness that arise from the sparsity and popularity biases in recommendation.
Among other results, we find that precision provides high robustness while
normalized discounted cumulative gain offers the best discriminative power.
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In dealing with cold users, we also find that the geometric mean is more robust
than the arithmetic mean as aggregation function over users.

Keywords Recommender Systems · Top-N Recommendation · Evaluation ·
Ranking Metrics · Robustness · Discriminative power

1 Introduction

Recommender Systems assist users in finding their way in massive information
spaces, in many application domains. To deal with such an information over-
load, these systems help users in discovering relevant pieces of information or
items [50]. The goal of a recommender system is hence to present items that
may be of interest to the users. Although the idea is simple and intuitive, the
evaluation of a recommendation algorithm is a more difficult endeavour than
it may appear [22]. In this article, we aim to shed light on a central issue in
recommender systems assessment: the evaluation metrics.

In the early days of the field, recommender systems were conceived to act
as rating predictors. The early recommendation methods aimed to forecast the
ratings that users would assign to each item [30,28]. The evaluation of rating
predictors therefore relied on error metrics such as the root mean squared
error (RMSE) or the mean absolute error (MAE) [28]. The rationale behind
this recommendation task is that if a model predicts ratings correctly, then we
can provide good recommendations by suggesting the items with the highest
predicted scores.

However, later work suggested that the assessment of recommendation
methods based on error metrics provides a poor proxy of true user satisfaction
in real applications [20,28,44]. In part, this is because recommender systems in
production typically offer a short list of recommendations where the predicted
ratings are not shown [30]. Producing a short list of N recommendations per
user – instead of accurately predicting the rating values that users would as-
sign – is commonly known as top-N recommendation [20]; the focus in this
task is to provide a list with the most interesting items unknown to the user.
Additionally, evaluation tailored for rating prediction gives the same impor-
tance to all the items; in contrast, top-N recommendation only cares for the
top recommended items that each user may browse in the ranking. For these
reasons, a paradigm shift from rating prediction to top-N recommendation has
taken place in the field in the last years.

Aside from this paradigm shift, accuracy as a broad concept remains a
(or may we say the) primary requirement for recommendation to make sense,
notwithstanding the increasing interest for additional complementary recom-
mendation properties (such as diversity and novelty [16]) [30,28]. For a given
user, we might say that a particular suggestion is “correct” if that user likes
the recommended item. With this goal in mind, we may conduct online or
offline experiments to determine whether a user likes the recommendations
she is delivered. Online evaluation (chiefly A/B testing [58,37]) is generally
considered the final word in assessing how effective a recommender system
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is. The known cost and limitations of online experiments are commonly re-
lieved (or eluded for lack of alternative) by complementary offline evaluation,
typically as a first filter before moving to A/B testing. Offline experiments
exploit a dataset of previously collected user-item interactions which is usu-
ally partitioned into at least two subsets [28]: a training set used as input to
the recommendation algorithm under evaluation and a test split employed for
measuring the performance of the algorithm according to an evaluation metric.
Additionally, it is usually appropriate to use an extra validation set for tuning
the hyperparameters.

The Information Retrieval (IR) community has built well-established eval-
uation methodologies – often broadly referred to as the Cranfield paradigm –
through careful and iterative design, in-depth analysis, and consensus-building
over the decades by community-wide initiatives such as TREC [67]. IR and
Recommender Systems are strongly related fields where both seek to provide
relevant pieces of information to the users [4]. One primary difference lies in
the representation of the information need: while an IR system typically uses
an explicit query specified by the user, recommender systems exploit the user’s
interaction records as an implicit query. The Cranfield paradigm measures how
a retrieval system meets the information needs of the users using ranking met-
rics. Many of these metrics have also been used to assess recommender systems
in the top-N recommendation task. However, in contrast to IR, the evaluation
of recommender systems has not undergone a comparable process in terms of
standardization and consensus-building. The recommender systems field can
benefit from the IR methodology in this area, but the recommendation task
has peculiarities that require specific adaptations and analysis.

For instance, in the Cranfield paradigm, documents are manually judged
for relevance, which is generally not the case in recommender system evalua-
tion: instead, experimenters hold out a subset of the available user interaction
records as a proxy to serve this purpose. These pseudo-judgments are highly
incomplete and obtained in a very different way compared to the IR relevance
judgments. Since the assumptions of the Cranfield paradigm are substantially
different from those in the evaluation of recommendations, the adoption of IR
metrics requires at the very least careful consideration.

In this article, we extend our previous work [63] by several means: (i) we
include new evaluation metrics (F-measure and expected reciprocal rank) in
the analysis, (ii) we include the use of the geometric mean in addition to the
arithmetic mean to aggregate metrics (iii) we change the evaluation protocol
using 5-fold cross validation and random splitting and (iv) we designed a new
set of experiments analyzing the robustness to:

– items missing at random,
– users missing at random,
– missing users with the largest user profiles.
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1.1 Research objective

In this work, we study the applicability of several IR metrics to top-N recom-
mendation. Our research objective is to study the robustness and discrimina-
tive power of ranking metrics in top-N recommendation. Most of these metrics
are already being used in recommender system evaluation, but they have not
been thoroughly studied. We adapt and extend evaluation methodologies from
IR to assess the robustness and discriminative power of several ranking metrics
in the top-N recommendation task. In this context, a metric is robust when it
presents a similar behavior when less relevance judgments are available. Like-
wise, a metric is discriminative when changes in its values produce statistically
significant differences.

As we shall show later, we analyze the robustness of several IR metrics to
different incompleteness scenarios: ratings, items, and users missing at random,
and when larger items (sensitivity to popular items) and users (sensitivity to
active users) are removed. Inspired by the results obtained in the last scenario,
we propose to aggregate ranking metrics using the geometric mean instead
of the arithmetic mean, where we find a more consistent behavior regarding
robustness to incompleteness for some metrics. In general, the results show
that precision offers the best robustness figures whereas NDCG provides the
highest discriminative power.

The remainder of the paper is structured as follows: in Section 2 we present
some background concepts about evaluation in IR and recommender systems,
and a summary of the work related to our present research. Section 3 de-
scribes the ranking metrics that will be used throughout the paper, including
the equivalence between IR and recommender systems evaluation assumptions.
In Section 4 we introduce our methodology to analyze the robustness and dis-
criminative power of ranking metrics in recommender systems. The results
of the analysis are presented in Sections 6 and 7 based on the experimen-
tal settings introduced in Section 5, first averaging the metrics according to
the arithmetic mean (Section 6) and later according to the geometric mean
(Section 7). Finally, conclusions and future work directions are presented in
Section 8.

2 Background and related work

Evaluation plays a crucial role in IR and recommender systems: the effective-
ness of any retrieval or recommender system is measured empirically [28,30],
but also theoretical results help in improving the evaluation efforts. Therefore,
the evaluation methodology has important theoretical and practical applica-
tions in both fields. While IR has established the Cranfield paradigm as the
standard evaluation methodology [67], different approaches coexist in the as-
sessment of top-N recommendations.
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2.1 Information Retrieval evaluation

The Cranfield paradigm is a well-founded evaluation methodology used and
evolved over the years in the Information Retrieval field. This paradigm is
based on test collections containing documents, topics (describing information
needs that would result in a query), and relevance judgments for each topic
[67]. Assessors are responsible for judging the documents and discriminating
which ones are relevant to each topic. Using these relevance judgments, ranking
metrics can evaluate the output of a retrieval system.

The Cranfield paradigm relies on three fundamental assumptions: i) the
information needs of the users – which are specified by the topics – can be
approximated by topical similarity; ii) relevance is independent of the users,
which implies that a set of relevance judgments is valid for any user; and iii)
judgments are complete, i.e., all the relevant documents for each topic are
known. Although these assumptions do not strictly hold in general, they are
reasonable and some deficiencies can be tolerated and/or compensated for [67].
For this reason, the Cranfield paradigm has become the standard systematic
procedure for offline evaluation in IR.

A retrieval system is evaluated for a particular topic by producing a list
of documents sorted by decreasing relevance according to the retrieval model
implemented by the system. Then, a metric is computed on this ranking,
using the relevance judgments for the topic. The general quality of a retrieval
strategy is measured as the average metric score over all the topics in the test
collection. Typically, the arithmetic mean is used but the geometric mean has
also been explored by some authors [68,51].

One problem that this evaluation paradigm has to tackle is the enormous
volume of information in modern test collections: datasets are way too large to
have complete relevance judgments for each topic. For this reason, a process
called pooling selects which documents should be assessed by humans [59,
67]. Pooling reduces the evaluation effort of the human assessors by filtering
potentially non-relevant documents. Using pooling, all documents that do not
appear in the pool are assumed to be non-relevant. The idea is that we should
make relative (instead of absolute) evaluations with the test collections. To this
end, we need unbiased relevance judgments. Pooling, if performed correctly,
has shown to be a good enough approximation [67,40]. Nevertheless, large-
scale datasets (such as ClueWeb) contain hundreds of millions of documents
which are shallow pooled, leaving a significant number of potentially relevant
documents unjudged as a result [41,39].

The limitations and biases of the Cranfield paradigm have been extensively
studied. For instance, there have been efforts to overcome the bias produced
by pooling [10,13]. Also, Buckley and Voorhees [12] studied how the number of
relevance judgments affects different precision-oriented metrics. These authors
defined the robustness of a metric with respect to incomplete judgments as how
well the metric correlates with itself when the relevance judgments are incom-
plete. They propose the Bpref metric to address this issue – with incomplete
judgments, the metric is shown to have better correlation with itself and with
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average precision (AP) with all judgments than other standard IR metrics.
The same authors also found that Bpref preserves the absolute scores and the
relative ranking of systems better than MAP or precision. Later, Yilmaz and
Aslam [72] proposed three estimates of AP for an incomplete judgments sce-
nario. The proposed estimates showed a better correlation between themselves
and AP than Bpref. The correlations between system rankings were measured
in terms of Kendall’s correlation [36]. Among different proposed alternatives,
InfAP was the metric that provided the best results [72]. To measure the ro-
bustness to incomplete judgments in these experiments, the metrics were cal-
culated using random subsets of relevance judgments. Buckley and Voorhees
[12] used stratified random sampling, while Yilmaz and Aslam [72] employed
random sampling. However, both samplings are equivalent in expectation [72].
More recently, Lu et al. [41] thoroughly studied the effect of the pooling depth
in several IR metrics providing a list of advice for IR evaluation.

In addition to the robustness to judgment incompleteness, discriminative
power is another property of evaluation metrics that has been extensively
studied in IR [11,41,54,56]. Discriminative power measures the capability of
a metric to discriminate between systems. We should note that the discrim-
inative power not only depends on the metric but also on the test collection
and the set of systems being compared. Buckley and Voorhees [11] proposed a
first attempt at analysing the discriminative power of a metric using a fuzzi-
ness value. Later, Sakai [54] introduced a more formal method based on the
bootstrap test. Given a significance level (e.g., p = 0.05), he computed the
ratio of system pairs for which a statistical test finds a significant difference.
In particular, Sakai employed the bootstrap test with the Student’s t statistic
for this purpose. To avoid fixing a particular significance level, Lu et al. [41]
proposed to report the median system-pair p-value as a measure of discrimi-
native power. Sakai [56] also studied how the discriminative power of a metric
varies when using incomplete judgments.

2.2 Recommender Systems evaluation

The move from error metrics to ranking-oriented evaluation was a step towards
a more realistic view of the recommendation task, and cast recommendation,
for many purposes, as an IR task [20,28,30]. The need of Information Retrieval
systems to anticipate user needs and provide relevant information without
the need of an explicit query (usually called zero query search [1]) was also
one of the motivations why IR researchers started to look into Recommender
Systems.

Evaluation is still however one of the most active and open research areas
to date in the RS field [22,38]. The consistency between offline and online eval-
uation is, for one, a recurrent and prominent open issue [52]. Recent studies re-
stricted to particular domains, for instance, have shown discrepancies between
the click-through rate and the score provided by offline metrics [24,3]. A more
exhaustive study analyzed seven different recommendation algorithms from a
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user-centric perspective using two accuracy metrics finding a poor match be-
tween the perceived quality and recall and fallout metrics [18]. In contrast, a
posterior study in the e-tourism domain showed that recall and fallout are a
good approximation of the quality perceived by the users [19]. Overall, online
evaluation is strongly sensitive to several variables such as the domain, the
demographics of the users, or the user interface of recommendations, which
can make it difficult to isolate the effect of the recommendation algorithm at
the core of an application from the bias of noisy variables. Moreover, repro-
ducibility is difficult, if not impossible, to achieve when researchers do not have
access to the original experimental environment [53]. Even when a production
system is available, A/B tests take a long time to run, typically more than
two weeks, whereas many offline experiments can be run and repeated many
times in a few hours, with no impact on the customers’ quality of experience.
Additionally, a limitation of online evaluation is that the recommender model
may change during the A/B test. Most recommendation models adapt them-
selves to incoming feedback. This makes hard to draw objective conclusions
about the effectiveness of different algorithms when they mutate in produc-
tion. For all these reasons, offline experimentation is used consistently both in
academia (as the primary means for research-oriented evaluation) and indus-
try (as a complement), and typically constitutes the first step before online
evaluation.

In contrast to the situation described in IR in the previous section, rec-
ommender systems test collections do not rely on assessors and pooling. Since
RS lack a query and relevance is highly contextual and/or personal, obtaining
relevance judgments from assessors is not possible. For this reason, a held-
out test set of actual user interactions (such as ratings or clicks) is employed
for testing purposes and the rest as input for the recommendation algorithm.
However, this does not mean that recommender system evaluation is free from
biases. Quite the contrary, Belloǵın et al. showed that sparsity and popularity
biases impact the evaluation of recommendations [6], and explored alternative
test rating sampling approaches to counter such biases. Later on, Cañamares
and Castells [15] gave a formal explanation for the bias, and found out that
the bias might preserve the comparisons between systems if certain conditions
hold: the key factor is whether the probability of an item to be rated depends
only on its relevance – in which case the bias preserves comparisons –, or de-
pends also on any other characteristics or circumstances of specific items – in
which case offline evaluation may return misleading results.

Another recent strand of research has addressed the bias in offline evalu-
ation as an issue of mismatch between the data gathering policy (e.g., users
freely interacting with a deployed system) and item selection by the recom-
mendation algorithms to be evaluated. Building on this perspective, techniques
such as inverse propensity scoring have been explored to reduce the biases in
the evaluation [25,27,61,71] and the evaluated algorithms [35,57]. One of the
main challenges in these approaches is the development of accurate models
of propensity (i.e., the probability that a user is observed interacting with an
item). As a consequence, these techniques are not always easy to apply as an
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off-the-shelve option in evaluation. It is not (yet) fully clear how to reliably
debias offline evaluation with a typical public dataset such as, for instance,
MovieLens [29]. In this paper we shall therefore focus on common widespread
offline evaluation scenarios as are in order today. Future progress and con-
solidation of debiasing practice would certainly motivate an extension of the
study we present here, considering the application of the metrics of study in
combination with new debiasing techniques.

On the other hand, metrics such as Bpref and InfAP, which have been
proposed in IR to address incompleteness of relevance judgments [12,72], have
rarely been used in recommendation [7,43,65]. To the best of our knowledge,
our previous work [63] and the present continuation are the first systematic
review of ranking metrics in recommendation regarding robustness to incom-
pleteness and discriminative power. The results of our research provide im-
portant practical implications in how offline recommender systems evaluation
should be performed.

3 Metrics

3.1 Cranfield for Recommendation

We can establish an analogy between the Cranfield paradigm and top-N recom-
mendation if we consider that the user contexts play the role of queries (since
they are both associated with an information need to be satisfied). By this
equivalence, we can evaluate item rankings as we evaluate document rankings.
Cranfield evaluation assumes that relevance judgments are procured somehow,
typically manually assigned by human assessors. Commonly available datasets
for recommender system evaluation do not generally include such an explicit
provision of manual judgments specifically intended to meet the experimen-
tal needs. Instead, a part of the user activity records in the dataset is held
out as an approximation to Cranfield judgments. However, when evaluating
recommendations, some Cranfield assumptions do not hold (see Table 1 for a
summary). Compared to, e.g., TREC relevance judgments, the held-out test
records are considerably noisier, incomplete and biased [6].

Relevance is highly dependent on end-users: the same item may not be
relevant to two different users, and this is, in fact, inherent to the recom-
mendation problem – if items were equally liked or disliked by all users, the
recommendation task would be a non-problem. Compared to ad-hoc search
tasks, this significantly complicates the construction of Cranfield test collec-
tions for offline evaluation: it is impossible to delegate relevance labeling to
a group of experts or assessors: no one can judge the personal relevance of
items on behalf of the users that recommendations will target in the experi-
ment, whereby (typically thousands of) end-users need to be fully involved in
the data collection procedure. The incompleteness of judgments is likewise not
only hardly avoidable, but a condition for recommendation to be a meaningful
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Table 1: Comparison between the evaluation assumptions of the Cranfield
paradigm in Information Retrieval and recommender systems.

Information Retrieval Recommender systems

Topical similarity can approximate
the user’s information need.

User’s information need may be cap-
tured in several different ways.

Relevance does not depend on the
users.

Relevance is fully user-dependent.

Relevance judgments are almost
complete (pooling depth).

Relevance judgments are far from
complete.

task. If user preferences for all items were known, there would be nothing to
predict – no gap to fill – by a recommender system.

In addition, when approximating relevance judgments with a held-out test
set, a trade-off arises between how much data is used for the training and
the test splits. A larger training subset (in exchange for a smaller test sub-
set) allows for better modeling, at the expense of potentially worse evaluation
reliability, and vice versa. Finally, the long tail distribution of ratings in rec-
ommender systems impacts the recommendation process [2,15]. IR collections,
in contrast, do not have such a strong imbalance in the number of judgments
per document [6].

On the other hand, while metrics such as mean average precision (MAP)
and normalized discounted cumulated gain (NDCG) [34] have been considered
as reference metrics in IR (in spite of recent criticism [23]), the generalization
of the use of ranking metrics for recommender system evaluation is relatively
recent, and a comparable consensus is missing as to which metric is the most
suitable to measure the ranking quality.

3.2 Adaptation of Ranking Metrics

We use the following definitions and notation when adapting ranking metrics
from IR. When using explicit feedback datasets in the form of ratings, user
relevance is estimated by exploiting the ratings. All items rated by the target
user u in the test set with a value below a certain relevance threshold τ are
considered non-relevant items for that user u and constitute the set that we
will denote by Nu. Likewise, we shall denote by Ru the set of those items
rated by u in the test set with a score equal to or greater than the threshold τ ,
representing the set of relevant items for the user u. For instance, in datasets
such as MovieLens [29] or Netflix [8], with ratings ranging from 1 to 5, it
is common to set τ to 4. The items that the target user did not rate are
considered unjudged (their relevance is unknown). Most IR ranking metrics
ignore unjudged elements and treat them as non-relevant, but some metrics
explicitly consider them separately (such as Bpref [12] and InfAP [72]).
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Given a set of users U and a set of items I, the top-N recommendation task
consists in producing a ranking of the N most relevant items in I for each user
in U [20]. We represent the ranking of length n for user u as the list Ln

u. We
refer to the item in the k-th position of that list by Ln

u[k]. Finally, we denote
the rating from a user u to an item i by r(u, i).

With this formulation, we select nine ranking metrics to analyze in our
study. We select them as representative and commonly used metrics in IR,
which we shall adapt for recommender system evaluation. All of them range
from 0 to 1 where the higher the value, the better. The adapted metrics are
computed on a per-user basis (denoted here with the subscript u). To obtain
the final value, we average the metric over all the users (typically using the
arithmetic mean). If a recommender system cannot provide recommendations
for a particular user, we assign a value of zero to all the metrics for that user,
thus penalizing the inability to provide recommendations to some users (user
coverage shortfall). When using IR metrics, we commonly establish a specific
depth n – the “cut-off” – at which the ranking is to be evaluated. Since some
metrics have multiple versions with slight differences, in this work we adopt
the trec eval1 implementation of the metrics which is the standard evalua-
tion tool of the TREC initiative. Since some metrics are not implemented in
trec eval, we developed a fork called rec eval2 including them.

Precision (P) Precision measures how well a method puts relevant items in
the first n recommendations regardless of the rank:

Pu@n =
|Ln

u ∩Ru|
n

(1)

Recall Recall measures the proportion of relevant items that are included in
the recommendation list with respect to the total number of relevant items for
a given user:

Recallu@n =
|Ln

u ∩Ru|
|Ru|

(2)

F-Measure (F1) The F-measure is the harmonic mean between precision and
recall.

F1u@n =
2 · Pu@n · Recallu@n

Pu@n+ Recallu@n
(3)

Average Precision (AP) Average Precision averages precision at the positions
where a relevant item is found. When AP is averaged (using the arithmetic
mean) over the set of topics in IR or users in recommender systems, it receives
the name of mean AP (MAP).

APu@n =
1

|Ru|

n∑
k=1

I (Ln
u[k] ∈ Ru)Pu@k (4)

where I denotes the indicator function.
1 https://github.com/usnistgov/trec_eval
2 https://github.com/dvalcarce/rec_eval

https://github.com/usnistgov/trec_eval
https://github.com/dvalcarce/rec_eval
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Normalized Discounted Cumulative Gain (NDCG) This metric uses graded
relevance (the values of the ratings) as well as positional information of the
recommended items [34]. Let D(i) be a discounting function, G(u, n, k) be the
gain we obtain by recommending item Ln

u[k] to user u and let G∗(u, n, k) be
the gain associated to the k-th element in the ideal ranking of size n for the
user u (where items are ranked in decreasing order of gain). NDCG is defined
as:

NDCGu@n =

∑n
k=1G(u, n, k)D(k)∑n
k=1G

∗(u, n, k)D(k)
(5)

A common discount function is D(k) = log−1
2 (k+ 1). Although there exist

multiple options for defining the gain function, our preliminary experiments
showed no meaningful differences among them. Therefore, we shall simply take
G(u, n, k) = r(u, Ln

u[k]) as the gain function hereinafter. This gain function
exploits the graded relevance feedback present in the ratings.

Reciprocal Rank (RR) It is computed as the inverse of the position of the first
relevant element in the ranking. As AP, when averaged over a set of users, this
metric is called Mean RR (MRR).

RRu =
1

mink I (Ln
u[k] ∈ Ru)

(6)

Expected Reciprocal Rank (ERR) This more recent metric is based on the so-
called cascade user model and highly correlates with click-through rate in a
search engine [17]. ERR seeks to estimate the expected reciprocal amount of
time that the user will take to find a relevant document.

ERRu =

n∑
k=1

1

k

k−1∏
p=1

(1−G(u, n, p))G(u, n, k) (7)

The gain function in ERR is as follows:

G(u, n, k) =
2r(u,L

n
u[k]) − 1

2rmax
(8)

where rmax denotes the maximum rating in the dataset.

Bpref This metric was designed to have high correlation with AP and, at the
same time, be more robust to incomplete relevance judgments than AP [12].
Bpref is inversely related to the number of judged non-relevant items that are
located above each relevant item in the ranking list:

Bprefu@n =
1

|Ru|

n∑
k=1

I (Ln
u[k] ∈ Ru)

(
1− min(|Lk

u ∩Nu|, |Ru|)
min(|Nu|, |Ru|)

)
(9)
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Inferred Average Precision (InfAP) InfAP yields the same score MAP pro-
vides when the relevance judgments are complete; however, it is also a statis-
tical estimate of MAP when using incomplete judgments [72]. InfAP has shown
a better correlation with AP than Bpref under this scenario. This metric is
given by:

InfAPu@n =
1

|Ru|

n∑
k=1

I (Ln
u[k] ∈ Ru)E[Pu@k] (10)

where the expected precision at position k is defined as:

E[Pu@k] =
1

k
+
k − 1

k

|Lk−1
u ∩Ru|+ ε

|Lk−1
u ∩Ru|+ |Lk−1

u ∩Nu|+ 2ε
(11)

and ε is a small constant (we set ε to 0.00001 in our experiments following the
trec eval implementation).

4 Methodology

We now describe the proposed methodologies for studying the robustness to
incompleteness and the discriminative power of the ranking metrics described
in the previous section. Drawing from prior studies in a similar scope in the IR
field, we adapt and extend them to the context of top-N recommendation. We
start with the analysis of discriminative power and continue with the study
of the robustness to different types of incompleteness. When we are to choose
one best recommendation algorithm over others, statistically sound guarantees
are desirable. A metric with higher discriminative power than another tends
to produce statistically significant differences between systems more often. On
the other hand, the robustness to incompleteness is an important concern in
recommendation because the scarcity of relevance judgments is commonly a
challenge to the reliability of metric values.

4.1 Discriminative power

When comparing two recommendation techniques using a particular ranking
metric, we pay attention to the value of the metric for each system. For most
metrics, we should prefer the recommendation model that produces the highest
metric figures. However, the evaluation process is subject to some degree of
randomness and uncertainty: the dataset is a sample of the whole data, and its
manipulation (e.g., sampling test records) often adds further random variance.
Differences in the values of a metric may therefore be subject to some degree
of randomness or noise. For ranking metrics that are computed for each user,
we can use paired difference tests to discriminate whether the metric means of
two systems differ or not. Ideally, we expect that the set of measured values
reflect a statistically significant difference. Otherwise, we would hardly be able
to conclude much from the experiment.



Assessing ranking metrics in top-N recommendation 13

In our experiments, we will compare the performance of multiple recom-
mender systems in different collections according to the described metrics. We
decided to choose the method proposed by Sakai [54] for measuring the dis-
criminative power of those metrics. In [54] the author used the t-test, although
in more recent work, he recommended the Tukey HSD test when comparing
multiple runs [55]. In this article, we use the permutation test (also known as
Fisher’s randomization test) with the difference in means as the test statistic
[21]. We took this choice because this test statistic provides a better estima-
tion of the p-value [21,47]. Since computing the exact p-value requires the
computation of 2n permutations (where n is the number of test users), we
can approximate the result of this test using Monte Carlo sampling. We use
100,000 samples which is enough to compute a two-sided p-value of 0.05 with
an estimated error of ±0.001 and a p-value of 0.01 with an error of ±0.00045
[21].

For assessing how discriminative a given metric is, we compute the p-value
of the test among every possible pair for recommenders using that metric. As
we are doing paired testing, each comparison takes into account the array of
metric values for each user produced by the two systems being tested. We
plot the p-values3 sorted by decreasing value as in [54]. We call each of those
curves the p-value curve of the metric. A highly discriminative metric yields
low p-values and, thus, its p-value curve should be closer to the origin.

Moreover, to summarize the p-value curve in one unique value for each
metric, we propose to compute the area under the p-curve by summing up all
the p-values for the given metric. We shall call this value DP (discriminative
power). The lower the value of DP, the higher the discriminative power of the
metric. Note that DP depends on the set of systems and the dataset. Therefore,
DP can only be used to compare the same systems on the same dataset.

4.2 Robustness to incompleteness

As discussed earlier, incompleteness is a pervasive condition in the evaluation
of recommender systems. The relevance judgments are formed by the ratings
in the test set which are, by definition, incomplete since they are generated as
a held-out subset of the whole dataset. More fundamentally, the dataset itself
is incomplete because users have not rated all the items in the system – if they
had, they might not need recommendations, to begin with. A reliable metric
for recommendation should, therefore, be robust to incompleteness in the test
set.

Incompleteness has been simulated in IR using unbiased random sampling
techniques [12,72]. We propose a similar approach to play with incompleteness
in recommender system evaluation. However, incompleteness in recommender
systems can manifest itself in ratings, items, and users. We discuss next these
types of incompleteness and present a procedure to simulate each of them.

3 Actually, we limit the plot to the first 20 p-values
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4.2.1 Rating incompleteness

One of the most common biases in the recommender system evaluation is the
sparsity bias which arises when we lack relevance judgments for user-item pairs
involved in a recommendation we wish to evaluate [6]. Because of the sparsity
bias, the absolute values of the metrics lose meaning, but they are still valid for
making relative comparisons [6], as long as the compared systems are equally
affected – in expectation – by sparsity [15].

We propose to assess the robustness of different ranking metrics to the
ratings incompleteness using random samples of the test set. We define dif-
ferent test sizes starting from 100% to 1% of the size of the original test set,
and we take 50 random samples of each size from the test set. Given a set
of recommenders and a particular metric, we rank these systems for each test
set sample. Then, we compute Kendall’s rank correlation coefficient of each
system ranking with respect to the ranking obtained using the original test set
[36]. Finally, by averaging the rank correlation of the samples with the same
size, we obtain a final estimate of the robustness of a metric for each test size.
The smaller the test size (i.e., the more aggressive the simulated sparsity), the
lower the correlation of the system comparisons can be expected to be. We
say that a metric is more robust than another if it stands at a higher average
correlation with itself as the test set is reduced.

4.2.2 Item incompleteness

The sparsity bias discussed in the previous section produces ratings missing
at random over items. But we also wish to test the robustness of metrics when
some items lack more relevance judgments than others [6,15]. We consider two
approaches to study item-dependent incompleteness conditions.

Random-item incompleteness Similar to the uniform rating incompleteness
simulation described earlier, we create increasingly smaller random samples of
the test set, but instead of sampling ratings at random, we sample whole items
from the test set uniformly at random. Again, for each test size (now measured
in percentage of items rather than ratings), we take 50 samples. Likewise, we
compute the ranking of systems for a particular metric using each test sample,
and we compute Kendall’s τ coefficient with respect to the system ranking in
the original full test set. And again, we average the correlations of the samples
with the same size, which we take as an indication of the robustness of the
metric to random item incompleteness.

Popular-item incompleteness An important difference between IR and rec-
ommender systems evaluation is that missing relevance judgments are not
uniformly distributed which is commonly referred to as data missing not at
random [42,60]. The distribution of ratings in a recommendation scenario com-
monly follows a heavily skewed long tail distribution. This bias strongly affects



Assessing ranking metrics in top-N recommendation 15

the reliability of several IR metrics [6,15]. Previous works on recommender sys-
tems remove popular items to deal with the popularity bias [20,6]. To study
how metrics are skewed towards popularity, we propose to build progressively
smaller test sets removing the ratings of the most popular items. Again, we
remove entire items from the test set, only by decreasing order of their number
of test ratings (popularity). Then, we can study the change in the correlation
between systems rankings of different subsets of the test set and the original
test set, just as before. The higher the correlation, the higher the robustness
of the metric to the popular item incompleteness.

4.2.3 User incompleteness

Finally, we propose to study the robustness of metrics to missing entire users
in the relevance judgments. Symmetrically to missing items, we also consider
two scenarios: users are missing at random, or users with the largest profiles
are missing.

Random-user incompleteness When removing users at random, our assess-
ment of the quality of the recommender systems becomes less reliable. In IR,
this would be equivalent to removing the relevance judgments of random top-
ics, which amounts to reducing the test query set – and hence the experiment
size. We propose to follow an analogous approach to the random item incom-
pleteness scenario, but removing all the ratings of random users instead of
random items.

Large-user incompleteness Rating sparsity is also typically unevenly distributed
over users, in a way that evolves over time. Cold start is a particularly chal-
lenging situation, where new recent users have to be delivered personalized
recommendations with little available information about their tastes [48]. To
analyze the robustness of metrics to cold user situations, we consider removing
users with the largest profiles from the test set, and study the system ranking
correlation with the original test set. This would be equivalent to removing the
topics with a high number of relevance judgments in IR, i.e., the easy queries.
Robust metrics to large-user incompleteness are ones that focus more on cold
start users.

5 Experimental settings

In this section, we describe the experimental settings used in the conducted
experiments to address the following questions that stem from our research
objective:

RQ1) What is the discriminative power of the ranking metrics presented in
Section 3?

RQ2) How robust are such metrics to different types of incompleteness (rating,
user, item)?
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Table 2: Datasets statistics

Dataset Users Items Ratings Density User Gini Item Gini

MovieLens 1M 6,040 3,706 1,000,209 4.468% 0.529 0.634
LibraryThing 7,279 37,232 749,401 0.277% 0.493 0.581
BeerAdvocate 33,388 66,055 1,571,808 0.071% 0.868 0.865

The answers to these questions present important practical applications in
the evaluation of top-N recommenders since they will guide the choice of the
most appropriate evaluation metrics.

The experimental settings are presented as follows: first, we introduce the
datasets (Section 5.1); then, in Section 5.2 we explain the details of the eval-
uation protocol; last, we provide a brief description of the recommendation
algorithms used in the experiments in Section 5.3.

5.1 Datasets

We use three collections with explicit feedback in the form of 1-5 ratings:
MovieLens 1M4, LibraryThing, and BeerAdvocate5. Table 2 shows the number
of users, items, ratings, and the rating density this results into, i.e., the ratio
of ratings over the total number of user-item pairs. To give an idea of how
skewed the rating distribution is in each dataset, we show the Gini coefficient
of the number of ratings over users and items. The Gini index measures the
inequality of a distribution (a Gini index of 1 represents maximum inequality
and 0 a perfect egalitarian systems) [26].

We used three very different datasets in this study belonging to different
domains (movies, books and beers). As it can be seen in Table 2, the collections
exhibit different distributions of ratings, different ratios of ratings per user
and item as well as different values of density. We think that this diversity is
important to obtain generalizable results.

For evaluation purposes, we use a standard 5-fold cross-validation [5]. We
might consider to use a more realistic evaluation that uses some kind of tem-
poral training-test splitting [14], however, in the RS literature, random splits
are much more commonly used [5], in part because temporal information is not
always available in public datasets, and even when it is available it may not
realistically represent the user preferences [29]. Because of this, we prefer to
analyze robustness and discriminative power of evaluation metrics under the
most common evaluation methodology used by researchers and practitioners
for the sake of generality, which translates in performing random splits. Addi-
tionally, this methodology allows us to repeat the experiments several times by
performing cross-validation, which produces results with less variability and
better statistical properties.

4 https://grouplens.org/datasets/movielens
5 http://snap.stanford.edu/data/web-BeerAdvocate.html

https://grouplens.org/datasets/movielens
http://snap.stanford.edu/data/web-BeerAdvocate.html
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5.2 Evaluation protocol

There are several protocols for offline evaluation in Recommender Systems
[30,5,6]. We follow the AllItems protocol which is considered a fair evaluation
methodology and is similar to how systems are evaluated in IR (where no
hold-out test set is available) [5,6]. In this protocol, the evaluated systems are
required to rank all the items in the test set, except those already rated by the
target user in the training set. An ideal recommender system would be able
to achieve a perfect score in all the studied metrics. This evaluation protocol
is also highly correlated to other variants [5,6].

Most of the traditional IR ranking metrics rely on binary relevance: each
item is either relevant or non-relevant for a given user. However, more modern
metrics such as NDCG and ERR rely on graded relevance judgments. Since
we use explicit feedback datasets in this work, we have to specify how to
transform the ratings (a form of graded relevance) to binary relevance for
those metrics that do not support graded relevance. In those cases, we set the
relevance threshold τ to 4, considering as non-relevant every item rated below
τ . The items that are not rated by the target user in the test set are neither
relevant nor non-relevant – they are equivalent to the unjudged documents in
the Cranfield paradigm: their relevance is unknown.

5.3 Recommendation algorithms

To analyze the properties of evaluation metrics, we need a set of recommender
systems for the metrics to be computed on their output. The IR community
often uses the runs submitted to the TREC tracks for this purpose [12,72,
41]. Since we do not have an equivalent in recommendation, we implement
the following 21 recommendation methods and use their outputs to study the
ranking metrics:

– Random, Popularity: basic non-personalized baselines.
– CHI2, KLD, RSV, Rocchio’s Weights [64]: neighbourhood-based tech-

niques that stem from Rocchio’s feedback model.
– RM1, RM2 [46]: neighbourhood-based techniques that rely on relevance-

based language models.
– LM-WSR-UB, LM-WSR-IB [66]: user-based and item-based approaches

that compute neighborhoods with language models.
– NNCosNgbr-UB, NNCosNgbr-IB [20]: user-based and item-based ver-

sions of a neighbourhood-based algorithm.
– SLIM [45]: sparse linear methods for recommendation.
– HT [73]: graph-based technique with emphasis on the long tail.
– SVD, PureSVD, BPRMF, WRMF [62,20,49,33]: matrix factorization

techniques.
– LDA [9]: recommendation based on Latent Dirichlet Allocation.
– PLSA [31]: recommendation based on Probabilistic Latent Semantic Anal-

ysis.
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– UIR-Item [69]: probabilistic user-item relevance model.

Since the goal of this paper is understanding the behavior of evaluation
metrics on the most typical and representative recommendation algorithms,
we believe the listed recommendation algorithms contain a varied selection of
techniques from different Collaborative Filtering families that use the same
information (the user-item rating matrix) and that proved to be competitive
baselines in classical domains, such as movie or e-commerce recommendation.

6 Study of arithmetic mean metrics

In this section, we study the metrics presented in Section 3. Given a metric,
in IR a score is computed for each topic whereas in recommendation a score
is computed for each user. The most common practice in both fields is to
aggregate the user scores into a single number by computing the arithmetic
mean. Therefore, in this section, we aggregate the scores for all users using
the arithmetic mean.

In our previous work [63], we found that metrics with deep cut-offs are
more robust to the sparsity and popularity biases and have better discrimina-
tive power than metrics evaluated at shallow cut-offs. Additionally, since the
ranking of systems produced by a metric when varying the cut-off from 5 to
100 does not change notably, we should prefer deeper cut-offs. Therefore, if
there is no strong reason to choose a shallow cut-off such as 5 or 10, calculating
the metric over a larger ranking (such as n = 100 recommendations) should
be preferred in offline experiments. Note that such deep cut-off provides bet-
ter properties even though many of the top n recommended items for each
user may (and generally will) lack relevance judgments. Because of this, in the
following experiments we use cut-offs of n = 100.

6.1 Correlation among metrics

We study the correlation among the system orderings according to different
ranking metrics. Figure 1 shows the Kendall’s τ correlation among metrics
on the MovieLens 1M, LibraryThing and BeerAdvocate datasets. On the Li-
braryThing collection, all correlations are above 0.9 which indicates that the
metrics produce almost identical rankings. On the other two datasets we ob-
serve stronger differences, with some correlations below 0.8.

We can see that MRR and ERR differ noticeably from the rest of the
metrics, especially on MovieLens 1M and LibraryThing. These two metrics
are correlated with each other, which is consistent with the fact that ERR is a
generalization of MRR based on a cascade user model [17]. Bpref also shows a
low correlation with the other metrics on the BeerAdvocate dataset. It is worth
noting that Bpref is poorly correlated with MAP on this collection, which is
a surprising result since Bpref was designed to correlate with MAP in IR [12].
We suspect that this may be produced by the highly skewed long-tailed rating
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distribution over items in this dataset. Instead, MAP is strongly correlated
with NDCG on the three datasets. Nevertheless, the rankings produced by
the rest of the metrics show a fairly strong correlation between them.

6.2 Discriminative power

Figure 2 shows our findings in terms of the discriminative power of the different
studied metrics to provide an answer to RQ1. We only plot the 20 largest p-
values (out of 210 pairs) to facilitate the visualization of the curves. We also
present the values of DP (which amounts to the area under the p-value curve)
in Table 3. Although the results vary across datasets, we can find some general
trends.

Overall, NDCG shows the highest discriminative power. NDCG is ranked
first on MovieLens and LibraryThing. Although it is fifth in the BeerAdvo-
cate dataset, the actual value of DP is quite small and very similar to more
discriminative metrics. Note that the sparser the dataset the less reliable the
discriminative power measurement is. In this case, NDCG is ranked lower on
BeerAdvocate, which is the sparsest dataset.

. Precision, Bpref and InfAP have an overall average behavior in terms of
discrimination, though Bpref suffers some discrimination loss in BeerAdvocate
– perhaps by the difficulty of this metric to cope with the high sparsity of this
dataset, as we discuss in Section 4.2.1. Finally, MAP, Recall, and MRR display
a somewhat erratic performance in terms of discriminative power depending
on the dataset.

To check whether these results are dependent of the random samples pro-
duced by the 5-fold cross-validation approach, we generated different folds and
computed the DP values. The results between different runs of 5-fold cross-
validation were very similar and we only found small differences that do not
contradict the findings presented in this section.

The fair discriminative power of Precision is somewhat better than what
was reported in prior work [11,54]. This can be partly explained by a dif-
ference in metric depth: we study P@100, while prior work often took a full
depth of 1,000, and a drop in the discriminative power of Precision beyond
depth 200 has been indeed reported by other authors (see e.g., [70]). Buckley
and Voorhees [11] did find a slightly lower discriminative power for P@100
compared to MAP. Even though they used a quite different methodological
approach (not involving statistical significance tests) than has been used in
later work [54,70], our findings are quite in line with theirs: MAP shows over-
all a slightly higher discriminative power than Precision. We see an exception
in BeerAdvocate, which we attribute to the extremely low judgment density
of this dataset, to which Precision seems to be more robust than most other
metrics – a property that we will further analyze in the next section. On the
other hand, the slightly lower discriminative power of Bpref compared to MAP
and nDCG is in line with prior studies on TREC data [56].
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P Recall F1 MAP NDCG MRR ERR Bpref InfAP

P

Recall

F1

MAP

NDCG

MRR

ERR

Bpref

InfAP

1.00 0.89 0.99 0.88 0.89 0.71 0.69 0.87 0.88

0.89 1.00 0.89 0.89 0.91 0.73 0.71 0.90 0.91

0.99 0.89 1.00 0.86 0.87 0.69 0.67 0.88 0.88

0.88 0.89 0.86 1.00 0.97 0.83 0.79 0.95 0.95

0.89 0.91 0.87 0.97 1.00 0.82 0.80 0.94 0.94

0.71 0.73 0.69 0.83 0.82 1.00 0.96 0.82 0.80

0.69 0.71 0.67 0.79 0.80 0.96 1.00 0.78 0.76

0.87 0.90 0.88 0.95 0.94 0.82 0.78 1.00 0.99

0.88 0.91 0.88 0.95 0.94 0.80 0.76 0.99 1.00

0.7 0.8 0.9 1.0

a: MovieLens 1M.

P Recall F1 MAP NDCG MRR ERR Bpref InfAP

P

Recall

F1

MAP

NDCG

MRR

ERR

Bpref

InfAP

1.00 0.97 0.99 0.99 0.98 0.94 0.94 0.97 0.97

0.97 1.00 0.98 0.96 0.97 0.91 0.91 1.00 1.00

0.99 0.98 1.00 0.98 0.99 0.93 0.93 0.98 0.98

0.99 0.96 0.98 1.00 0.99 0.95 0.95 0.96 0.96

0.98 0.97 0.99 0.99 1.00 0.94 0.94 0.97 0.97

0.94 0.91 0.93 0.95 0.94 1.00 1.00 0.91 0.91

0.94 0.91 0.93 0.95 0.94 1.00 1.00 0.91 0.91

0.97 1.00 0.98 0.96 0.97 0.91 0.91 1.00 1.00

0.97 1.00 0.98 0.96 0.97 0.91 0.91 1.00 1.00

0.7 0.8 0.9 1.0

b: LibraryThing.

P Recall F1 MAP NDCG MRR ERR Bpref InfAP

P

Recall

F1

MAP

NDCG

MRR

ERR

Bpref

InfAP

1.00 0.81 0.99 0.85 0.86 0.78 0.80 0.81 0.80

0.81 1.00 0.82 0.75 0.76 0.82 0.80 1.00 0.99

0.99 0.82 1.00 0.84 0.85 0.77 0.79 0.82 0.81

0.85 0.75 0.84 1.00 0.97 0.88 0.92 0.75 0.76

0.86 0.76 0.85 0.97 1.00 0.87 0.91 0.76 0.77

0.78 0.82 0.77 0.88 0.87 1.00 0.96 0.82 0.83

0.80 0.80 0.79 0.92 0.91 0.96 1.00 0.80 0.81

0.81 1.00 0.82 0.75 0.76 0.82 0.80 1.00 0.99

0.80 0.99 0.81 0.76 0.77 0.83 0.81 0.99 1.00

0.7 0.8 0.9 1.0

c: BeerAdvocate.

Fig. 1: Pairwise Kendall’s τ correlation of P, Recall, F1, MAP, NDCG, MRR,
ERR, Bpref and InfAP (at a cut-off of 100) on the MovieLens 1M, Library-
Thing and BeerAdvocate datasets. Blue indicates higher correlation values
whereas yellow corresponds to lower correlations.
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Table 3: DP values (lower is better) of P, Recall, F1, MAP, NDCG, MRR, ERR,
Bpref and InfAP (at a 100 cut-off) on the MovieLens 1M (ML), LibraryThing
(LT) and BeerAdvocate (BA) datasets.

Col. P Recall F1 MAP NDCG MRR ERR Bpref InfAP

ML 3.774 3.066 6.316 2.335 1.044 6.063 4.603 3.000 2.984
LT 2.783 4.059 1.879 1.889 0.001 0.753 0.411 2.115 0.493
BA 1.989 2.909 1.949 7.009 3.119 4.940 8.127 6.310 2.181

Total 8.546 10.034 10.144 11.233 4.164 11.756 13.141 11.425 5.658

The metrics that use graded relevance (NDCG and ERR) seem to dis-
criminate better among systems on collections with more “hard users”. We
call hard users (as in hard queries [68]) to those for whom it is difficult to
locate relevant items because of the small size of their test split profiles. On
datasets with a greater concentration of those users, the graded information
tips more the balance to the metrics exploiting the grades. In this situation,
graded metrics can produce more differentiate results. For instance, when two
systems a and b find one relevant item each on position 5 for the user, only
the graded metrics will produce different performance values when the item
found by system a was rated higher than the one found by b. This can be
observed to some degree on the LT dataset, where the concentration of test
users with short profiles is higher than in the other datasets. Moreover, LT
presents a grading pattern more prone to high values than the other collections
(31,48% of grades higher than 4 compared to 22.63% of ML and 26.10% of
BA), which also seems to contribute to ERR and NDCG producing low DP
values. This type of data also affects MRR but in a different way. In the case
of MRR, having very few relevant items on test split makes the position of the
first relevant item on the systems rankings more variable. In that way, MRR
produces more diverse metric values and so more discriminative results

6.3 Robustness to incompleteness

We now study the robustness of the metrics to different types of incomplete-
ness, to answer our second research question.

6.3.1 Rating incompleteness

Figure 3 presents the results of the experiments regarding robustness to rating
incompleteness. We can see that all the metrics are fairly robust to random
rating sparsity since the correlation is above 0.9 even when removing half
of the test set. Precision, F1, and NDCG show the best robustness trends
on the three datasets (Precision especially on BeerAdvocate). In contrast,
ERR, Bpref, InfAP, Recall, and MRR show poor robustness. Some of these
results are interesting because they present a different situation to what has
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Fig. 2: Analysis of the discriminative power of P, Recall, F1, MAP, NDCG,
MRR, ERR, Bpref and InfAP (at a 100 cut-off) on the MovieLens 1M, Li-
braryThing and BeerAdvocate datasets.
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been commonly observed in IR. Regarding Precision, we can relate its good
robustness to the fact that the amount of variation of this metric seems to be
constant even at extreme sparsity levels. This is further illustrated in Figure 4,
where we see that the absolute value of Precision decreases quite slowly and
linearly with the amount of removed ratings, whereas other metrics decrease
much faster, and in a sublinear fashion. A moderate room for loss of self-
correlation in Precision results from this, compared to other metrics.

On the other hand, Bpref and InfAP were conceived for dealing with incom-
plete judgments [12,72], but in top-N recommendation they would seem less
robust than other metrics. Bpref and InfAP were designed for approximating
MAP with incomplete judgments, while in recommendation MAP is not such
a golden standard. Still, it is surprising that MAP shows better robustness
than Bpref and InfAP on LibraryThing and BeerAdvocate.

We believe this is because Bpref and InfAP ignore unjudged documents,
and this is virtually equivalent to having all judged documents packed at the
top of the ranking, whereas MAP, for instance, is sensitive to the number of
unjudged documents in between relevant ones (as this determines the position
of relevants). The removal of highly ranked judgments produces larger relative
variations in these metrics than the removal at lower ranks. When judgments
(test ratings) are highly sparse (as is the case in common recommendation
data), judged items can get very far apart from each other in the ranking, and
the virtual rank for Bpref and InfAP can highly differ from the actual ranking
that all other metrics take into account – this may explain why Bpref and
InfAP diverge faster than MAP in Figure 3. Moreover, the removal of non-
relevant judgments affects these two metrics, but none of the others, which
results in an additional source of higher variance (and hence correlation loss)
for Bpref and InfAP compared to MAP and other metrics.

This can explain why our results differ from earlier experiments with pooled
TREC judgments [12,72]. In our experiments, the “100%” point in the x axis
for robustness (in Figure 3) represents a highly sparse situation already: the
average test rating coverage of the top 100 of the evaluated systems is 5%,
2.2% and 1.4% respectively in MovieLens, LibraryThing and BeerAdvocate.
In contrast, in the experiments on missing judgments with TREC data [12,
72] the starting point is 100% complete judgments. Hence the virtual (Bpref
and InfAP) and actual (MAP) ranking positions take much longer to get far
apart as judgments are removed, compared to our experiments, where they
are very far apart from the beginning. Furthermore, prior work often uses
smoothing options in the metrics or the setup [12,72], which may likely reduce
their variance (and hence increase their robustness) in low density conditions.
Bpref and InfAP display their best robustness in the MovieLens dataset, where
Bpref is comparable to MAP, and InfAP is slightly better. This is the denser
dataset of all three, which may account for a milder instability in these metrics.

On the other hand, utility-based metrics such as MRR and ERR are found
to rank among the least robust metrics (except in LibraryThing) in our exper-
iments. This is an interesting finding that complements previous studies [41]
where ERR was found to be quite stable but in a different dimension from
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what we are studying here: these metrics are stable regarding the cutoff depth
but, as we find here, they are not particularly robust to missing ratings in
recommendation.

6.3.2 Item incompleteness

We now study the robustness of the metrics regarding item incompleteness.
First, we remove random items and, second, we remove the most popular items
from the test set.

Random item incompleteness When removing random items from the test set,
we obtain similar results as when removing random ratings (compare Figure 5
against Figure 3). However, the drop in correlation is more pronounced when
removing whole items instead of individual ratings from the test set.

Popular item incompleteness We report the results of the experiments of ro-
bustness to the popularity bias (i.e., removing the most popular items) in
Figure 6. On the BeerAdvocate dataset, the correlations quickly drop after
removing a small percentage of the most popular items even reaching nega-
tive correlation values. This phenomenon is likely caused by the highly skewed
long-tailed ratings distribution in this dataset. Therefore, it is difficult to draw
conclusions from this collection. Overall, Precision is the best metric in terms
of robustness to popularity whereas MRR and ERR are the worst. F1 and
NDCG also present moderately good results. The robustness to the popular-
ity bias of the rest of the metrics depends heavily on the dataset and it is
difficult to draw conclusions about them.

6.3.3 User incompleteness

The last set of experiments regarding robustness to incompleteness consist in
removing users from the test set. As described in Section 4.2, on the one hand,
we remove random users to test how the number of users in the test set affects
the robustness of the metrics. On the other hand, we remove users with the
largest profiles. In this way, we can study how metrics assess the performance
of algorithms for users who are difficult to recommend to.

Random user incompleteness Figure 7 shows the robustness of the metrics to
random user incompleteness. We can observe similar results to those obtained
when removing random ratings (Figure 3) and random items (Figure 5), but
with a much smoother decrease in correlation. Overall, the studied metrics are
very robust to test sets with fewer users.
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Fig. 3: Kendall’s τ self-correlation of P, Recall, F1, MAP, NDCG, MRR, ERR,
Bpref and InfAP (at a 100 cut-off) when removing ratings uniformly at ran-
dom from the test set on the MovieLens 1M, LibraryThing and BeerAdvocate
collections.
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Fig. 4: Averaged absolute values of P, Recall, F1, MAP, NDCG, MRR, ERR,
Bpref and InfAP (at a 100 cut-off) when removing ratings uniformly at ran-
dom from the test set on the MovieLens 1M, LibraryThing and BeerAdvocate
collections.
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Fig. 5: Kendall’s τ self-correlation of P, Recall, F1, MAP, NDCG, MRR, ERR,
Bpref and InfAP (at a cut-off of 100) when removing items uniformly at ran-
dom from the test set on the MovieLens 1M, LibraryThing and BeerAdvocate
collections.



28 Valcarce, Belloǵın, Parapar and Castells

100 95 90 85 80

% least popular items

0.0

0.2

0.4

0.6

0.8

1.0

K
en

d
al

l’
s
τ

P

Recall

F1

MAP

NDCG

MRR

ERR

Bpref

InfAP

a: MovieLens 1M.

100 95 90 85 80

% least popular items

0.0

0.2

0.4

0.6

0.8

1.0

K
en

d
al

l’
s
τ

P

Recall

F1

MAP

NDCG

MRR

ERR

Bpref

InfAP

b: LibraryThing.

100 95 90 85 80

% least popular items

0.0

0.2

0.4

0.6

0.8

1.0

K
en

d
al

l’
s
τ

P

Recall

F1

MAP

NDCG

MRR

ERR

Bpref

InfAP

c: BeerAdvocate.

Fig. 6: Kendall’s τ self-correlation of P, Recall, F1, MAP, NDCG, MRR, ERR,
Bpref and InfAP (at a cut-off of 100) when removing the most popular items
from the test set on the MovieLens 1M, LibraryThing and BeerAdvocate col-
lections.
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Fig. 7: Kendall’s τ self-correlation of P, Recall, F1, MAP, NDCG, MRR, ERR,
Bpref and InfAP (at a cut-off of 100) when removing random users from the
test set on the MovieLens 1M, LibraryThing and BeerAdvocate collections.
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Large user incompleteness We now study the robustness of the metrics to the
removal of users with large profiles. We present the results of these experi-
ments in Figure 8. In this scenario, MRR, ERR and, to a lesser degree, InfAP
and Bpref show the best robustness. In contrast, metrics such as Precision,
F1 or NDCG, that showed good results in the previous experiments, present
now lower robustness. Therefore, these metrics are more sensitive to the be-
havior of users with large profiles. In the next section, we study an alternative
formulation of these metrics that is more sensitive to users with small profiles.

We think that the reason for MRR (and ERR as a highly correlated metric)
to gain robustness with this missing rating distribution – compared to the
ones analyzed in the previous sections – is that a large user profile (providing
many relevance judgments) leaves less room for differences in the position of
the top ranked relevant item, compared to sparser profiles. The comparison
between two systems in MRR is therefore played in the small user profiles. As
a consequence, removing large user profiles changes fewer system comparisons,
and MRR catches up on stability compared to other metrics that are either
sensitive to the position of all relevant documents (not just the top one),
or are insensitive to all positions (e.g., Precision). This effect is less clear in
LibraryThing, where the user profile size distribution is “flatter” (as evidenced
by a lower User Gini index in Table 2).

Based on these results, since we cannot fully answer RQ2, we propose to
change how metrics are averaged and analyze the resulting behavior in the
next section.

7 Study of geometric mean metrics

In the previous section, we studied the metrics presented in Section 3 using the
arithmetic mean to aggregate the metric values for all the users in the dataset.
We have seen that some metrics (especially Precision, F1, and NDCG) are
more robust than others in most of the scenarios except for the case when we
remove the users with the largest profiles. In that case, most metrics fall short
in robustness. We now re-examine this property when the metric values are
aggregated over users using the geometric mean.

The geometric mean has been used in IR to average the values of a metric
for different topics; for example, in the TREC Robust track [68], GMAP (the
geometric version of MAP [51]) is used as the reference metric. The problem of
the arithmetic mean is that differences in the scores for well-performing (i.e.,
easy) topics overshadow differences in the scores for difficult topics. In contrast,
the geometric mean emphasizes the scores close to zero while it minimizes the
contribution of larger scores. An intuitive definition of the geometric mean
is that it is equivalent to calculating the arithmetic mean of the logs of the
metric scores (thus dampening the importance of higher scores).

We, therefore, revisit the robustness (and for completeness, all of the) anal-
ysis of the previous section under the light of the nuances that may be un-
covered by the geometric mean. Note that the discriminative power of the
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Fig. 8: Kendall’s τ self-correlation of P, Recall, F1, MAP, NDCG, MRR, ERR,
Bpref and InfAP (at a cut-off of 100) using the test set when removing the
users with the largest profiles on the MovieLens 1M, LibraryThing and Beer-
Advocate collections.
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metrics is the same since the averaging function does not affect paired differ-
ence tests. This is because these statistical tests look at the individual values
of the metrics in a user basis and disregard the aggregated value.

7.1 Correlation among metrics

Figure 9 shows the pairwise correlation between the ranking metrics when
they are averaged using the geometric mean. We observe that all the (geomet-
ric) metrics are strongly correlated between each other except for GF1 and
GMRR, which tend to obtain low values with respect to any other metric ex-
cept with each other. For example, in LibraryThing, GF1 even shows negative
correlations with respect to all metrics but GMRR. This result contrasts with
what we observed in Section 6.1 with the arithmetic mean, where F1 strongly
correlated with all metrics except MRR (and ERR).

We hypothesize that this behavior is related to the reciprocal components
in these metrics. When applying the geometric mean to such reciprocal com-
ponents the obtained results show very different trends than for the rest of the
metrics. In fact, we computed the pairwise correlation between the arithmetic-
mean and geometric-mean version of each metric. Whereas most of the metrics
show a strong correlation between their arithmetic and geometric variations
(for instance, MAP and GMAP have a correlation of 0.92 in MovieLens) this is
not true for GF1 and GMRR (e.g., the correlation between F1 and GF1 is only
0.42 in MovieLens). These results evidence a drastic change in the behavior of
these metrics when using the geometric mean.

7.2 Robustness to incompleteness

We repeat the experiments of robustness to incompleteness with the metrics
averaged with the geometric mean. We study the robustness to incomplete
ratings (Figure 10), to missing items at random (Figure 11), to missing popular
items (Figure 12), to users missing at random (Figure 13), and to missing
largest users (Figure 14).

In all the scenarios, GF1 and GMRR are now the least robust metrics.
Overall, we can see similar trends in missing ratings, items missing at ran-
dom and users missing at random. When removing the most popular items,
the correlations quickly drop. Geometric Precision and GNDCG exhibit good
robustness in all those cases. Additionally, we observe that GP and GNDCG
are more robust than P and NDCG when removing the users with large user
profiles. Therefore, averaging these metrics with the geometric mean can be
useful when we aim to be robust to this phenomenon.

Therefore, as an answer to RQ2, we can summarize our results as follows:
standard Precision and NDCG metrics (averaged by the arithmetic mean) ob-
tain consistently good robustness values in all the analyzed scenarios, except
when users are removed according to their profile size, where their geometric
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Fig. 9: Pairwise Kendall’s τ correlation between GP, GRecall, GF1, GMAP,
GNDCG, GMRR, GERR, GBpref, and GInfAP (at a cut-off of 100) on
the MovieLens 1M, LibraryThing and BeerAdvocate datasets. Blue indicates
higher correlation values whereas yellow corresponds to lower correlations.
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Fig. 10: Kendall’s τ self-correlation of GP, GRecall, GF1, GMAP, GNDCG,
GMRR, GERR, GBpref and GInfAP (at a cut-off of 100) when removing rat-
ings uniformly at random from the test set on the MovieLens 1M, LibraryThing
and BeerAdvocate collections.
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Fig. 11: Kendall’s τ self-correlation of GP, GRecall, GF1, GMAP, GNDCG,
GMRR, GERR, GBpref and GInfAP (at a cut-off of 100) when removing items
uniformly at random from the test set on the MovieLens 1M, LibraryThing
and BeerAdvocate collections.
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Fig. 12: Kendall’s τ self-correlation of GP, GRecall, GF1, GMAP, GNDCG,
GMRR, GERR, GBpref and GInfAP (at a cut-off of 100) when removing the
most popular items from the test set on the MovieLens 1M, LibraryThing and
BeerAdvocate collections.
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Fig. 13: Kendall’s τ self-correlation of GP, GRecall, GF1, GMAP, GNDCG,
GMRR, GERR, GBpref and GInfAP (at a cut-off of 100) when removing users
uniformly at random from the test set on the MovieLens 1M, LibraryThing
and BeerAdvocate collections.
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Fig. 14: Kendall’s τ self-correlation of GP, GRecall, GF1, GMAP, GNDCG,
GMRR, GERR, GBpref and GInfAP (at a cut-off of 100) using the test set
when removing the users with the largest profiles on the MovieLens 1M, Li-
braryThing and BeerAdvocate collections.
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counterparts show very good robustness. On the other hand, the least robust
metrics tend to be those that in some way “discard” some amount of informa-
tion, namely MRR (which does not care about relevant documents ranked after
the first one) and ERR (which is smoother than MRR aggressively top-heavy).
It is interesting to observe that, except for robustness to large user profiles,
the results tend to be quite consistent in all the tested scenarios, regarding
robustness with respect to either ratings, or items, or users.

8 Conclusions

We have studied the properties of common IR metrics when applied to the of-
fline evaluation of recommender systems, under the perspective of recommen-
dation as a ranking task. Our research focused, in particular, on discriminative
power and the robustness against incomplete relevance knowledge, as desirable
properties of evaluation metrics that have been the object of attention in the
IR field, mainly in the context of search tasks [41,54]. The dimensions of our
comparative analysis include a set of common and representative metrics, and
the metric averaging function over users. Along with providing insights into
the properties and behavior of different metrics and their specifics in the rec-
ommendation task, our findings have practical implications in the evaluation
of recommender systems using ranking-oriented metrics.

Our analysis suggests that Precision, a simple binary metric, is very ro-
bust to sparsity and popularity biases. Normalized Discounted Cumulative
Gain also displays high robustness to the sparsity bias and moderate robust-
ness to the popularity bias. In terms of discriminative power, NDCG returns
the most consistent results across the tested datasets, while Precision ranks as
a mid-packer but reasonably stable metric in this aspect. On the other end,
MRR and ERR rank among the lowest in our analysis of robustness, per-
haps as a consequence of their extreme top-heaviness. We found, on the other
hand, that Bpref and InfAP – which were proposed to address incompleteness
in IR – would seem to fail their purpose (robustness to missing ratings) when
evaluating recommendations over common publicly available datasets: they
can happen to be even more inconsistent (e.g., on the sparse BeerAdvocate
dataset) than the metric (MAP) they are intended to improve. Finally, geo-
metric means are a convenient way to identify systems that are effective with
all users, not only the easy ones with large profiles. These results have notable
practical implications in the choice of the appropriate ranking metrics since
we have compared the goodness of each metric with respect to robustness to
incompleteness and discriminative power.

Recommender system evaluation is still an open area and many directions
lie ahead to continue our research. Metrics beyond ranking accuracy can be
studied: for instance, diversity and novelty [16] have been recognized as an
important dimension in both information retrieval and recommender systems
[32,74], and it would be interesting to analyze which diversity and novelty
metrics provide better robustness or discriminative power. On the other hand,
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recommender system experiments have a considerable number of design op-
tions that can be varied [5,6]. In this paper, we have taken specific settings,
such as the AllItems approach and random splitting. It would be interesting
to explore whether the outcomes of our analysis might change in any way for
different settings, such as temporal rating splits, or different target item selec-
tion approaches [14,5]. This work also opens avenues of future investigation
on the theoretical properties on the studied metrics that justify the observed
behavior.
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44 Valcarce, Belloǵın, Parapar and Castells
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