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Abstract

Query-by-example spoken document retrieval (QbESDR) aims at finding those

documents in a set that include a given spoken query. Current approaches are,

in general, not valid for real-world applications, since they are mostly focused on

being effective (i.e. reliably detecting in which documents the query is present)

but practical implementations must also be efficient (i.e. the search must be

performed in a limited time) in order to allow for a satisfactory user experience.

In addition, systems usually search for exact matches of the query, which limits

the number of relevant documents retrieved by the search. This paper proposes

a representation of the documents and queries for QbESDR based on combining

different-sized phone n-grams obtained from automatic transcriptions, namely

phone multigram representation. Since phone transcriptions usually have errors,

several hypotheses for the query transcriptions are combined in order to ease the

impact of these errors. The proposed system stores the document in inverted

indices, which leads to fast and efficient search. Different combinations of the

phone multigram strategy with a state-of-art system based on pattern matching

using dynamic time warping (DTW) are proposed: one consists in a two-stage

system that intends to be as effective but more efficient than a DTW-based sys-

tem, while the other aims at improving the performance achieved by these two
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systems by combining their output scores. Experiments performed on the Me-

diaEval 2014 Query-by-Example Search on Speech (QUESST 2014) evaluation

framework suggest that the phone multigram representation for QbESDR is a

successful approach, and the assessed combinations with a DTW-based strategy

lead to more efficient and effective QbESDR systems. In addition, the phone

multigram approach succeeded in increasing the detection of non-exact matches

of the queries.

Keywords: Query-by-example spoken document retrieval, Phone decoding,

Phone n-grams, Phone posteriorgrams, Dynamic time warping

1. Introduction

The interaction with spoken contents has increased dramatically in the last

few years due to the proliferation of audiovisual documents that are part of our

daily life. This new paradigm of communication demands strategies for search-

ing for contents of interest, creating the need for tools that allow the retrieval of5

spoken documents, task known as spoken document retrieval (SDR) [1]. SDR

can be carried out using either written or spoken queries. This latter approach,

known as query-by-example SDR (QbESDR), allows the communication with

devices in a natural manner while easing the access to such technologies to

visually impaired users.10

The approaches for QbESDR found in the literature can be divided into

two main groups: those based on automatic speech recognition (ASR), which

imply transcribing both documents and queries into words or sub-words [2, 3,

4, 5, 6, 7]; and those that make use of pattern matching techniques, usually

by finding alignments of the queries in the documents using the dynamic time15

warping (DTW) algorithm [8] or any of its variants [9, 10, 11, 12]. The main

limitation of ASR-based strategies is the need for ASR resources in the language

of interest, while pattern matching techniques are usually inefficient in terms

of computational cost [11]. In addition, both strategies for QbESDR share an

important limitation: they are intended to search for exact matches of the query.20
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This constraint does not recreate a real-world scenario, since a user might want

to search for the exact query but also for lexical variations of it. In addition,

when looking for queries with multiple terms, the documents that include the

terms in a different order may be relevant for the search as well (for example,

“president of Brazil” versus “Brazilian president”).25

Research in the field of QbESDR has been recently boosted by the orga-

nization of competitive evaluations such as Spoken Web Search [15, 16, 17]

and Query by Example Search on Speech task [18, 19] at MediaEval; Spoken-

Query&Doc Task at NTCIR [20, 21]; or query-by-example spoken term detec-

tion evaluation at Albayźın campaigns [22, 23, 24]. The zero resource speech30

challenge [13, 14] is devoted to unsupervised discovery of subword and word

units from raw speech, which has QbESTD as one of its applications. The liter-

ature related to these evaluations shows a trend that consists in fusing the scores

of the detections of different systems [25, 26, 27, 28, 29], which boosts the per-

formance of the individual systems at the cost of increasing the computational35

demands of the search procedure. When considering a practical implementation

for real-world scenarios, QbESDR approaches must be effective (i.e. they must

be able to reliably detect in which documents the query is present) but also effi-

cient (i.e. the search must be performed in a limited time) in order to allow for

a satisfactory user experience. Hence, massive fusions can be effective but not40

efficient in practical terms, so new paradigms for QbESDR must be explored.

Two main contributions are presented in this paper, which aim at obtaining

effective and efficient systems for real-world QbESDR applications:

• A novel approach for QbESDR based on phone n-gram representation,

namely phone multigram representation, is proposed. Given a set of doc-45

uments, their transcriptions are stored in inverted indices using different

sizes of phone n-grams, i.e. the documents are stored tokenized in 1-

grams, 2-grams and so forth. Afterwards, for each query, its equivalent

tokenization in phone n-grams of different sizes is obtained in order to look

for each term in the appropriate index, producing a score that indicates50
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how likely the given set of phone multigrams is present in each document.

Additionally, in order to reduce the impact of transcription errors, several

transcription hypotheses per query are obtained and searched, which leads

to more reliable scores. This approach has several advantages:

– A small amount of time is necessary for indexing and searching thanks55

to the efficiency of the inverted indexing and searching procedures.

– Using phone multigrams for speech representation makes it possible

to avoid taking into account the position where the match of each

phone n-gram was found, since the smaller likelihood of matching

long n-grams compensates that of matching short n-grams.60

– Since the order of the matching n-grams is not considered, the prob-

ability of finding non-exact matches of the queries increases.

– This strategy can be used in a cross-lingual manner, since the lan-

guage of the phone decoder used to obtain phone transcriptions does

not necessarily have to match the language spoken in the documents65

and queries.

This approach is inspired by [30, 31], where a similar strategy was used for

text retrieval in noisy documents obtained by optical character recognition

(OCR). The application scenario is very similar, since both OCR and

phone transcriptions have errors that do not allow the search for exact70

matches of a query.

• Two different combinations of the phone multigram approach with a strat-

egy based on DTW are presented:

– The first combination consists in a two-stage system: first, the phone

multigram system is used to look for candidate matches of the queries75

in the documents; then, these matches are re-scored using a DTW-

based strategy in order to decide whether to keep them or discard

them. This strategy increases the efficiency of the search process,
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since the number of query-document pairs that have to be evalu-

ated with DTW (which is significantly more costly than the phone80

multigram strategy) is reduced to a great extent.

– A second combination is proposed, which consists in fusing the out-

put scores of the phone multigram and DTW-based systems. Given

that the phone multigram approach is computationally efficient, run-

ning these two systems hardly affects the efficiency of the search.85

Moreover, this combination leads to a relevant improvement in terms

of effectiveness as a result of combining different pieces of evidence

produced by heterogeneous systems.

The rest of this paper is organized as follows: Section 2 describes the related

work; Section 3 presents the phone multigram approach for QbESDR; Section 490

overviews the DTW-based system used in this work; Section 5 presents two tech-

niques for combining the two aforementioned approaches; Section 6 describes

the experimental framework; experimental results and a discussion are presented

in Section 7; Section 8 reviews other results reported in the literature for the

experimental framework used in Section 7; lastly, conclusions and future work95

are summarized in Section 9.

2. Related work

QbESDR techniques based on ASR usually inherit the methodology em-

ployed in SDR using written queries [32, 33, 34]. Nevertheless, only documents

must be transcribed when doing SDR with written queries but, in the case of100

QbESDR, both queries and documents must be converted into a textual repre-

sentation [4], which increases the noise on the data to be processed since errors

can be present in both documents and queries. Indeed, as suggested by the

results shown in [23], errors on query transcriptions lead to degraded search

performance when comparing spoken and written queries. In addition, the per-105

formance of such approaches is reasonable in controlled scenarios where the word

error rate is reduced, and it relies on the availability of an ASR system for the
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language of interest. In the absence of an ASR system for a given language or for

out-of-vocabulary SDR, the employment of sub-word transcriptions is common,

as well as the use of cross-lingual approaches, i.e. using an ASR system in a110

different language to achieve a transcription of the documents and queries into

phones or sub-words such as syllables [2, 3] or n-grams [35, 5, 6, 7]. The use of

n-gram representation is very common in tasks dealing with noisy contents such

as text retrieval from OCR data [30, 31], cross-language information retrieval

from misspelled queries [36] or language identification on noisy texts [37]; and115

also in other tasks such as data extraction from web pages [38], author profiling

[39] or plagiarism detection [40]. To conclude the overview of approaches based

on ASR strategies, the recent popularity of ASR systems featuring multilingual

representations for ASR and keyword search on low-resource languages must be

highlighted [41, 42].120

QbESDR approaches based on pattern matching techniques consist in rep-

resenting the spoken documents and queries using frame-level vectors and em-

ploying this representation to search for an alignment between query-document

pairs by means of the DTW algorithm [8] or any of its variants [9, 10, 11, 12].

This technique allows the use of cross-lingual strategies with acceptable results125

using low-resource approaches. In such techniques, speech representation usu-

ally relies on Gaussian posteriorgrams [43], where speech frames are represented

by the posterior probabilities of each Gaussian in a Gaussian mixture model

[10, 44, 26, 45]; or on phone posteriorgrams, which consist in time vs. class ma-

trices representing the posterior probability of each phone class for each instant130

of time, and they can be obtained using phone decoders that are not necessarily

developed in a given target language [46, 47, 48, 29, 49]. Zero-resource QbESDR

approaches have also become very popular due to their reduced amount of re-

quired resources; in this scenario, documents and queries are usually represented

by features straightforwardly extracted from the waveforms such as Mel fre-135

quency cepstral coefficients (MFCCs) [50, 51, 4], perceptual linear prediction

coefficients [52], short-time frequency domain linear prediction features [53], or

large sets of features followed by feature selection [54]. The main disadvantage
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of all these strategies based on pattern matching is the time required for search-

ing, although some efficient variants of DTW have been proposed in order to140

cope with this issue [11]. In addition, DTW aims at searching for exact matches

of the query, which complicates the search of lexical variations of the queries or

word reorderings in queries with multiple terms. Some approaches have been

presented to overcome this issue, such as [55, 28, 56]. In these works, strategies

consisting in modifying some constraints of the DTW algorithm were proposed,145

such as considering cuts at the beginning and/or the end of the query, allowing

a horizontal jump to cope with filler content between the different words of the

query, or looking for the last part of the query before the initial part to deal

with word reorderings. The results presented in [28, 55] show that combining

these variations of DTW yields good QbESDR results, but this is achieved at150

the expense of increasing the search time to a great extent. In addition, as re-

ported in [56], the top-performing strategies are classic DTW and the approach

that allows a cut at the end of a query, while the specific approaches for word

reordering did not yield good individual results.

There are few works in the literature focusing on increasing the efficiency of155

QbESDR strategies. In [49], a system based on bag of acoustic words (BoAW)

representation [57] was used to obtain potential candidate matches of the queries

within the documents. Afterwards, those candidates were validated using a

DTW-based approach, leading to variable results dependent on the decision

threshold used for candidate selection.160

3. Proposed method: phone multigram representation for QbESDR

The search on speech approach presented in this paper consists in repre-

senting the documents by means of phone multigrams, i.e. a combination of

different-sized phone n-grams, and their subsequent storage and search in in-

verted indices. The proposed representation accounts for transcription errors165

and allows the fast search of queries, even with lexical variations and word re-

orderings, in large collections of spoken documents. This approach consists of
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two stages: indexing and search. The first step encompasses the process of

transcribing the documents and creating a searchable index. The second stage

consists in obtaining transcriptions of the queries, searching for them in the170

index and generating scores that indicate how likely each query was found in

each document. The rest of this section presents the proposed system, preceded

by a brief description of the speech transcription strategy, a necessary step for

obtaining phone multigrams, as well as an overview of the implementation of

QbESDR using inverted indices.175

3.1. Speech transcription

The transcription of spoken queries and documents can be done by means

of phone decoding of the audio signals. Phone decoding consists in converting

a speech utterance into a textual representation where each term represents a

phone (i.e. a sound). This procedure is usually carried out by means of an ASR180

system whose language model is a phone loop, i.e. there are no phonotactic

constraints, all the transitions from one phone to any of the others are possible

[58]. Hence, given a speech utterance and a phone decoder with nU phone units

U = {u1, . . . , unU
}, the phone decoder generates a phone lattice, i.e. a directed

acyclic graph with a single start point and edges labeled with a phone hypothesis185

and a likelihood value [59]. Phone lattices allow the extraction of the 1-best

transcription (i.e. the most likely phone transcription of the speech utterance)

but also other less likely transcriptions, namely n-best transcriptions. Since

the error rates obtained with phone decoding can be very high, especially in

unconstrained data, using only the 1-best transcription might not be accurate190

enough for performing QbESDR. Therefore, it is possible to extract several

hypotheses for the phone transcription of a speech utterance and use them

together in order to mitigate the transcription errors. Hence, it is possible to

perform QbESDR on documents represented by lattices or n-best transcriptions

(n ≥ 1). In practical terms, lattices include much more information than n-195

best transcriptions, but using them to represent the documents is considerably

slower than using n-best transcriptions, since the number of possible paths is
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dramatically reduced in the latter alternative [5].

3.2. QbESDR using inverted indices

Before describing the approaches presented in this paper, an introduction200

to the indexing and search procedure must be done. Inverted indices are com-

monly used for text information retrieval, since this data structure allows fast

an efficient search while achieving an optimal use of storage space [60]. Given

a set of nΩ documents Ω = {D1, . . . , DnΩ
} to be indexed, each document Di

is represented by a set of nDi terms Di = {t1, . . . , tnDi
}. The inverted index205

stores, for each term, all the documents that include that term. This is faster

than storing each document along with its corresponding terms, since searching

a term would imply going through all the documents looking for the term of

interest. Depending on the tokenization procedure and on the specific needs of

the application, the considered terms can be words, n-grams or graphemes, to210

cite some examples. In the context of QbESDR, since speech utterances are

converted to sequences of phones, terms can be either phones or phone n-grams

created by joining adjacent phones into a single term (it must be noted that

phones are equivalent to phone 1-grams).

Once indexing is done, a spoken query can be searched within the inverted215

index formulating a search query. Formally, given a spoken query Q whose

transcription is Q = {u1, . . . , unQ
}, where ui represents a phone unit, it can

be transformed into a search query Qs = {t1, . . . , tns
Q
}, where ti represents a

query term. Note that the number of terms in the search query nsQ depends

on the tokenization used: nsQ = nQ when dealing with phone 1-grams (namely220

phones), but this is not true when dealing with phone n-grams when n 6= 1. In

any case, the tokenization used to formulate the query must comprise n-gram

sizes that are present in the index.

In QbESDR, a score must be assigned to each query-document pair in order

to indicate how likely the query matches each document, since it must be decided225

whether the query is present in the document or not. This is similar to the

information retrieval scenario, where a relevance score must be assigned to the
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retrieved documents. Hence, it is straightforward to borrow scoring models

from the information retrieval literature, such as the widely used vector space

model (VSM) [61]. This model aims at representing the documents and queries230

by means of vectors, which can be straightforwardly compared by computing

their dot product. These vectors are usually obtained using the tf-idf weighting

scheme, which considers two types of weights:

• Term frequency tf(t,D) of term t in document D. This measure assigns

a weight to each term in a document that depends on the number of235

occurrences of the term in the document [62]. The motivation behind this

measure is that when a term appears many times in a document, this

document is probably relevant for a search of that term.

• Inverse document frequency idf(t) of term t. This measure gives more

weight to those terms that are least frequent in the set of documents,240

since they are considered to be more relevant [62].

In this work, a scoring function based on the tf · idf VSM implementation

of Lucene1 was used. The score of a query Q and a document D is computed

as:

score(Q,D) = coord(Q,D)
V(Q) ·V(D)

|V(D)|
(1)

where V(D) and V(Q) are the vectors of the document and the query, re-

spectively; |V(D)| is the length-normalization factor for document D; and

coord(Q,D) is the coordination factor, which measures the number of terms

in query Q that are present in document D, since the document will be consid-245

ered to be more relevant to the search if many of the query terms are found in

the document.

In practical terms, Eq. (1) is implemented in Lucene as:

score(Q,D) =
coord(Q,D)

nD

∑
t∈Q

(
tf(t,D)idf(t)2

)
(2)

1http://lucene.apache.org/
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where nD is the aforementioned document length-normalization factor, which is

equal to the number of terms in document D. In addition, tf(t,D) is computed

as

tf(t,D) =
√
frequency(t,D) (3)

where frequency(t,D) is the number of occurrences of t in document D; idf(t)

is computed as

idf(t) = 1 + log

(
nΩ + 1

docFreq(t) + 1

)
(4)

where nΩ is the total number of indexed documents and docFreq(t) is the

number of documents with occurrences of term t; and coord(Q,D) is computed

as

coord(Q,D) =
occurrences(Qs, D)

nsQ
(5)

where occurrences(Qs, D) is the number of terms of the search query Qs that

are present in document D, and nsQ is the total number of terms of the search

query.250

3.3. Phone multigram representation for QbESDR

In this paper, an approach inspired by previous work in text retrieval on

noisy documents obtained by OCR is proposed [30, 31]. This strategy con-

sists in, instead of using a single tokenizer for spoken document representation,

combining different tokenizers with several objectives: (1) ease the impact of255

transcription errors on the results: (2) allow fast search within inverted indices

without having to take positional information into account; (3) improve the

non-exact matching of queries, which is an unsolved problem using the most

common strategies for QbESDR [55, 28, 56, 5, 6].

Given a set of documents, first their 1-best transcriptions are obtained using260

a phone decoder and then these transcriptions are subsequently indexed. Instead

of creating a single index for phone n-grams (for a fixed value of n), the proposed

strategy consists in storing several n-gram indices for different values of n ∈

{minngram, . . . ,maxngram}. Figure 1 presents an example of the tokenization

and indexing procedure: given a spoken document to index, first its phone265
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Figure 1: Example of the indexing approach proposed in this paper: the 1-best phone tran-

scription of a spoken document is obtained and then it is tokenized and indexed. It must be

noted that, in this example, the tokenizer is composed of five phone n-gram tokenizers with

n = 1, . . . , 5; this leads to five indices, one for each n-gram tokenizer.

transcription is obtained using a decoder, and then it is tokenized and indexed

using different n-gram sizes from minngram = 1 to maxngram = 5.

Since the documents are stored using different tokenizations, the search

queries must be constructed in an equivalent manner. Then, for each spoken

query, its 1-best transcription is obtained and tokenized in the same way as in

the indexing procedure. Then, a search query is created such that it implies

searching for each n-gram found in the query in its corresponding index (i.e.

1-grams are searched within the 1-gram index and so forth). This strategy will

produce a score for each index following Eq. (2), but all these scores must be
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combined in order to obtain a single one per query. This is done as follows:

score(Q,D) =

maxngram∑
i=minngram

score(Q,D, i) (6)

where score(Q,D, i) is the score corresponding to the i-gram index computed

following Eq. (2).

Provided that the transcriptions of queries and documents usually have a

high phone error rate, a strategy was designed to reduce the impact of these

errors, which consists in extracting multiple transcription hypotheses for each

spoken query and combine the search results of all of them. Given the n-

best transcriptions of a query, the first nhyp hypotheses {Q1, . . . , Qnhyp} are

tokenized and searched within the index, and their scores are combined into a

single score per document as follows:

score(Q,D) = max
i∈1,...,nhyp

score(Qi, D) (7)

whereQi is the ith transcription of queryQ. This strategy for query combination270

is more suitable than averaging the scores of all the query hypotheses since it is

equivalent to searching the query transcription hypothesis that yields the best

(highest) score. This procedure is depicted in Figure 2.

As mentioned above, score(Q,D) is used to decide whether query Q is

present in document D or not, so it is necessary to establish a decision threshold

that is valid for all documents and queries. Eq. (2) includes a document length-

normalization factor that aims at making the scores of different documents

comparable. A common technique for query normalization in QbESDR is ap-

plied in this system in order to make the scores of different queries comparable,

since it is known that the scores corresponding to different queries usually follow

different distributions [63]. Specifically, the z-norm [63] was applied, which is

widely used in this scenario: given a set of nm documents DQ = {D1, . . . , Dnm}

that matched query Q, their scores are normalized as follows:

scorez−norm(Q,Di) =
score(Q,Di)− µQ

σQ
(8)
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Figure 2: Block diagram of the indexing and search strategy. The figure shows in detail how

the scores obtained from the different transcription hypotheses are combined into a single

score per query/document pair, as described in Eq. (7). As in Figure 1, the tokenizer is

composed of several phone n-gram tokenizers.
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where

µQ =
1

nm

nm∑
i=1

score(Q,Di) (9)

is the mean of the scores of DQ and

σQ =

√√√√ 1

nm − 1

nm∑
i=1

|score(Q,Di)− µQ|2 (10)

is the standard deviation of the scores of DQ. In this way, all the scores have

a distribution with zero mean and unit variance, which makes it possible to275

establish the same decision threshold regardless of the query.

4. QbESDR using dynamic time warping

DTW is widely used in pattern matching-based approaches for QbESDR.

This type of systems usually consist of three stages: feature extraction, search

and score normalization. First, frame-level features are extracted from the wave-280

forms of both queries and documents. Then, in the search stage, each query

is matched against every spoken document in order to obtain scores that indi-

cate how likely the query was found in the document. Lastly, these scores are

normalized in order to make them comparable among different documents and

queries. The rest of this section describes the system used in this work in detail.285

4.1. Feature extraction

As mentioned in Section 2, different features are used in DTW-based systems

for search on speech. Among all of them, phone posteriorgrams are widely

used for QbESDR due to their acceptable results in cross-lingual scenarios: it

is possible to extract phone posteriorgrams of spoken documents in a given290

language using a phone decoder trained for a completely different language and

still obtain a valid representation of the spoken contents [64, 65, 66, 67, 48, 29].

Hence, in this work, phone posteriorgrams were used for query and document

representation. Given a spoken document and a phone decoder with U phone

units, the posterior probability of each phone unit is computed for each time295
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frame, leading to a set of vectors of dimension U that represents the a posteriori

probability of each phone unit at every instant of time. After obtaining the

posteriors, a Gaussian softening is applied in order to have Gaussian distributed

probabilities [68].

4.2. Search algorithm300

Let Q = {q1, . . . ,qnQ
} and D = {d1, . . . ,dnD

} be the phone posteriorgrams

of a query and a document with nQ and nD frames, where qi and dj are feature

vectors of dimension U and nQ � nD. DTW aims at finding the best alignment

path between Q and D. There are several variants of DTW that can be used for

search on speech [8, 9, 10, 11, 12]. In this work, subsequence DTW (S-DTW)305

was used [9], since it allows alignments between a short sequence (the query)

and a longer sequence (the document); in other words, the query does not have

to match the whole document but only a part of it.

First, a cost matrix M ∈ <nQ×nD is defined, where the rows and columns

correspond to the frames of the query and the document, respectively. Each310

element Mi,j of the cost matrix represents the cost corresponding to frame qi

in the query and frame dj in the document, which is defined as

Mi,j =


c(qi,dj) if i = 1

c(qi,dj) +Mi−1,0 if i > 1, j = 1

c(qi,dj) +M∗(i, j) otherwise

(11)

where c(qi,dj) is a function that defines the cost between query vector qi and

document vector dj , and

M∗(i, j) = min (Mi−1,j ,Mi−1,j−1,Mi,j−1) (12)

The matrix computed following Eq. (11) is a cumulative cost matrix, where the

cost at each position (i, j) takes into account the cost at this point and also the

cost at the previous steps. Following the restrictions of the DTW algorithm,315

the alignment path can move in three different directions, as represented in Eq.

(12): one step horizontally, one step vertically, or one step horizontally and
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vertically at the same time. Since DTW aims at minimizing the cost, Eq. (12)

selects the previous step as the one with the smallest cost among these three

alternatives.320

In this work, the negative log cosine similarity was used as the cost function

cost(qi,dj), since it is a suitable alternative when dealing with phone posteri-

orgrams [69]:

cost(qi,dj) = −log qi · dj

|qi| · |dj |
(13)

cost(qi,dj) is normalized in order to turn it into a cost function defined in the

interval [0,1] as follows [67]:

c(qi,dj) =
cost(qi,dj)− costmin(i)

costmax(i)− costmin(i)
(14)

where costmin(i) = minj cost(qi,dj) and costmax(i) = maxj cost(qi,dj). There-

fore, c(qi,dj) is a normalized cost function derived from the cosine similarity.

Once the matrix M is obtained, the best alignment path between a query

Q and a document D (i.e. the sequence of steps that leads to the minimum

alignment cost between Q and D) can be obtained using the S-DTW algorithm.

First, the last step of the best alignment path b∗ is selected as the lowest cumu-

lative cost of all the possible ones:

b∗ = arg min
b∈1,...,nD

MnQ,b (15)

Since M is a cumulative matrix cost, each element MnQ,b, b ∈ 1, . . . , nD in

the last row of the matrix represents the cost of ending the path at position

b. Therefore, the last step of the path with the lowest cost can be found by

searching for the value of b that minimizes the cost, as defined in Eq. (15).

Then, the first step a∗ can be obtained by backtracking the path starting at b∗.

This results in an alignment path

Path(Q,D) = {p1, . . . , pk, . . . , pK} (16)

where pk = (ik, jk), i.e. the kth step of the path is formed by qik and djk .
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4.3. Score normalization

The search stage returns, for each query-document pair, the minimum align-

ment cost MnQ,b∗ , which is the minimum cumulative cost resulting from aligning

query Q and document D. This value can be interpreted as a score that indi-

cates how reliably the query was found in the document. Nevertheless, this

cost strongly depends on the length of the document and the query, so length

normalization is usually applied to this value [65]:

score(Q,D) =
MnQ,b∗

b∗ − a∗ + nQ
(17)

This normalization is equivalent to dividing the score by the length of the best325

alignment path, estimated as the number of matching frames in the document

(b∗ − a∗) plus the number of frames in the query nQ.

Afterwards, as explained in Section 3, it is necessary to make the scores of

different queries comparable among them, since a decision threshold must be

applied to decide whether a query was present or not in a document. Hence, in330

this system, the z-norm defined in Eq. (8) was also applied to the scores.

5. Combination of phone multigram and DTW systems

This section describes two different combinations of the phone multigram and

DTW systems described in Sections 3 and 4, respectively. The first strategy,

namely two-stage approach, aims at obtaining a system with less computational335

cost than the pure DTW strategy by reducing the number of query-document

pairs to be evaluated by this algorithm. The second strategy, namely fusion

approach, aims at improving the individual performance of the phone multigram

and DTW systems by combining their output scores.

5.1. Two-stage approach340

As mentioned in Section 1, DTW-based approaches for QbESDR are effective

but their computational cost is high: given a query and a set of documents, a

cost matrix must be computed and the best alignment path must be found
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for each query-document pair. A two-stage approach is proposed in this work,

which aims at using a computationally efficient strategy to select a reduced set345

of query-document pairs to be evaluated by the DTW strategy. In this way, the

overall computational cost of the search stage is reduced, since the number of

DTW evaluations decreases.

In this proposed combination, first search using the phone multigram ap-

proach is performed, which results in a score for each query-document pair.350

Since higher scores represent a higher probability of having found the query

in the document, those query-document pairs that have a score above a given

threshold are selected as preliminary candidates. Since the score normalization

strategy described in Section 3 leads to scores with zero mean and unit variance,

scores above 0 (i.e. above the mean) are considered as candidates.355

Once the set of candidate query-document pairs are identified by means

of the phone multigram approach, they are evaluated using the DTW-based

strategy described in Section 4. This two-stage approach leads to a reduction

of the computational cost proportional to the number of selected candidates on

the first stage.360

5.2. Fusion approach

The phone multigram and DTW approaches for QbESDR have the same

functionality (i.e. searching for queries within spoken documents), but this is

achieved by means of very different approaches. Hence, it is straightforward to

combine these different experts in order to enhance their individual performance.365

A strategy based on score calibration and fusion is proposed for this purpose,

which is a common approach in QbESDR [46, 25, 63].

As described in [46], first missing scores must be hypothesized, since it might

happen that one of the systems has not succeeded at outputting a score for a

query-document pair. This is usually done by assigning the minimum global

score to those query-document pairs. Then, calibration and fusion parameters

must be estimated in a training set, which can be done through logistic regres-

sion as described in [46]. Once the fusion parameters are obtained, it is possible

19



to combine the scores of different systems by means of a pooled weighted sum:

scoref (Q,D) = β +

S∑
i=1

αi · scorei(Q,D) (18)

where S is the number of systems to combine, scoref (Q,D) is the resulting

fused score for query Q and document D, scorei(Q,D) is the score output by

system i for query Q and document D, and αi and β are the fusion parameters.370

This type of fusion aims at increasing the performance achieved by the com-

bined systems, but this occurs at the expense of increasing the computational

cost of the search stage. Nevertheless, since the phone multigram approach is

computationally efficient (especially compared to the DTW strategy), only a

slight reduction of the efficiency is observed.375

6. Experimental framework

The framework used in MediaEval 2014 Query-by-Example Search on Speech

(QUESST 2014) evaluation [18] was employed in this work, since it represents

a challenging real-life scenario for QbESDR. QUESST 2014 database includes

a set of audio documents where the search must be performed, a set of devel-380

opment (dev) queries for system training, and a set of evaluation (eval) queries

to assess the performance after training, as summarized in Table 1. The audio

documents include speech in six different languages, namely Albanian, Basque,

Czech, non-native English, Romanian, and Slovak. These documents were col-

lected from multiple sources such as broadcast news programs, telephone calls385

into radio live broadcasts, TED talks or Parliament meetings [70]. Hence, the

database features read and spontaneous speech as well as broadcast speech and

lectures, and there are mismatched acoustic conditions since the data includes

clean and noisy speech. The queries, which feature the six aforementioned lan-

guages, were recorded using a mobile phone in order to simulate a regular user390

querying a retrieval system via speech [70]. There are three different matching

types in this experimental framework:
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• Exact (T1): a hit is produced when an exact match of the lexical repre-

sentation of the query is found in a document.

• Variant (T2): hits allow slight variations of the lexical representation of395

the query either at the beginning or at the end of the query. For example,

“engineer” should match a document saying “engineering” and vice versa.

• Reordering/filler (T3): given a query with multiple words, a hit is pro-

duced when the document contains all the words in the query but they

might appear in a different order and/or with a small amount of filler con-400

tent between words. Lexical variations as in T2 queries are also allowed.

For example, “Brazilian president” should match a document saying “pres-

ident of Brazil”.

Some statistics about the queries are summarized in Table 2. It must be noted

that one query can belong to more than one matching type: for example, the405

query “engineer” can be of matching type T1 and T2 if there are document hits

that are exact matches and also others that imply lexical variations. It should

be mentioned that, in this table, the sum of the number of hits of matching

types T1, T2 and T3 is not equal to the number of hits of All matching types:

following the previous example, a document containing the words “engineer”410

and “engineering” is a hit for types T1 and T2 of the query “engineer” (i.e. two

hits) but it counts as a single hit for All.

Two evaluation metrics defined in the experimental protocol of QUESST

2014 were used in this work to assess search on speech performance and com-

putational cost.415

QbESDR performance is evaluated by means of the maximum term weighted

value (MTWV) [71], which is derived from the term weighted value (TWV). Let

Q be a set of |Q| queries that must be searched within a set of documents Ω.

The TWV aims at measuring the amount of actual query matches that were not

found in Ω (miss detections) and the amount of false query matches that were420

detected by the system (false alarms). For this purpose, a decision threshold θ is

used to decide whether a score represents a match of the query in the document.
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Table 1: Summary of the QbESDR experimental framework used in this paper: number of

recordings in each set (# recordings); total (Total), minimum (Min) and maximum (Max)

duration of the recordings. Audio docs represent the spoken documents were the search must

be performed, and dev/eval queries represent the sets of queries for system training and

testing, respectively.

Duration

Data # recordings Total Min Max

Audio docs 12492 23 h 5 min 0.63 s 47.17 s

dev queries 560 20 min 22.92 s 0.56 s 6.18 s

eval queries 555 19 min 27.61 s 0.52 s 3.62 s

Table 2: Summary of the query-by-example spoken document retrieval (SDR) experimental

framework used in this paper. Matching type denotes the type of matching (All - all matching

types, T1 - exact, T2 - variant, T3 - reordering/filler), query set represents the set of queries

(dev, eval), # queries stands for the number of queries in each set, and # hits represents the

number of retrieved documents for each set.

Matching type Query set # queries # hits

All
dev 560 5471

eval 555 5213

T1
dev 307 2102

eval 307 2084

T2
dev 190 2450

eval 179 2180

T3
dev 155 1026

eval 156 1068

Formally, TWV is defined as the complement of the measurement of false alarms

and miss detections:

TWV (θ) = 1− 1

|Q|
∑
∀Q∈Q

{Pmiss(Q, θ) + β · Pfa(Q, θ)} (19)

where Pmiss(Q, θ) is the probability of missing hits of Q given θ, Pfa(Q, θ) is

the probability of inserting false hits of Q given θ, and the weight factor β is
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defined as:

β =
Cfa(1− Ptarget)

CmissPtarget
(20)

where Cmiss > 0 and Cfa > 0 are the costs of miss and false alarm errors,425

respectively, and Ptarget is the prior probability of finding a match of a query

in a document (which is assumed to be constant across queries).

The MTWV is defined as the TWV at the optimal decision threshold θopt

(i.e. the decision threshold that leads to the maximum value of TWV given the

scores computed by the system):

MTWV = TWV (θopt) (21)

The MTWV was computed using the official evaluation tool of QUESST

2014. It must be noted that the values of Cfa, Cmiss and Ptarget were fixed in

the evaluation protocol of QUESST 2014 to 1, 100 and 0.0008, respectively.430

The computational cost is measured by means of the searching speed factor

[72]:

SSF (Q,Ω) =
TSearching

TQ · TΩ
(22)

where TSearching is the time in seconds required for searching for the queries

in Q within the set of documents Ω, and TQ and TΩ are the total durations

in seconds of the sets of queries Q and documents Ω, respectively. Given an

experiment, its SSF was obtained by averaging the TSearching observed in ten

executions of the experiment.435

7. Experimental results

This Section describes the experimental results obtained in a series of exper-

iments. First, the training of the phone multigram system is done by carrying

out different experiments varying the parameters of the system. Afterwards, two

different combinations of this approach with a DTW-based system are assessed.440

Since the phone multigram representation relies on ASR transcriptions and

the DTW-based system uses phone posteriorgrams for speech representation, a

phone decoder has to be used in both systems. In these experiments, the phone
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decoders developed by the Brno University of Technology (BUT) [73] were used,

as they are frequently employed in search on speech tasks, and their use allows445

the reproducibility of the experiments and the comparison between different

approaches. The default configuration parameters were used which, in the case

of phone posteriorgrams, led to speech frames of 25 milliseconds extracted every

10 milliseconds.

It must be mentioned that, besides the phone units, these decoders include450

several silence and noise units. In the phone posteriorgram experiments, these

silence and noise units where combined into a single silence/noise unit, given

that the specific type of sound is irrelevant for the task. In addition, the si-

lence/noise units were removed from the queries but kept in the documents.

The occurrence of silence/noise units is common at the beginning and the end455

of the queries, but they are unlikely to appear in central positions, since queries

are not long enough for requiring pauses when uttering them. Nevertheless, the

documents are longer and silence/noise units help to split the documents into

sentences, so keeping the silence/noise units in this case helps to avoid mixing

phones from different sentences within the same phone n-gram. In the DTW460

experiments, where the phone decoder is used to obtain phone posteriorgrams,

first the posterior probabilities of the silence and noise units were averaged

and, in case the posterior probability of this unit was greater than all those

corresponding to phone units, the frame was considered as silence/noise and

subsequently removed, as done in [67].465

To foster reproducibility, the source code required for executing the experi-

ments described in this section is provided2.

7.1. Phone multigram training

A series of experiments were run in order to analyze the performance of

the phone multigram representation according to the size of the n-grams, the470

number of transcription hypotheses used for the queries and the search time

2http://irlab.org/files/multigram_dtw_ipm2018.zip
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observed dependent on this latter parameter. Specifically:

• A comparison between phone n-gram systems and the phone multigram

approach was performed.

• The influence of the number of query transcriptions hypotheses nhyp on475

system performance was assessed.

• Lastly, the influence of parameters minngram and maxngram was evalu-

ated.

The Czech (CZ) phone decoder from BUT was used in these training experi-

ments since it empirically showed better results in the dataset used in this work.480

This phone decoder includes 42 phone units and 3 silence/noise units, that are

further combined into a single silence/noise unit.

First, the influence of using phone n-grams of different size, with n ∈ {1, . . . , 5},

when searching for a single query hypothesis (nhyp = 1) was assessed and

compared with the phone multigram representation with minngram = 1 and485

maxngram = 5. These results are shown in Figure 3 in terms of their MTWV,

and results are displayed for All, T1, T2 and T3 matching types. The figure

shows that the best results using a single n-gram representation are achieved

with 3-grams. When the n-gram size is greater, results decline probably due

to the transcription errors: the longer the n-gram, the least likely to be found490

in the documents. The results using 1-grams are poor as expected, since the

positional information is not taken into account and such terms are very easy to

match. Figure 3 also shows that the 3-gram system is clearly outperformed by

the proposed phone multigram strategy, which achieves a relative improvement

by 24% when considering All matching types. It can also be observed that the495

phone multigram approach achieves the best results for matching types T1, T2

and T3.

An analysis of the influence of the number of hypotheses of the query tran-

scription nhyp was also performed. Figure 4 depicts the performance achieved

when varying nhyp: these results show a dramatic improvement of MTWV when500
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Figure 3: MTWV on the dev experiment when using the CZ phone decoder for All, T1, T2

and T3 matching types using one query hypothesis. Results are shown for phone n-grams

with n ∈ {1, . . . , 5} and for the proposed phone multigram representation with minngram = 1

and maxngram = 5.

using several hypotheses compared to using just one. Comparing the results ob-

tained with nhyp = 150 to those achieved with a single candidate per query,

relative improvements by 77%, 69%, 55% and 57% are observed for All, T1, T2

and T3 matching types, respectively. Nevertheless, when comparing the results

achieved with nhyp = 150 with those obtained with nhyp = 400, the relative im-505

provement when considering All matching types is only 4%. At this point, it is

important to analyze the trade-off between performance and search time, since

increasing nhyp means linearly increasing the search time, as shown in Figure 5.

This figure displays the SSF observed when searching all the dev queries depen-

dent on the value of nhyp, along with the corresponding performance in terms of510

MTWV. The figure shows that, while the SSF linearly increases with nhyp, the

MTWV stops improving to a great extent when using about 150 hypotheses. As

mentioned, the MTWV obtained when using 400 hypotheses achieves a relative

improvement in performance by 4% with respect to the results obtained with

150 hypotheses, but at the expense of increasing the SSF by 34%. Hence, from515

now on, nhyp is fixed to 150, since this working point achieves a good trade-off

between search time and performance.
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Figure 4: MTWV on the dev queries when using the CZ phone decoder for All, T1, T2 and

T3 matching types dependent on the number of n-best query hypotheses nhyp. Results are

shown for the proposed phone multigram approach with minngram = 1 and maxngram = 5.
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Figure 5: MTWV and SSF (multiplied by 10−5 for clarity purposes) obtained when searching

all the dev queries dependent on the number of query hypotheses nhyp. These results were

computed using the CZ phone decoder, minngram = 1 and maxngram = 5.
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The previous experiments were run using the phone multigram representa-

tion considering minngram = 1 and maxngram = 5. Table 3 displays the MTWV

achieved when varying minngram and maxngram from 1 to 10. As shown, the520

best results are obtained with minngram = 1 and maxngram = 5. Longer n-

grams do not contribute to improving performance since, as hypothesized above,

bigger n-grams are less likely to exactly match the documents. This is easily

noticeable when looking at the diagonal of Table 3 (which shows the results for

single n-gram systems, since minngram = maxngram): it can be seen that, for525

n-grams with n bigger than 3, the performance starts to decline. This, combined

with the scoring strategy used in this system, explain the negative impact of

long n-grams in the performance of the phone multigram approach: the greater

the number of matching terms in the query, the greater the score (due to the

coordination factor present in Eq. (2)), so adding query terms that are unlikely530

to be found reduces overall performance. It can also be noted from Table 3

that, while 1-grams were not considered in [30] and [31], adding them to the

phone multigram approach yields a relative improvement by 1.5% with respect

to considering only 2-grams to 5-grams.

Table 3: MTWV on the dev queries using the CZ phoneme decoder dependent on the values

of minngram and maxngram.

maxngram

1 2 3 4 5 6 7 8 9 10

m
in

n
g
r
a
m

1 0.0018 0.0587 0.1330 0.1506 0.1562 0.1557 0.1541 0.1529 0.1521 0.1509

2 - 0.0749 0.1436 0.1534 0.1538 0.1519 0.1484 0.1474 0.1452 0.1450

3 - - 0.1490 0.1529 0.1445 0.1418 0.1376 0.1359 0.1363 0.1365

4 - - - 0.1345 0.1328 0.1322 0.1310 0.1306 0.1308 0.1306

5 - - - - 0.1297 0.1237 0.1252 0.1263 0.1265 0.1266

6 - - - - - 0.0837 0.0883 0.0883 0.0883 0.0883

7 - - - - - - 0.0386 0.0430 0.0430 0.0430

8 - - - - - - - 0.0179 0.0209 0.0209

9 - - - - - - - - 0.0054 0.0086

10 - - - - - - - - - 0.0018
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7.2. Testing of phone multigram and combination strategies with DTW535

After tuning the system parameters, two experiments were conducted with

different objectives:

• Compare the performance of the phone multigram strategy with a state-

of-art DTW-based approach.

• Combine both strategies by means of the two-stage and fusion approaches540

described in Section 5, in order to obtain systems with enhanced per-

formance compared to the phone multigram and DTW-based approaches

individually.

Two different phone decoders were used in these experiments, namely the

CZ decoder and the Hungarian (HU) decoder from BUT. The purpose of these545

experiments was to observe whether a similar trend is followed when using

different decoders. The HU decoder has 58 phone units and 3 silence/noise

units that were managed in the same manner as in the CZ decoder.

Table 4 presents, for both CZ and HU decoders, the results achieved on

the eval queries with the DTW-based QbESDR system described in Section 4550

(first row), and with the phone multigram representation (second row). The

table shows that the DTW system achieves superior results compared to the

phone multigram representation except for matching type T3, where the phone

multigram strategy achieves a slightly better performance. As mentioned in

Section 1, improving the performance for non-exact matches was one of the555

expected advantages of this method. In addition, comparing the SSF of both

systems, summarized in Table 5, it is shown that the time demands of the phone

multigram system are smaller than that of the DTW system in several orders of

magnitude. Hence, given that one system is efficient and the other is effective,

combining both systems to take advantage of their individual strengths seems560

straightforward.

The two-stage combination strategy aims at obtaining an efficient DTW-

based QbESDR system by reducing the number of query-document pairs that
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must be evaluated with the DTW approach. Table 4 shows that the results of the

two-stage system are not significantly different to those of the DTW approach.565

These results suggest that the two-stage approach is quite advantageous, since it

achieves the same performance as the DTW strategy while readucing its search

time by 34% for the CZ decoder, and by 35% when using the HU decoder

(this is the effect of reducing the total number of candidates by 66% and 65%,

respectively). These results suggest that using the phone multigram approach570

as a previous step for DTW reduces the computational cost of the resulting

system to a great extent while achieving the same performance as the DTW

strategy.

The purpose of the fusion approach is to obtain a QbESDR system that

increases the individual efficacy of phone multigram and DTW strategies by575

combining their outputs: given that the search time of the phone multigram

strategy is almost negligible compared to that of the DTW system, running

both systems would not lead to a significant increase of the search time. In this

experiment, Bosaris toolkit [74] was used for that purpose, and calibration and

fusion parameters were estimated on the scores of the dev queries and subse-580

quently applied to the scores of the eval queries [75]. The obtained results of

this fusion strategy (fourth row in Table 4) show a huge performance improve-

ment when combining both approaches, which suggest that they are strongly

complementary.

It must be noted that the same trend is observed when using CZ and HU585

decoders, which suggests that this approach is not strongly dependent on the

phone units used for document and query transcription. Table 5 shows that

the SSF values measured for the HU decoder are slightly superior to those

observed for the CZ decoder, which is due to the greater number of units in the

HU decoder (42 versus 58). It is noticeable that the CZ decoder leads to much590

better results than the HU decoder. This is probably caused by a simple reason:

the database used in these experiments includes Czech speech, so the use of a

matching phone decoder boosts the performance on this language. In addition,

some of the other languages included in the database (such as Romanian and,
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especially, Slovak) are much closer to Czech than to Hungarian, and having a595

greater phonetic similarity makes the CZ phone decoder more suitable for their

representation. As analyzed in [48], some phone units included in the decoders

might suit a given language but act as a nuisance for a different one. Apart from

the similarity among the languages, the Hungarian decoder has a bigger number

of phone units, which increases the confusability among phones and may lead600

to worse results.

Table 4: MTWV on the eval queries using the CZ and HU phone decoders for four different sys-

tems: a DTW-based approach (DTW); the proposed multigram representation (Multigram);

a system based on DTW where a selection of match candidates is done using the phone multi-

gram system (two-stage); a combination of the DTW and phone multigram systems by fusion

of the retrieved scores (fusion). Fusion results with superindices a, b and c show a statis-

tically significant improvement over DTW, multigram and two-stage systems, respectively.

Two-stage results with superindices x and y show a statistically significant improvement over

DTW and multigram systems, respectively. Statistical significance was computed based on a

t-test (p < 0.05).

MTWV

Decoder System All T1 T2 T3

CZ

DTW 0.2603 0.4344 0.1905 0.0674

Multigram 0.1735 0.2529 0.1461 0.1573

Two-stage 0.2669y 0.4457y 0.1943y 0.0782y

Fusion 0.3379a,b,c 0.5041a,b,c 0.2739a,b,c 0.1945a,b,c

HU

DTW 0.2260 0.3749 0.1691 0.0541

Multigram 0.1077 0.1612 0.0817 0.1111

Two-stage 0.2199y 0.3661y 0.1650y 0.0579y

Fusion 0.2949a,b,c 0.4309a,b,c 0.2280a,b,c 0.1653a,b,c

8. Review of other approaches

Given that QUESST 2014 is a strict experimental benchmark with well-

defined training and test experiments, it is possible to perform comparisons of
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Table 5: Searching speed factor (SSF) computed on the eval experiment of DTW, multigram,

two-stage and fusion systems.

SSF

System CZ HU

DTW 4.00 · 10−2 4.19 · 10−2

Multigram 1.42 · 10−5 1.46 · 10−5

Two-stage 1.33 · 10−2 1.40 · 10−2

Fusion 4.00 · 10−2 4.19 · 10−2

the results displayed in the previous section with others found in the litera-605

ture. Hence, this section presents a comparison of the approaches presented

in this paper with other reported results for the QUESST 2014 dataset. First,

the phone multigram representation is compared to other approaches based on

phone transcriptions [5, 6]. Then, the two-stage and fusion combinations are

compared with similar ones proposed in [49, 6].610

An approach based on phone transcriptions for QbESDR, namely symbolic

search (SS), is proposed in [5], which consists in looking for subsequences of

the phone transcription of a query within the phone lattices of the documents.

Equally to the approach proposed in this work, several query transcription hy-

potheses are considered in this work but, in [5], weighted finite state transducer615

(WFST)-based search is done on phone lattices, which leads to higher search

time and larger indices. Comparing the results presented in [5] with those dis-

played in Table 4, it can be seen that the phone multigram representation using

the CZ decoder succeeds to outperform all the results presented in that work.

In addition, the results for matching types T2 and T3 using the CZ decoder620

outperform those reported in [5] to a great extent, which was, indeed, one of

the objectives of this strategy. It must be noted that the CZ and HU decoders

used in [5] are exactly the same as those used to obtain the results in Table

4, which suggests that the phone multigram representation leads to a better

exploitation of phone transcriptions. With respect to the computational cost of625
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the algorithms, a comparison between the search times presented in Table 5 and

those mentioned in [5] suggests that the phone multigram system is much faster,

even though it is not possible to straightforwardly compare those times since

the machines used to compute them are different. Nevertheless, this difference

in search time might be explained by the use of more complex indices in [5] and630

by the difference on the number of hypotheses for the queries: 150 hypotheses

were used to obtain the results in Table 4 versus 2np in [5], where np is the

average number of phones of the first 1000 n-best hypotheses (the median of

this value is around 10 phones, which leads to 1024 hypotheses).

More results based on the SS system proposed in [5] were presented in [6],635

where a different phone decoder was used to obtain the transcriptions. The

phone multigram representation outperforms the results displayed in that work

even though the phone decoder used in [6] is more suitable for this task than

the CZ decoder used in the experiments presented in this paper (this can be

hypothesized by comparing the results in [5] and [6]). In addition, 2000 query640

hypotheses are considered in [6], which probably led to a higher search time

than that reported in [5]. This comparison suggests that the phone multigram

system would experiment a performance boost when using more suitable phone

decoders.

A combination of SS and DTW systems is also presented in [6]. The obtained645

results are almost the same as those achieved by the fusion strategy proposed

in this paper but the computational cost is greater: first SS must be peformed

and afterwards, each query subsequence that produced a match in the SS stage

is considered as a different query for the DTW stage, which implies multiplying

the search time of the DTW stage by the number of selected subsequences650

(according to [6], all the subsequences of six phones found in the three best

query hypotheses are used, which implies, minimum, multiplying the search

time by three).

A strategy which is not based on phone decoding but has some similarities

with that presented in this work is the BoAW approach proposed in [57], which655

was applied to the QUESST 2014 evaluation framework in [49]. This approach
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first performs phonetic segmentation of the queries and documents by means

of the spectral transition measure [76], and then each segment is assigned to

a class, i.e. a phone unit. This leads to a phone-like representation but, in

this case, the phone units are not obtained from a phone decoder but from660

automatic clustering of the discovered units. Then, cosine similarity and tf-

idf are used to select query-document pairs, which are further evaluated using

a DTW system. Results using only the BoAW model are not displayed in

[49], so it is not possible to compare this strategy with the phone multigram

representation. Nevertheless, results when combining BoAW and DTW as in665

the two-stage strategy described in Section 5 are presented in that work. At

first sight, the performance of BoAW+DTW is superior to that of the two-stage

approach, but some issues must be considered. First, the DTW system used in

[49] achieved better results than the one described in Section 4 thanks to some

refinements of the DTW algorithm presented in that work, so the impact of using670

a candidate selection strategy (and not the absolute results) must be evaluated

to enable a fair comparison. Second, the number of selected candidates ranges

from 50% to 100% of the total in [49] depending on the decision threshold

applied to the scores output by the BoAW system; in the two-stage system,

a fixed threshold was used, which reduces the number of system parameters675

to be tuned while leading to a lower number of candidates (34% of the total

candidates were kept in the results displayed in Table 4 for the CZ decoder).

With that in mind, it can be observed that the proposed two-stage approach

proposed in this work leads to the same results as the DTW strategy described

in Section 4, while using BoAW with a pruning threshold by 50% dramatically680

degrades system performance compared to the DTW results reported in [49].

9. Conclusions and future work

This paper presented a novel representation for QbESDR based on a com-

bination of different-sized n-grams, namely phone multigrams, obtained from

automatic phone transcriptions of the queries and documents. This represen-685
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tation, which uses several query transcription hypotheses to ease the influence

of transcription errors, is used for search within inverted indices, which dra-

matically reduces the search time for real-world QbESDR applications. The

performance of this system was assessed in the framework of MediaEval 2014

Query-by-Example Search on Speech (QUESST 2014) evaluation, and the ex-690

perimental results show that the proposed approach outperforms other similar

approaches found in the literature while dramatically reducing the search time.

In addition, a two-stage strategy was proposed in which the proposed phone

multigram strategy is used to search for candidate matches of the queries in

the documents, and these candidates are further evaluated using a DTW-based695

approach. This combination led to the same performance as the DTW approach

while reducing the search time to a great extent. Also, a fusion strategy was

proposed in which the scores of the phone multigram and DTW-based systems

were combined, and this combination proved to boost the performance with re-

spect to both methods individually while exhibiting a negligible increase of the700

search time.

The proposed phone multigram system used 1-best transcriptions of the

documents in order to reduce the size of the indices and the search time; in

future work, other alternatives for document representation will be explored,

aiming at keeping the size of the index as small as possible while improving the705

performance of the method proposed in this work. Also, the use of the confi-

dence scores output by the phone decoder will be investigated in order to assign

higher scores to those matches of query-document pairs whose transcriptions

were considered as more reliable by the decoder.

The performance analyses presented in this paper showed the impact of the710

suitability of the phone decoder on the results: as expected in cross-lingual

approaches, the more similar the language of the decoder and the documents,

the better the performance. Different approaches will be explored in the future

to try to optimize the performance of the decoder independently of the language

of the documents and queries. Specifically, phone selection and clustering will715

be investigated.
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This paper explored the use of the multigram approach for spoken document

retrieval using spoken queries. Nevertheless, in future work, the use of this

strategy using written queries will be explored, especially for searching out-of-

vocabulary words.720
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