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ABSTRACT
Retrieval effectiveness has been traditionally pursued by improv-
ing the ranking models and by enriching the pieces of evidence
about the information need beyond the original query. A successful
method for producing improved rankings consists in expanding
the original query. Pseudo-relevance feedback (PRF) has proved to
be an effective method for this task in the absence of explicit user’s
judgements about the initial ranking. This family of techniques ob-
tains expansion terms using the top retrieved documents yielded by
the original query. PRF techniques usually exploit the relationship
between terms and documents or terms and queries. In this paper,
we explore the use of linear methods for pseudo-relevance feed-
back. We present a novel formulation of the PRF task as a matrix
decomposition problem which we called LiMe. This factorisation
involves the computation of an inter-term similarity matrix which
is used for expanding the original query. We use linear least squares
regression with regularisation to solve the proposed decomposition
with non-negativity constraints. We compare LiMe on five datasets
against strong state-of-the-art baselines for PRF showing that our
novel proposal achieves improvements in terms of MAP, nDCG and
robustness index.
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1 INTRODUCTION
In the beginning, search engines only considered the user’s query
to produce the document ranking. Soon, it was shown that the re-
trieval effectiveness can be notably improved considering the user’s
feedback for the presented results. Although relevance feedback is
the most reliable type (users are asked to indicate which documents
from the top are relevant) [29], it is often impractical. For this rea-
son, research has focused on improving retrieval quality without
relevance information or any further interaction from the user. This
research line gave rise to the development of pseudo-relevance feed-
back (PRF). This approach assumes that the top documents returned
by the retrieval engine are relevant and uses them to produce new
query terms. In spite of this strong assumption, PRF has shown to
be one of the most successful techniques for improving retrieval
effectiveness [4, 6, 8, 13–16, 21, 23, 26–28, 37]. The terms obtained
from the PRF method can be added to the original query or used in
isolation to perform the second retrieval.

A lot of research has focused on improving and extending PRF
techniques based on the language modelling framework [15, 16, 32].
In this paper, we propose an alternative formulation of the PRF
task. Our proposal is not based on language models, but in linear
methods. We introduce a novel formulation of the PRF task as a
particular matrix decomposition problem called LiMe (Linear Meth-
ods). Most PRF techniques exploit the relationship between terms
and documents or terms and queries. In contrast, our proposed
factorisation method computes term similarities using the original
query and the pseudo-relevance set. RFMF was the first formulation
of PRF as a matrix decomposition problem [37] and computes a
latent factor representation of documents/queries and items using
non-negative matrix factorisation. Instead, in our work, we pro-
pose a different decomposition that stems from the computation
of inter-term similarities. Previous work on translation models has
exploited this concept of inter-term similarities [2, 12]; however,
to the best of our knowledge, no state-of-the-art PRF approach
directly leverages this information. Our matrix formulation enables
to compute inter-term similarities that yield within the query and
the pseudo-relevant set. We use the information of these relation-
ships among terms to expand the original query. Since producing a
good rank of expansion terms is critical for a successful PRF tech-
nique, modelling the relationship correctly among terms seems
to be a desirable property. Additionally, computing good weights
for those expansion terms is a key factor in the performance of
a PRF technique. Our experiments show that the computation of
inter-term similarities using information from the query and the
pseudo-relevant set produces good rankings of expansion terms
and also good weights for those terms.

As [37] showed, an advantage of addressing PRF as a matrix
decomposition problem is that it admits different types of features
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for representing the query and the pseudo-relevant set. Since these
features are independent of the retrieval model, LiMe is a general
framework for PRF that can be plugged on top of any retrieval
engine. Although we can plug in retrieval-dependent features or a
theoretical probabilistic weighting function into LiMe if desired, we
leave those ideas for future work. In this paper, we explore simple
and well-known weighting functions such as TF and TF-IDF which
allow us to outperform state-of-the-art techniques.

LiMe modelling of the PRF task paves the way for developing
multiple PRF algorithms since the proposed matrix decomposition
formulation can be calculated in various ways. In this paper, we
use a method based on regularised linear least squares regression.
On the one hand, we employ a ℓ2 regularisation scheme to avoid
overfitting. On the other hand, we use ℓ1 regularisation to enforce
sparsity into the learned inter-term similarities. This method pro-
vides automatic feature selection which gives us a more compact
solution with the corresponding efficiency gains. The combina-
tion of ℓ1 and ℓ2 regularisation for linear least squares problems
is also known as elastic net regression [40]. Additionally, we add
non-negativity constraints to force the computed similarities to be
positive increasing the interpretability of the decomposition.

We thoroughly evaluate the proposed method on five TREC col-
lections. The obtained results show that LiMe outperforms state-of-
the-art baselines in terms of several common effectiveness metrics.
Moreover, LiMe achieved high values of robustness compared to
the baselines. These findings highlight the applicability of LiMe as
a pseudo-relevance feedback technique. Furthermore, LiMe formu-
lation of the PRF task can exploit different features allowing the
exploration of further features schemes.

In summary, the contributions of this paper are: (1) LiMe, a
new matrix decomposition formulation of the PRF task involving
inter-term similarities, (2) an algorithm based on constrained elastic
net regression for solving the proposed matrix decomposition and
computing expansion terms and (3) an empirical evaluation of
the effectiveness of the proposed method against state-of-the-art
baselines showing that LiMe is a competitive PRF method.

2 BACKGROUND
In this section, we describe the pseudo-relevance feedback proce-
dure. We focus on state-of-the-art pseudo-relevance feedback tech-
niques based on the language modelling framework [24] because
they perform notably well in practice [13, 15, 16, 37]. Afterwards,
we introduce linear methods for regression problems since our
proposal rests on these models.

2.1 Pseudo-Relevance Feedback (PRF)
Query expansion aims to add new terms to the original query
prompted by the user. These techniques can improve the perfor-
mance of retrieval models when answering the users’ information
needs. Using true relevance feedback from the user is highly effec-
tive, but also difficult to obtain. Hence, automatic query expansion
techniques, which do not require feedback from the user, can be
extremely useful in practice [5]. Given the utility of these methods,
it is not surprising that initial work on automatic query expansion
dates from the sixties [18]. Manifold strategies for approaching this
problem have been developed [5]; however, the foundations of PRF

were established in the late seventies [8]. Pseudo-relevance feed-
back (also known as blind relevance feedback) is a highly effective
strategy to improve the retrieval accuracy without user interven-
tion [4, 6, 8, 13–16, 21, 23, 26, 37, 38]. Instead of using explicit
feedback information from the user, the top retrieved documents
by the user’s original query are assumed to be relevant. These doc-
uments constitute the pseudo-relevant set. PRF techniques produce
an expanded version of the original query using the information
from the pseudo-relevant set. PRF methods use the expanded query
for a second retrieval, and the results of the second ranking are
presented to the user.

A plethora of strategies for weighting the candidate expansion
terms using the pseudo-relevant set information have been de-
veloped. The Rocchio framework [28] was one of the very early
successful methods presented in the context of the vector space
model. Rocchio algorithm modifies the query vector in a direction
which is closer to the centroid of the relevant documents vectors
and further to the centroid of non-relevant documents vectors. In
[4], the authors used this framework with different term weighting
functions including those based on pseudo-relevant feedback in-
stead of relevance feedback such as the Binary Independence Model
[27], the Robertson Selection Value [26], the Chi-square method
[4] or the Kullback-Leibler distance method [4].

2.2 PRF based on Language Models
Among all the PRF techniques in the literature, those developed
within the Statistical Language Model framework [24] are arguably
the most prominent ones because of their sound theoretical foun-
dation and their empirical effectiveness [15]. Within the language
modelling framework, documents are ranked according to the KL
divergence D(·∥·) between the query and the document language
models, θQ and θD , which is rank equivalent to the negative cross-
entropy [12]:

Score(D,Q) = −D(θQ ∥θD )
rank
=

∑
t ∈V

p(t |θQ ) logp(t |θD ) (1)

whereV is the vocabulary of the collection. To obtain better results,
instead of using the original query model θQ , we use θ ′Q which
is the result of the interpolation between θQ and the estimated
feedback model θF [1, 15]:

p(t |θ ′Q ) = (1 − α)p(t |θQ ) + α p(t |θF ) (2)

where α ∈ [0, 1] controls the relative importance of the feedback
model with respect to the query model. Therefore, the task of a PRF
technique under this framework is to provide an estimate of θF
given the pseudo-relevant set F . Next, we remind two state-of-the-
art PRF techniques based on the language modelling framework
[15].

2.2.1 Relevance-Based Language Models. Relevance-based lan-
guage models or, simply, relevance models (RM) are a state-of-the-
art PRF technique that explicitly introduces the concept of relevance
in language models [13]. Although RM were originally conceived
for standard PRF [13], they have been used in different ways such
as the generation of query variants [6], cluster-based retrieval [14]
or collaborative filtering recommendation [22].
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Lavrenko and Croft [13] proposed two models for estimating
the relevance: RM1 (which uses i.i.d. sampling) and RM2 (based on
conditional sampling). We remind solely RM1 since it has shown to
be more effective than RM2 [15]. RM1 estimates can be computed
as follows when assuming uniform document prior probabilities:

p(t |θF ) ∝
∑
D∈F

p(t |θD )
∏
q∈Q

p(q |θD ) (3)

where p(t |θD ) is the smoothed maximum likelihood estimate (MLE)
of the term t under the language model of the document D with
Dirichlet priors as the preferred smoothing technique [13, 38]. RM1
is typically called RM3 when it is interpolated with the original
query (see Eq. 2) [1].

2.2.2 Maximum-Entropy Divergence Minimisation Model. The
maximum-entropy divergence minimisation model (also known as
MEDMM) [16] is a PRF technique based on the divergenceminimisa-
tion model (DMM) [38] which stems from the language modelling
framework. It is similar to the Rocchio algorithm from the vec-
tor space model if we use the pseudo-relevant set to compute the
relevant documents vectors and the collection model for the non-
relevant documents vectors [28]. MEDMM aims to find a feedback
model θF which minimises the distance to the language models of
the documents of the pseudo-relevant set and, at the same time,
maximises the distance to the collection model θC (the assumed
non-relevant model). This model has a parameter λ to control the
IDF effect and parameter β to control the entropy of the feedback
language model and is also interpolated with the original query.
The analytic solution to MEDMM is given by [16]:

p(t |θF ) ∝ exp

(
1
β

∑
D∈F

αD logp(t |θD ) −
λ

β
logp(t |θC )

)
(4)

wherep(t |θD ) is the smoothedMLE of the term t under the language
model θD using additive smoothing with parameter γ . On the other
hand, p(t |θC ) represents the MLE of the term t in the collection.
Finally, MEDMM gives a weight for each document based on the
posterior of the document language model:

αD = p(θD |Q) =
p(Q |θD )∑

D′∈F p(Q |θ ′D )
=

∏
t ∈Q p(t |θD )∑

D′∈F
∏

t ′∈Q p(t ′ |θ ′D )
(5)

2.3 PRF based on Matrix Factorisation
Other authors have focused on developing PRF models based on
different ideas. In particular, RFMFwas the first PRF technique based
on matrix factorisation [37]. This approach builds a document-term
matrix X from the query and the pseudo-relevant set. They built
this matrix using TF-IDF or weights derived from the language
modelling framework. RFMF reconstructs, through non-negative
matrix factorisation (NMF), the document-term matrix and use the
new weights as a scoring function to rank candidates terms for
expansion. This approach is inspired by the Recommender Systems
literature where matrix factorisation techniques are commonplace
[11]. RFMF finds latent document and term factors with a particular
parameter for the number of dimensions d of the latent factors.

Formally, NMF is a matrix factorization algorithm which de-
composes the matrix X ∈ Rm×n

+ in two matrices U ∈ Rm×d
+ and

V ∈ Rd×n+ such that X ≈ UV . U represents the latent factors of the

query and the pseudo-relevant documents whereas V represents
the latent factors of the terms.

2.4 Linear Methods
Linear methods are a simple but successful collection of techniques
that have been used for regression and classification tasks. Given n
features andm data points, ®y = (y1, . . . ,ym )T is the column vector
which contains the response and ®x1, . . . , ®xn are them-dimensional
vectors that contains each of the n features of them observations.
A linear method try to predict the response ®y using a linear combi-
nation of ®x1, . . . , ®xn . The vectors of features can be arranged in the
form of a matrixX ofm rows and n columns. Linear regression aims
to find the optimal values of the coefficients ®w = (w1, . . . ,wn )

T

that minimise the error ®ϵ :

®y = X ®w + ®ϵ = w1 ®x1 + · · · +wn ®xn + ®ϵ (6)

In particular, ordinary linear least squares models try to find the
best approximate solution of this system of linear equations where
the sum of squared differences between the data and the prediction
made by the model serves as the measure of the goodness of the
approximation:

®w∗ = argmin
®w

∥®ϵ ∥22 = argmin
®w

∥ ®y − X ®w ∥
2
2 (7)

Linear least squares loss is strictly convex; thus, it has a unique
minimum. Moreover, the simplicity of the model favours its ex-
plainability and interpretability. However, this model suffers from
overfitting. For tackling this problem, it is common to add ℓ2 or
Tikhonov regularisation (this model is also known as ridge regres-
sion [9]). Imposing a penalty based on the squared ℓ2-norm of the
coefficients ®w produces a shrinking effect which is controlled by
the non-negative parameter β2:

®w∗ = argmin
®w

∥ ®y − X ®w ∥
2
2 + β2 ∥ ®w ∥

2
2 (8)

An alternative strategy to ridge regression is imposing a penalty
based on the ℓ1-norm of the coefficient vector. This approach is
commonly known as lasso regression [34]. This approach performs
automatic feature selection as the value of the non-negative param-
eter β1 grows:

®w∗ = argmin
®w

∥ ®y − X ®w ∥
2
2 + β1 ∥ ®w ∥1 (9)

Since both, ridge and lasso regressions, have beneficial properties,
Zou and Hastie [40] developed a technique combining both ℓ1
and ℓ2 regularisation. The elastic net is a generalisation of ridge
and lasso regression. This approach can perform shrinkage and
feature selection at the same time controlled by the non-negative
parameters β1 and β2:

®w∗ = argmin
®w

∥ ®y − X ®w ∥
2
2 + β1 ∥ ®w ∥1 + β2 ∥ ®w ∥

2
2 (10)

3 LIME: LINEAR METHODS FOR PRF
Our proposal, LiMe, is designed for ranking the candidate terms
for producing an expanded query Q ′. As it is usual in PRF, LiMe
uses only information about the original query Q and the pseudo-
relevant set F . The set F is composed of the top-k documents re-
trieved using the original queryQ . We should note that LiMe treats
the query as another document. Thus, for convenience, we define
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the extended feedback set F ′ as the pseudo-relevant set plus the
original query (F ′ = {Q} ∪ F ) and we denote its cardinality by
m = |F ′ | = k + 1. We consider as candidate terms the subset of
words from the collection vocabulary V that appear in F ′. We refer
to this set by VF ′ and we denote its cardinality by n = |VF ′ |.

In contrast to LiMe which considers the query and the pseudo-
relevant documents jointly to compute the expansion terms, RM3
and MEDMM exploit the query for weighting the documents of the
pseudo-relevant set.

It is interesting to remark that LiMe is a general method. This
means that it is independent of the algorithm used for computing
the pseudo-relevant set F (first retrieval) and also independent of
the algorithm employed for producing the final ranking with the
expanded query (second retrieval).

3.1 LiMe Formulation
We can define LiMe using a matrix or a vector formulation. To
understand better the idea behind LiMe, we initially present our
technique under a matrix formulation. Afterwards, we introduce
the vector representation which is much more convenient from the
point of view of its implementation.

Considering the query as another pseudo-relevant document, we
define the matrix X = (xi j ) ∈ R

m×n . The first row represents the
original query Q while the rest rows correspond the k documents
from F . Each column of X corresponds to a term from VF ′ . Each
element xi j represents a feature between the document (or query)
corresponding to the i-th position and the term tj represented with
the j-th column of X . Therefore, each row of X is a sparse feature
vector representing the query or a pseudo-relevant document.

The objective of LiMe is to factorise this matrix X into the prod-
uct of itself and another matrixW = (wuv ) ∈ Rn×n+ . This new
matrix represents the inter-term similarity among the words inVF ′ .
In particular, each entry wuv symbolises the similarity between
terms tu and tv . To favour interpretability, we constrain the simi-
larities to be non-negative. Moreover, to avoid the trivial solution
(W equal to the identity matrix) we enforce that the main diagonal
of W are all zeros. Formally, we define LiMe as an algorithm that
computes the following decomposition:

X ≈ XW

s .t . diag(W ) = 0,W ≥ 0 (11)

We formulate this matrix decomposition task as a constrained
linear least squares optimisation problem. We want to minimise the
residual sum of squares of the factorisation. Additionally, to avoid
overfitting and to enforce a sparse solution we apply the elastic net
penalty which combines ℓ1 and ℓ2 regularisation. In this way, the
objective function of LiMe is the following one:

W ∗ = argmin
W

1
2
∥X − XW ∥2F + β1 ∥W ∥1,1 +

β2
2

∥W ∥2F

s.t. diag(W ) = 0, W ≥ 0
(12)

Note that the matrix ℓ1,1-norm (denoted by ∥·∥1,1) is equivalent
to the sum of the ℓ1-norm of the columns. On the other hand, the
squared Frobenius norm (denoted by ∥·∥2F ) is calculated as the sum
of the squares of eachmatrix element which is equivalent to the sum
of the squared ℓ2-norm of the columns. Using these equivalences
between the matrix and vector norms, we can split this matrix

formulation by columns rewriting the optimisation problem in the
following vector form:

®w∗
·j = argmin

®w·j

1
2

®x ·j − X ®w ·j
2
2 + β1

 ®w ·j

1 +

β2
2

 ®w ·j
2
2

s.t. w j j = 0, ®w ·j ≥ 0
(13)

where the non-negativity constraint is applied to the elements of
®w ·j vector which is the j-th column of theW matrix. Similarly, ®x ·j
represents the j-th column of the X matrix. In this way, for each
term j inVF ′ , we train an elastic net [40] with an equality constraint
to zero in one coefficient and non-negativity constraints on the rest
of the coefficients.

Once the regression problems depicted in Eq. 13 are solved for
each column (i.e., each term in VF ′ ), we merge their solutions to
build the inter-term similarity matrixW ∗. Now, we employ the
computed matrix decomposition to reconstruct the first row of X
(which we will denote by x̂1·) as follows:

x̂1· = ®x1·W
∗ (14)

Note that, by construction, X is a sparse matrix (hence also the
row vector ®x1·) andW ∗ will be a sparse matrix due to the ℓ1 regu-
larisation. Thus, the product between the row vector ®x1· and the
matrixW ∗ is highly efficient. We use the pseudo-relevant docu-
ments for learning the inter-term similarities, but we reconstruct
the first row of X because we want to expand only the query.

We can normalise the reconstructed vector x̂1· to obtain a prob-
ability estimate. The probability of the j-th term given the LiMe
feedback model is given by:

p(tj |θF ) =


x̂1j∑

tv ∈VF ′ x̂1v
if tj ∈ VF ′ ,

0 otherwise
(15)

We only rank those terms that appear in the pseudo-relevant
set or the query. Although some PRF techniques can rank all the
terms in the collection, in practice, it is common to only rank those
appearing in the pseudo-relevant set or the query [13, 37]. In fact,
scoring terms that do not appear in F ′ would contradict the foun-
dations of PRF since this approach is based on local information
(i.e., the pseudo-relevant set and the query).

Although both LiMe and RFMF decomposes a similar matrix,
they use different objective functions and optimisation algorithms.
Additionally, LiMe employs elastic net regularisation. In contrast,
RFMF is based on non-negative factorisation which can deal with
non-negative and sparse data while LiMe deals with this data by
enforcing non-negativity constraints in the optimisation problem.
Additionally, LiMe discovers inter-term similarities that yieldwithin
the pseudo-relevant set and the querywhile RFMF learns term latent
factor representations.

Next, we discuss how we fill matrix X = (xi j ) with features
relating query/documents i with terms j. Last, we provide imple-
mentation details about how to solve this constraint linear squares
problem since the original method for solving the elastic net [40]
does not consider our constraints.

3.2 Feature Schemes
One advantage of LiMe is its flexibility: we can use any feature
scheme to build matrix X . To foster sparsity in matrix X , we decide
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to fill with zeros all those entries that correspond to terms that do
not appear in the current document. This approach will provide
a quite sparse matrix which can be more efficiently decomposed
than a dense one.

Let s(w,D) be the function that assigns a score to the term w
given the document D and let f (w,D) be the frequency of occur-
rence of termw in document D, the matrix X is filled in the follow-
ing manner:

xi j =


s(w j ,Q) if i = 1 and f (w j ,Q) > 0,
s(w j ,Di−1) if i > 1 and f (w j ,Di−1) > 0,
0 otherwise

(16)

We explored several strategies based on well-known weighting
functions used in Information Retrieval. We studied several term
frequency measures: raw frequency counts, binarised counts and
logarithmic versions. Additionally, we tried different TF-IDF for-
mulations. We achieved the best results using the following TF and
TF-IDF weighting functions proposed by Salton [31]:

st f (w,D) = 1 + log2 f (w,D) (17)

st f -idf (w,D) =
(
1 + log2 f (w,D)

)
× log2

|C|

df (w)
(18)

where |C| refers to the number of documents in the collection
and df (w) the document frequency of termw (i.e., the number of
documents in the collection where the termw occurs).

Anyway, other alternatives may be possible. For example, it may
be worth exploring features related to the first retrieval such as the
contribution of an individual term to the document score within a
particular retrieval model; however, in that case, LiMe would not
be independent of the retrieval technique. Also, we could derive
probabilistic weighting functions (as RFMF does) at the expense of
introducing a few new parameters to tune into the model. We leave
for future work the investigation of additional features schemes.
Nevertheless, the ability of LiMe of performing well with simple
and well-known features such as TF and TF-IDF is remarkable. Also,
these heuristics are supported by decades of research in Information
Retrieval.

3.3 Implementation Details
As illustrated in Eq. 13, the computation ofmatrixW ∗ can be divided
in multiple linear regression problems, one for each vector ®w∗

·j
which represents a term in VF ′ . Thus, each column of matrixW ∗

can be computed separately and, if needed, in parallel without any
dependencies among them.

To solve each regression problem, we used the highly efficient
BCLS1 (Bound-Constrained Least Squares) library, which imple-
ments a two-metric projected-descent method for solving bound-
constrained least squares problems.

An additional optimisation is to drop part of the matrixW ∗. This
matrix is used for computing expansion terms when multiplied by
vector ®x1· (see Eq. 14). Therefore, we only need those rows that
correspond to a term in the original query. If we only store those
similarities, we save a lot of space since the number of terms in a
query prompted by a user is tiny compared to the number of rows.

1See http://www.cs.ubc.ca/~mpf/bcls

Table 1: Collections statistics.

Collection #docs
Avg doc Topics

length Training Test

AP88-89 165k 284.7 51-100 101-150
TREC-678 528k 297.1 301-350 351-400
Robust04 528k 28.3 301-450 601-700
WT10G 1,692k 399.3 451-500 501-550
GOV2 25,205k 647.9 701-750 751-800

4 EXPERIMENTS
In this section, we assess the performance of LiMe against state-of-
the-art techniques. The experiments were performed using Terrier
[17] on five TREC collections. We describe the evaluation methodol-
ogy and then we explain the choice of baselines and the parameter
setting. Finally, we present and analyse the results comparing the
behaviour of LiMe with respect to the baselines.

4.1 Evaluation Methodology
We conducted our experiments on five TREC collections commonly
used in PRF literature [15, 16, 37]: AP88-89, TREC-678, Robust04,
WT10G and GOV2. The first one is a subset of the Associated Press
collection from years 1988 and 1989. The second collection is based
on TREC disks 4 and 5. The third dataset was used in the TREC
Robust Track 2004 and consists of poorly performing topics. The
fourth one, theWT10G collection, is a general web crawl used in the
TRECWeb track 2000-2001. Finally, we also ran our experiments on
a large dataset, the GOV2 collection, which is a web crawl of .gov
websites from 2004 (used in the TREC Terabyte track 2004-2006 and
the Million query track 2007-2008). We applied training and test
evaluation on all collections. We tuned the model hyperparameters
that maximise MAP (mean average precision) using the training
topics and we used the test topics to evaluate the performance of
the methods. Table 1 describes each collection and the training and
test splits.

We produced a rank of 1000 documents per query. We evaluated
MAP and nDCG (normalised discounted cumulative gain) using
trec_eval2 at a cut-off of 1000. Additionally, we measured the
RI (robustness index or reliability of improvement [30]) against
the non-expanded query. This metric, which ranges in the interval
[−1, 1], is computed as the number of topics improved by using PRF
minus the number of topics hurt by the PRF technique divided by
the number of topics. We employed one-tail permutation test with
10,000 randomisations andp < 0.05 to measure if the improvements
in terms of MAP and nDCG were statistically significant [33]. We
cannot apply any paired statistic to RI because it is a global metric.

We used queries based only on the title field of the TREC topics
because short queries are the most common scenario for the appli-
cation of PRF techniques. Previous work showed that stemming
and stopwords removal is beneficial for the PRF task [15]. For this
reason, we preprocessed the collections with the standard Terrier
stopwords removal and Porter stemmer.

2See http://trec.nist.gov/trec_eval

http://www.cs.ubc.ca/~mpf/bcls
http://trec.nist.gov/trec_eval
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4.2 Baselines and Parameter Setting
We employed the state-of-the-art language modelling framework
for performing the first and second stage retrievals [24]. In partic-
ular, we used KL divergence model (see Eq. 1) which allow us to
introduce a feedback model easily [12]. For smoothing the docu-
ment language models, we used Dirichlet priors smoothing [39]
with parameter µ set to 1000. As baselines, we selected a represen-
tative set of state-of-the-art techniques.

LM First, we should always compare a PRF technique against
the performance of a retrieval model without feedback infor-
mation. We used the same retrieval settings (Dirichlet priors
µ = 1000).

RFMF We included this technique because it is based onmatrix
factorisation. It builds a document-term matrix from the
query and the pseudo-relevant set and employs non-negative
matrix factorisation [37]. We set the number of dimensions
of the factorisation, d , to the size of the relevant set plus one
as the authors recommended [37]. We employed the TF-IDF
weight function.

MEDMM Wealso employed themaximum-entropy divergence
minimisation model which is recognised as one of the most
competitive PRF techniques [16]. We followed the recom-
mendations of the authors and we set the IDF parameter
λ to 0.1, the entropy parameter β to 1.2 and the additive
smoothing parameter γ to 0.1 [16].

RM3 Relevance-based language models are an effective PRF
technique based on the language modelling framework. We
use Dirichlet priors for smoothing the maximum likelihood
estimate of the relevance models. We used RM3, the most
effective estimate, which uses i.i.d. sampling method and
interpolates the original query with the feedback model [1,
13]. We set the Dirichlet priors smoothing parameter µ ′ to
1000 as it is typically done [15, 16, 37].

For all the PRF models, we swept the number of top k documents
retrieved in the first stage among {5, 10, 25, 50, 75, 100} and the
number of expansion terms e among {5, 10, 25, 50, 75, 100}. We
swept the interpolation parameter α from 0 to 1 in steps of 0.1.
Regarding LiMe, we trained the β1 and β2 parameters. We tuned
the values of β1 among {0.01, 0.1, 1.0} and parameter β2 among
{10, 25, 50, 100, 150, 200, 250, 300, 350, 400, 450}. We tested both the
TF and the TF-IDF feature schemes. We selected those parameters
that maximise the values of MAP in the training set.

4.3 Results and Discussion
The results of the experiments regarding MAP, nDCG and RI are
summarised in Table 2. Overall, all the PRF techniques outperform
the language modelling baseline without query expansion. LiMe-
TF and LiMe-TF-IDF are the only methods that offered significant
improvements over LM in MAP and nDCG on all collections.

To further analyse if PRF techniques are beneficial, we measured
the robustness index. This value is positive for all the methods
on every collection. This means that, in average, more queries
were improved rather than worsened due to the PRF techniques.
Either LiMe-TF or LiMe-TF-IDF achieved the higher figures in RI
on every dataset except for MEDMM on the WT10G collection.

Additionally, RM3 achieve the same robustness index as LiMe-TF-
IDF on Robust04.

On all datasets, at least one of the LiMe techniques achieved the
highest results in terms of MAP and nDCG. No baseline outper-
formed LiMe on any dataset. LiMe-TF-IDF significantly surpassed
RFMF on four out of five datasets in terms of MAP and on three
out of five collections in terms of nDCG. Regarding RM3, LiMe-
TF-IDF significantly outperformed RM3 on two collections. The
strongest baseline, MEDMM, was only significantly surpassed by
LiMe-TF-IDF on the AP88-89 collection. However, on all datasets,
both LiMe-TF and LiMe-TF-IDF showed higher values in nDCG and
MAP than MEDMM. Although no baseline significantly improved
LiMe, MEDMM significantly surpassed RM3 in terms of nDCG and
MAP on the TREC-678 collection. Also, RM3 and MEDMM signif-
icantly improved RFMF in terms of MAP and nDCG on several
datasets.

It is interesting to remark that the PRF techniques achieved the
smallest improvements on the WT10G collection. This is probably
due to the nature of the web which is a noisy media. Also, the values
of RI on this dataset are the lowest.

Regarding the differences between LiMe-TF and LiMe-TF-IDF,
the latter approach showed better figures of MAP and nDCG on
all datasets except on the WT10G collection. Nevertheless, the
differences are significant only on the non-web datasets (AP88-89,
TREC-678 and Robust04). In contrast, LiMe-TF provided a slightly
higher RI on three out of five datasets compared to LiMe-TF-IDF. As
we commented, WT10G is a quite noisy web crawl. This result may
indicate that LiMe-TF is only adequate on noisy datasets. Also, the
optimal number of expansion terms e is smaller for LiMe-TF-IDF
than for LiMe-TF in four out of five collections which is also a good
feature in terms of efficiency.

4.3.1 Query Analysis. To provide insights into the good results
achieved by LiMe-TF and LiMe-TF-IDF, we manually studied the
expanded queries produced by the tested PRF methods. We show in
Table 3 the top 10 expansion terms for the TREC topic 664 (“Ameri-
can Indian Museum”) on the Robust04 collection.

RM3 provided bad expansion terms by adding very common
uninformative terms such as “will”, “1” or “new”. This seems to be
a problem of low IDF effect. In contrast, MEDMM yielded much
better expansion terms. However, some of them are of dubious
utility such as “live” or “part”. RFMF provided specific terms but
some of them are completely unrelated to the topic (e.g., “dolphin”
or “rafaela”). Hence, the inferior performance of RFMF is likely to
be due to the introduction of noisy terms. Regarding our methods,
we can see than LiMe-TF provided good expansion terms. Still,
this approach included the term “part” (as MEDMM did) which we
think is uninformative. In this case, LiMe-TF-IDF yielded the best
expansion terms. All of them are specific and related to the topic.

In the light of the results, we can claim that RM3 and MEDMM
tend to foster those terms that appear in the majority of the pseudo-
relevant set in contrast to matrix factorisation approaches. LiMe-TF-
IDFwas capable of selecting very specific and relevant terms such as
“smithsonian”. RFMF was also able to include relevant terms such as
“professor” but it also added non-related terms. Therefore, the main
advantage of the matrix formulation is its ability to select discrimi-
native words without being biased to popular and non-informative
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terms in the pseudo-relevant set. However, our approach base on
inter-term similarities is able to select relevant terms while RFMF
factorisation approach based on document and term latent factors
is incapable of filtering non-related terms.

4.3.2 Sensitivity Analysis of Parameters. Regarding the param-
eters of LiMe, we observed that the differences in effectiveness
between LiMe-TF and LiMe-TF-IDF when we changed the value
of β1 were minor. We can set β1 to 0.01 reducing the number of
parameters to tune and obtaining good results. Nevertheless, the
inclusion of ℓ1 regularisation into the LiMe model is still beneficial
since it provides sparsity to the learned matrixW with the cor-
responding space savings. Regarding β2, we plotted the values of
MAP achieved by LiMe-TF and LiMe-TF-IDF with different amount
of ℓ2 regularisation in Fig. 1. Except for the WT10G collection, the
parameter β2 is fairly stable among the values 150 and 400 for both
LiMe-TF and LiMe-TF-IDF.

We also studied how LiMe-TF-IDF behaves varying the size of
the pseudo-relevant set k , the number of expansion terms e and the
interpolation parameter α against the baselines RFMF, MEDMM
and RM3. Figure 2 summarises the results of the sensitivity analysis
in terms of MAP. The general trend is that a high number of pseudo-
relevant documents hurts the performance of the PRF techniques.
The optimal number of feedback documents was not greater than 25.
LiMe methods and RM3 are quite stable and they behave optimally
with 5-10 documents. In constrast, RFMF and MEDMM require 25
documents in the pseudo-relevant set depending on the dataset.

The optimal values of parameter e are quite variable. MEDMM
and RM3 require more expansion terms than any other approach ex-
cept on theWT10G dataset which is the noisiest one. LiMe methods
are robust to noisy collections and work well with a high number of
terms on WT10G. In contrast, RFMF is the technique that requires
the smallest number of expansion terms in general. Finally, LiMe
techniques are situated between the two extremes.

Regarding the interpolation parameter α , except for the GOV2
collection, we observed that the optimal value for LiMe-TF-IDF
lies within a narrower interval than the optimal values for RFMF,
MEDMM and RM3. Nevertheless, we can see that α has a notable
impact on any PRF technique and we should properly tuned it.
Overall, the performance of RFMF is very unstable when we vary α
(to a lesser extend, this is also true when varying the other parame-
ters). We also found that when we do not interpolate the feedback
model with the original query by setting α = 1 (i.e., when we use
the feedback model as the expanded query), RM3 showed the low-
est performance. In general, we observed that LiMe-TF-IDF and
MEDMM generate better feedback models to use in isolation.

5 RELATEDWORK
Pseudo-relevance feedback has become a fertile area of research
[4, 6, 8, 13–16, 21, 23, 26–28, 32, 37]. Those PRF techniques based
on language models are among the most effective [15] and for this
reason were used as baselines. Also, since RFMF was the first work
on applying matrix factorisation to PRF, we also included it as
baseline and described in the background section.

PRF methods have been adapted to collaborative filtering rec-
ommendation with great success [22]. RM [22] or the Rocchio
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Figure 1: Sensitivity of LiMe methods to β2 on the AP88-89,
TREC-678, Robust04, WT10G and GOV2 collection. The rest
of the parameters were fixed to their optimal values.

framework [35] are two examples of PRF approaches used as recom-
mender systems. Conversely, RFMF is a case of a recommendation
technique applied to PRF [37].

Following this analogy between PRF and collaborative filtering,
we can find a state-of-the-art recommendation technique, SLIM
[20], which is also based on linear methods. SLIM decomposes
the full user-item feedback producing an item-item similarity ma-
trix using ℓ1 and ℓ2 regularisation. With this decomposition, they
reconstruct the full user-item feedback matrix to generate recom-
mendations. In contrast, we only need to predict the first row of
X since we only have to expand the query. As SLIM does, LiMe
fills with zeros all the missing values of the input matrix. In the
beginning, in Recommender Systems, those unknown values were
not set to zero. Instead, the objective function was optimised only
for the known elements. However, later research found that this
procedure produces worse rankings than dealing with the whole
matrix considering all missing values as zeros [7].

Although RFMF and LiMe are PRF techniques based on matrix
factorisation, they compute different decompositions. The differ-
ences in performance are explained by the use of different objective
functions and optimisation algorithms. LiMe minimises the elas-
tic net loss and RFMF minimises the KL-divergence of the NMF
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Table 2: Values of MAP, P@5, nDCG and RI for LM, RFMF, MEDMM, RM3, LiMe-TF and LiMe-TF-IDF techniques on the AP88-
89, TREC-678, Robust04, WT10G and GOV2 collection. Statistically significant improvements according to permutation test
(p < 0.05) w.r.t. to LM, RFMF, MEDMM, RM3, LiMe-TF and LiMe-TF-IDF are superscripted with a, b, c, d , e and f , respectively.

Collection Metric LM RFMF MEDMM RM3 LiMe-TF LiMe-TF-IDF

AP88-89
MAP 0.2349 0.2774a 0.3010a 0.3002a 0.3062a 0.3149abcde

nDCG 0.5637 0.5749a 0.5955ab 0.6005ab 0.6003ab 0.6085ab

RI − 0.42 0.42 0.50 0.38 0.52

TREC-678
MAP 0.1931 0.2072 0.2327abd 0.2235a 0.2267a 0.2357abd

nDCG 0.4518 0.4746 0.5115abd 0.4987ab 0.5051ab 0.5198abde

RI − 0.23 0.26 0.40 0.48 0.46

Robust04
MAP 0.2914 0.3130a 0.3447ab 0.3488ab 0.3388ab 0.3517abe

nDCG 0.5830 0.5884 0.6227ab 0.6251ab 0.6223ab 0.6294ab

RI − 0.07 0.32 0.37 0.23 0.37

WT10G
MAP 0.2194 0.2389a 0.2472a 0.2470a 0.2484a 0.2476a

nDCG 0.5212 0.5262 0.5324 0.5352 0.5416a 0.5398a

RI − 0.30 0.36 0.20 0.32 0.30

GOV2
MAP 0.3310 0.3580a 0.3790ab 0.3755ab 0.3776ab 0.3830ab

nDCG 0.6325 0.6453 0.6653ab 0.6618ab 0.6656ab 0.6698abd

RI − 0.42 0.66 0.60 0.68 0.62

Table 3: Top 10 expansion terms for the TREC topic 664 (“American Indian Museum”) when using the different PRF methods
on the Robust04 collection.

a: RFMF

term weight

indian 0.1725
museum 0.1685
american 0.1505
professor 0.0193
tribal 0.0160
ancient 0.0155
dolphin 0.0153
rafaela 0.0140
activist 0.0137
racist 0.0137

b: MEDMM

term weight

indian 0.1511
museum 0.0802
american 0.0780
cultur 0.0210
year 0.0177
live 0.0153
nation 0.0148
artifact 0.0146
part 0.0139
tribal 0.0127

c: RM3

term weight

indian 0.1285
american 0.0895
museum 0.0874
year 0.0219
will 0.0209
west 0.0182
1 0.0167
tribal 0.0158
time 0.0149
new 0.0147

d: LiMe-TF

term weight

indian 0.0895
american 0.0873
museum 0.0855
year 0.0189
cultur 0.0184
nation 0.0181
part 0.0177
time 0.0168
tribal 0.0157
artifact 0.0146

e: LiMe-TF-IDF

term weight

indian 0.1392
museum 0.1364
american 0.1256
tribe 0.0393
artifact 0.0306
cultur 0.0272
tribal 0.0271
nation 0.0249
chumash 0.0219
smithsonian 0.0212

decomposition. This diversity in performance is also found in col-
laborative filtering where approaches such as SLIM outperforms
several alternative matrix factorization techniques [20].

Linear methods have also been used in Information Retrieval. For
example, [19] proposed a learning to rank approach based on linear
models that directly maximise MAP. Moreover, linear methods
have been applied to other tasks such a query difficulty prediction
[3]. In the context of PRF, [25] used logistic regression (a linear
classification method) to discriminate between relevant and non-
relevant terms. However, to the best of our knowledge, multiple
elastic net models have never been applied before to the PRF task.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we presented LiMe, a pseudo-relevance feedback
model based on linear methods. LiMe models the PRF task as a
particular matrix decomposition problem which involves the com-
putation of inter-term similarities. We propose a solution of this
decomposition based on linear least squares problemswith ℓ1 and ℓ2
regularisation and non-negativity constraints. For that purpose, we
use not only the information from the pseudo-relevant set but also
the original query before expansion. The experimental evaluation
showed that our proposal outperforms state-of-the-art baselines on
five TREC datasets.

This work paves the way for further investigation on linear
methods for pseudo-relevance feedback. The obtained results reveal
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c: RFMF varying query interpolation.
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d: MEDMM varying docs.
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f: MEDMM varying query interpolation.
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g: RM3 varying docs.
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i: RM3 varying query interpolation.
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Figure 2: Sensitivity of RFMF, MEDMM, RM3 and LiMe-TF-IDF to k (the number of feedback documents), e (the number of
expansion terms) and α (the interpolation parameter of the original query with the expansion terms) on the AP88-89, TREC-
678, Robust04, WT10G and GOV2 collections. The rest of the parameters were fixed to their optimal values.

the potential of LiMe as a general PRF method usable on top of
any retrieval model. LiMe is a flexible framework that allows the
introduction of different document-term features. The good results
achieved by LiMe using popular Information Retrieval features such

as TF and TF-IDF indicate that there may be room for improvements.
Thus, exploring alternative feature schemes seems to be a promising
research direction.
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We also envision to include a richer representation of text fea-
tures into the model. For example, the use of features extracted
from Wikipedia has proved to be beneficial in the PRF task [36].

Additionally, we plan to study how other similarity measures
may be useful for PRF. In particular, we plan to study translation
models because they usually rely on inter-term similarities [2, 12].
Previous work on translation models learnt inter-term similarities
from training data [2] or employed mutual information [10].
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