
On the Robustness and Discriminative Power
of Information Retrieval Metrics for Top-N Recommendation

Daniel Valcarce
daniel.valcarce@udc.es

Information Retrieval Lab
University of A Coruña

A Coruña, Spain

Alejandro Bellogín
alejandro.bellogin@uam.es
Information Retrieval Group

Universidad Autóma de Madrid
Madrid, Spain

Javier Parapar
javierparapar@udc.es

Information Retrieval Lab
University of A Coruña

A Coruña, Spain

Pablo Castells
pablo.castells@uam.es

Information Retrieval Group
Universidad Autóma de Madrid

Madrid, Spain

ABSTRACT
The evaluation of Recommender Systems is still an open issue in
the field. Despite its limitations, offline evaluation usually consti-
tutes the first step in assessing recommendation methods due to its
reduced costs and high reproducibility. Selecting the appropriate
metric is a critical and ranking accuracy usually attracts the most
attention nowadays. In this paper, we aim to shed light on the ad-
vantages of different ranking metrics which were previously used in
Information Retrieval and are now used for assessing top-N recom-
menders. We propose methodologies for comparing the robustness
and the discriminative power of different metrics. On the one hand,
we study cut-offs and we find that deeper cut-offs offer greater
robustness and discriminative power. On the other hand, we find
that precision offers high robustness and Normalised Discounted
Cumulative Gain provides the best discriminative power.

1 INTRODUCTION
Recommender Systems help users find their way in massive infor-
mation spaces. In a world of information overload, these systems
help users in finding relevant pieces of information [31]. The ob-
jective of a recommender system is to suggest items that may be
of interest to the users. Although the idea is simple to explain, the
goodness of a solution to the task is difficult to measure. What
constitutes a good recommendation? How should recommender
systems be evaluated?

Traditionally, recommender systems were defined as rating pre-
dictors. Their aim was to forecast the ratings that users would give
to each item [18, 19]. Therefore, for this rating prediction task, the
evaluation was based on error metrics such as RMSE (Root Mean
Squared Error) or MAE (Mean Absolute Error) [18]. The rationale
was that if a model is able to effectively predict ratings, we can
use it for recommending those items with the highest predicted
ratings. Nonetheless, it has been acknowledged that the assessment
of recommendation methods based on error metrics does not lead
to a good evaluation [18, 19, 27]. When deploying a recommender
system in production, the common task is to provide a short list of
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good suggestions where the predicted rating values are not shown
[19]. This task is usually referred to as top-N recommendation
[14]. Therefore, the focus should be on providing a list with good
items, not on accurately predicting any ratings. Moreover, rating
prediction studies how well a system can predict the rating for any
item while a top-N recommender focuses on the top relevant items
for each user. For all these reasons, this paradigm shift has been
brought to recommendation.

Although there is an increasing interest in assessing different
recommendation properties (such as diversity and novelty [11]), ac-
curacy remains the primary objective property of recommendation
[18, 19]. For a given user, we can say that a particular recommen-
dation is “correct” if that user likes the recommended item. To
evaluate recommendations, we can conduct online or offline exper-
iments. Online evaluations consist in asking real users about the
quality of the recommendations they received. However, this is an
expensive procedure. For this reason, as a first step, it is common
to perform offline evaluations. This type of assessment procedure
exploits a dataset of previously collected user-item interactions [18].
This dataset is usually divided into two splits: the training split is
used as input to the recommendation algorithm and the test split
is employed for measuring the performance of the recommender
system using different evaluation metrics. An extra validation split
for tuning the hyperparameters can also be used.

Offline evaluation is well established in the Information Retrieval
(IR) field by the Cranfield paradigm and the TREC initiative [42]. IR
and Recommender Systems (RS) are strongly related fields, where
both seek to provide relevant pieces of information to the users
[2]. The central difference is the representation of the information
need: while an IR system typically uses an explicit query prompted
by the user, a RS exploits the user’s data as an implicit query. The
Cranfield paradigm measures how a retrieval system meets the
information needs of the users using ranking-oriented metrics.
Some of these metrics have also been used for assessing RS in
the top-N recommendation task. However, in contrast to IR, the
evaluation of RS is a disputed issue. Since RS lack proper relevance
judgements, researchers use a hold-out data from the collection to
assess the quality of the recommendations. These judgements are
incomplete and obtained in a very different way compared to the
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IR relevance judgements. Since the assumptions of the Cranfield
paradigm are substantially different from those of the recommender
evaluation, should IR metrics be applied to RS? Although most
of these metrics are already being used in RS evaluation, they have
not been thoroughly studied in this field. A metric is robust when
shows the same behaviour when less relevance judgements are
available. Likewise, a metric is discriminative when changes in its
values are statistically significant. For this reason, we study the
robustness and discriminative power of several ranking-oriented IR
metrics to top-N recommendation in order to answer that question.

Our experiments on three datasets show that considering more
recommendations than the top ones (i.e., using deep metric cut-offs)
improves the robustness and discriminative power of the evaluation.
Additionally, we see that precision offers the best robustness figures
whereas normalised Discounted Cumulative Gain has the highest
discriminative power. Therefore, these metrics should be preferred
when evaluating top-N recommenders.

2 RELATEDWORK AND BACKGROUND
Evaluation plays a crucial role in IR and RS: the effectiveness of
any retrieval or recommender system needs always to be measured
empirically. IR has established the Cranfield paradigm as the stan-
dard evaluation methodology [42], but this is not the case in top-N
recommendation where several different approaches coexist.

Cranfield paradigm. It is a well-founded evaluation method-
ology in IR based on the use of test collections which contain
documents, topics and relevance judgements for each topic [42].
Assessors judge the documents to indicate which ones are relevant
to a given topic. With these relevance judgements, we can evaluate
the output of a retrieval system using ranking-oriented metrics.
However, the Cranfield paradigm has three fundamental assump-
tions: i) the information need of the user—specified by a topic— can
be approximated by topical similarity, ii) relevance is independent
of the users which implies that a set of relevance judgements is valid
for any user and iii) completeness of judgements, i.e., all the rele-
vant documents for a topic are known. Although these assumptions
are not generally true, they are reasonable and some deficiencies
can be compensated [42]. Therefore, this paradigm is the standard
systematic approach to the evaluation of retrieval systems. The
evaluation for a topic consists in generating a list of documents
sorted by decreasing relevance according to each retrieval model.
Ranking-oriented metrics evaluate these rankings using the rele-
vance judgements for that topic. The quality of a retrieval strategy
is measured as the average metric score for all topics.

The main problem of this approach is that the volume of infor-
mation in modern test collections is too large to have complete
relevance judgements. For this reason, a process called pooling
is conducted to select the documents whose relevance should be
assessed by humans [35, 42]. Documents that do not appear in the
pool are assumed to be non-relevant. The idea is that we should
make relative evaluations (not absolute) with the test collections.
To ensure this, relevance judgements should be unbiased. Pooling,
if performed correctly, may be a good enough approximation [42].
However, large-scale datasets such as ClueWeb contain hundreds of
millions of documents which are shallow pooled resulting in many
potentially relevant documents unjudged.

The limitations and biases of the Cranfield paradigm have been
extensively studied. There have been efforts to overcome the bias
produced by pooling [7, 10]. Also, Buckley and Voorhees studied
how the number of relevance judgements affects different precision-
oriented metrics [9]. They defined the robustness of a metric with
respect to incomplete judgements as how well the metric corre-
lates with itself when the relevance judgements are incomplete.
When using incomplete judgements, bpref correlated with itself
with all judgements and with AP better than other standard IR
metrics. They also found that bpref preserves the absolute scores
and the relative ranking of systems better than MAP or precision.
Yilmaz and Aslam later proposed three estimates of AP for the
incomplete judgements scenario [44]. Their proposals showed a
better correlation between themselves and AP than bpref. These
correlations between system rankings were measured in terms of
Kendall’s correlation [23]. Among the three proposals, infAP was
the metric that provided the best results [44]. To measure the robust-
ness to incomplete judgements in these experiments, the metrics
were calculated using random subsets of relevance judgements.
Buckley and Voorhees used stratified random sampling [9] while
Yilmaz and Aslam employed random sampling [44]. However, both
samplings are identical in expectation [44]. Additionally, Lu et al.
thoroughly studied the effect of the pooling depth in several IR
metrics providing a list of advices for IR evaluation [24].

Besides robustness to incompleteness, discriminative power is
another property of evaluation metrics that has been thoroughly
studied in IR [8, 24, 32, 33] andmeasures the capability of a metric to
discriminate among systems.We should note that the discriminative
power not only depends on the metric but also on the test collection
and the set of systems being compared. Buckley and Voorhees
proposed a first attempt to study the discriminative power of a
metric using a fuzziness value [8]. Later, Sakai introduced a more
formal method based on the bootstrap test [32]. Given a significance
level (e.g., p = 0.05), he computed the ratio of system pairs for
which a statistical test finds a significant difference. In particular,
Sakai employed the bootstrap test with Student’s t statistic for this
purpose [32]. To avoid fixing a particular significance level, Lu et
al. proposed to report the median system-pair p-value as a measure
of discriminative power [24]. Sakai also studied how incomplete
judgements affect the discriminative power in IR [33].

RS evaluation. Although top-N recommendation is now the
standard recommendation task in RS (in contrast to rating predic-
tion), there are still several controversial issues regarding evaluation
[14, 18, 19] such as the debate between offline and online experi-
ments. Recent studies restricted to particular domains have shown
discrepancies between CTR and offline metrics [1, 17]. Also, a more
exhaustive study analysed seven different recommendation algo-
rithms from a user-centric perspective using two accuracy metrics
[12] finding a poor matching between the perceived quality and
recall and fall-out metrics. In contrast, a posterior study in the
e-tourism domain showed that recall and fallout are a good approx-
imation of the quality perceived by the users [13]. Overall, online
evaluation depends on several variables such as the domain, the
demographics of the users or the display of recommendations. This
complicates the unbiased evaluation of recommender algorithms.
Additionally, reproducibility is difficult, if not impossible, to achieve
when researchers do not have access to the original experimental
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environment. For all these reasons, offline experimentation has
its place in the evaluation of recommender systems and usually
constitutes the first step in assessing the performance of recom-
mendation algorithms. Online assessments should be conducted in
an industrial scenario, but offline evaluation is also valuable as a
way of having an objective and preliminary comparison.

Recommender Systems test collections do not rely on pooling.
Instead, they employ a fraction of the data from the dataset (such
as ratings or clicks) for test purposes and the rest for building
the recommendation model. However, this does not mean that RS
evaluation is free from biases. In fact, Bellogín et al. showed that
sparsity and popularity biases impact the evaluation of RS [4]. Also,
metrics such as bpref and infAP which have been proposed in IR
to address incompleteness of relevance judgements [9, 44] have
rarely been used in recommendation [5, 26, 39]. To the best of our
knowledge, there has not been a systematic review of metrics in RS
regarding robustness to incompleteness and discriminative power.

3 IR METRICS FOR RECOMMENDATION
Cranfield paradigm can be adapted to RS evaluation in the following
manner: the users play the role of queries (since they both are
associated with an information need) and we need to evaluate item
rankings instead of document rankings. Cranfield evaluation makes
use of relevance judgements. In recommendation, we lack those
judgements and we approximate them with hold-out data from the
user. However, when evaluating RS, some Cranfield assumptions
do not hold (see Table 1 for a summary). In particular, relevance is
highly dependent on the users: the same item may not be relevant
to two different people. Moreover, relevance judgements are far
from complete. Since relevance is personal, we cannot build a set of
relevance judgements using a group of experts. Furthermore, since
we build the test dataset with hold-out data, the incompleteness of
the relevance judgements is intrinsic to the recommendation task.

Additionally, whereas MAP has been considered a reference met-
ric in IR (in spite of recent criticism [16]), RS lack consensus about
which metric is the most reliable to measure the ranking quality
of recommendations. In addition, when approximating relevance
judgements with a hold-out test set, how much data is used for the
training and test splits should be balanced. A larger training subset
(at the expense of a reduced test subset) will allow better modelling,
but it would provide worse evaluation reliability and vice versa.
Finally, the long tail distribution of items in RS systems impacts the
recommendation process. In contrast, IR evaluation does not have
to deal with such a great imbalance in the popularity of documents.

Regarding user relevance in RS, all the items rated by the target
useru in the test set with a value below a certain relevance threshold
τ are considered non-relevant items and form the setNu . Likewise,
Ru represents the set of relevant items for user u, i.e., those items
rated by u in the test set with a score greater than or equal to
the threshold τ . In a dataset with ratings ranging from 1 to 5, it
is common to set τ to 4. Those items that the target user did not
rate are considered unjudged (their relevance is unknown). Most
IR ranking metrics ignore unjudged elements and treat them as
non-relevant, but some metrics explicitly consider them separately.

Finally, in the top-N recommendation task, we seek to generate a
ranking of the Nmost relevant items for a given user [14]. Therefore,

Table 1: Comparison between Information Retrieval and
Recommender Systems evaluation assumptions.

Information Retrieval Recommender Systems

Topical similarity can approximate
the user’s information need.

User’s information need may be es-
timated in several different ways.

Relevance is independent on users. Relevance is dependent on users.
Relevance judgements are almost
complete (pooling depth).

Relevance judgements are far from
complete.

these systems deal with a set of usersU and a set of items I. We
represent the ranking of length n for user u by the list Lnu . We refer
to the access to the k-th position of that list by Lnu [k]. We denote
the rating from a user u to an item i by r (u, i).

Next, we present common IR metrics particularised to RS evalu-
ation. All the following metrics range from 0 to 1 where the higher
the value, the better. Also, these metrics are computed on a per-
user basis (denoted here with the subscript u). To obtain the final
value, we average the metric over all the users. If a RS cannot pro-
vide recommendations for a particular user, we assign a value of
zero to all metrics for that user to penalise low user coverage (i.e.,
not being able to provide recommendations to some users). These
metrics evaluate the quality of a recommendation ranking. It is
common to truncate the ranking at position n (this is the cut-off
and is represented by @n at the end of the metric name). Since
some metrics have multiple versions with slight differences, in this
work we follow trec_eval1 implementation of the metrics which
is the standard evaluation tool of the TREC initiative.

Precision (P). Precision measures how well a method puts rele-
vant items in the first n recommendations regardless the rank:

Pu@n =
��Lnu ∩ Ru

�� /n (1)

Recall. Recall measures the proportion of relevant items that
are included in the recommendation list with respect to the total
number of relevant items for a given user:

Recallu@n =
��Lnu ∩ Ru

�� / |Ru | (2)

Average Precision (AP). Average Precision averages precision
at the positions where a relevant item is found. rel(Lnu[k]) indicates
if the item at the k-th position of the ranking of size n for user u is
relevant. When AP is averaged over the set of topics (users in our
recommendation scenario) receives the name of mean AP (MAP).

APu@n = 1
|Ru |

∑n
k=1 rel

(
Lnu [k]

)
Pu@k (3)

NormalisedDiscountedCumulativeGain (nDCG). Thismet-
ric uses graded relevance (the values of the ratings) as well as
positional information of the recommended items [22]. Let D(i)
be a discounting function, G(u,n,k) be the gain we obtain by rec-
ommending item Lnu [k] to user u and let G∗(u,n,k) be the gain
associated to the k-th element in the ideal ranking of size n for the
user u (where items are ranked in decreasing order of gain):

nDCGu@n =
∑n
k=1G(u ,n,k )D(k )∑n
k=1G

∗(u ,n,k )D(k ) (4)

A common discount function is D(k) = log−12 (k + 1). Although
there exist multiple options for defining the gain function, our
1https://github.com/usnistgov/trec_eval

https://github.com/usnistgov/trec_eval
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preliminary experiments showed no meaningful differences among
them. Therefore, we decided to use simply G(u,n,k) = r (u, Lnu [k])
as the gain function hereinafter.

Reciprocal Rank (RR). It is computed as the inverse of the
position of the first relevant element in the ranking. As AP, when
averaged over a set of topics, this metric is called Mean RR (MRR).

RRu = 1 /mink
{
rel

(
Lnu [k]

)
> 0

}
(5)

Bpref. This metric was designed to be highly correlated with
AP but more robust to incomplete relevance judgements [9]. Bpref
is inversely related to the number of judged non-relevant items
that are located above each relevant item in the ranking list:

bprefu@n = 1
|Ru |

∑n
k=1 rel

(
Lnu [k]

) (
1 − min( |Lku∩Nu |, |Ru |)

min( |Nu |, |Ru |)

)
(6)

Inferred Average Precision (InfAP). InfAP yields the same
score MAP provides when the relevance judgements are complete;
however, it is also a statistical estimate of MAP when using incom-
plete judgements [44]. InfAP has shown a better correlation with
AP than bpref under this scenario. This metric is given by:

infAPu@n = 1
|Ru |

∑n
k=1 rel

(
Lnu [k]

)
E[P@k] (7)

where the expected precision at position k is defined as:

E[P@k] = 1
k +

k−1
k

|Lk−1u ∩Ru |+ε
|Lk−1u ∩Ru |+ |Lk−1u ∩Nu |+2ε

(8)

and ε is a small constant (we set ε to 0.00001 in our experiments).

4 METHODOLOGIES TO EVALUATE IR
METRICS IN TOP-N RECOMMENDATION

In this section, we propose methodologies to analyse the robustness
to incompleteness and the discriminative power of the aforemen-
tioned metrics in the evaluation of top-N recommenders based on
previous studies of these properties in IR. We start with the analysis
on robustness to incompleteness because relevance judgements are
very scarce in the recommendation scenarios and, thus, it is difficult
to make a reliable assessment of recommenders. Moreover, when
preferring one recommendation model over another, we need to
have statistically sound guarantees—the discriminative power of a
metric measure this desirable property.

Robustness to Incompleteness. When evaluating recommen-
ders systems, incompleteness is pervasive. The ratings in the test set
form the relevance judgements which are incomplete (in fact, this
is an intrinsic property of the recommendation task). A desirable
metric for recommendation should be robust to incompleteness in
the test set. We can simulate incompleteness in an IR scenario using
unbiased random sampling techniques [9, 44]. We follow a similar
approach to induce incompleteness when evaluating recommender
systems. However, previous work on RS evaluation has found two
types of incompleteness in the recommendation task [4]. When we
use IR metrics to assess recommender systems, two well differenti-
ated biases arise: the sparsity bias and the popularity bias. For this
reason, next, we analyse the robustness to the sparsity bias and the
robustness to the popularity bias independently.

Sparsity bias The sparsity bias arises in RS evaluation when we
lack known relevance for all the user-items pairs [4]. In recommen-
dation, users’ profiles are incomplete by definition: we build the test
set as a hold-out subset of the users’ profile. Moreover, in a scenario

without incompleteness, we will be unable to recommend anything
because nothing unknown would be available to suggest. Note that
the sparsity bias causes the absolute values of the metrics to lose
meaning, but the relative values can still be valid for comparative
purposes [4].

We propose to measure the robustness of different metrics to the
sparsity bias by evaluating those metrics using random samples of
the test set. We create test sets by removing relevance judgements
randomly. For each test set size, we can take different random
samples. Given a set of recommenders, we evaluate them according
to a particular metric and compute the ranking of systems. Then,
we measure Kendall’s correlation of this ranking with respect to the
ranking obtained by evaluating those systems using the original
test set. Finally, by averaging the rank correlation for each sample
of the same size, we obtain a final estimate of the robustness of a
metric for each test size. A highly robust metric will yield higher
average correlation values.

Popularity bias In contrast to IR, missing relevance judgements
are not uniformly distributed (this has been referred to as missing
not at random [25, 36]). The distribution of ratings in a recom-
mendation scenario follows a heavy skewed long-tail distribution.
Bellogín et al. studied this popularity bias and found that it strongly
affects the reliability of several IR metrics [4].

Since previous works on recommender systems remove popular
items to deal with the popularity bias [4, 14], we propose to build
progressively smaller test sets removing ratings from the most
popular items to measure the robustness of a metric to this bias.
Then, we can study the change in the correlation between systems
rankings of different subsets of the test set and the original test set.
The higher the value of the correlation, the higher the robustness
of such metric to the popularity bias.

Discriminative Power. When we compare two recommenda-
tion techniques, we expect that the variation in the values of a
metric to indicate a statistically significant difference. Otherwise, if
the difference is not significant, we would not be able to conclude
anything with that metric. We propose to measure the discrimina-
tive power of several IR metrics on different datasets. We follow a
procedure similar to the method presented by Sakai [32], but we
change the statistical test. Instead of using Bootstrap with the Stu-
dent’s t statistic, we can employ the permutation test (also known
as Fisher’s randomisation test) with the difference in means as test
statistic [15]. The permutation test provides a better estimation of
the p-value [34]. Since computing the exact p-value requires the
computation of 2n permutations (where n is the number of test
users), we can approximate the result of this test using Monte Carlo
sampling. With 100,000 samples, we can compute a two-sided p-
value of 0.05 with an estimated error of ±0.001 and a p-value of
0.01 with an error of ±0.00045 [15, 34].

For each metric, we may plot the p-values of the statistical test
between all possible system pairs sorted by decreasing value as in
[32]. We call each of those curves the p-value curve of a metric.
Since a highly discriminative metric will yield low p-values, we
would then prefer metrics with p-value curves close to the origin.
Furthermore, we also want to compute a value that summarises the
discriminative power of a metric. For this purpose, we use the sum
of the p-values between all system pairs as an approximation of the
area under the p-value curve. We call this value DP (discriminative
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Table 2: Datasets statistics

Dataset Users Items Ratings Density Gini

MovieLens 1M 6,040 3,706 1,000,209 4.468% 0.634
LibraryThing 7,279 37,232 749,401 0.277% 0.581
BeerAdvocate 33,388 66,055 1,571,808 0.071% 0.865

power). The lower the value of DP, the higher the discriminative
power of the metric. Note that DP has a use for comparing metrics
when using the same set of systems on the same dataset.

5 EXPERIMENTAL SETTINGS
In this section, we describe the experimental settings. We present
the employed datasets and the training-test splitting strategy. Then,
we explain the details of the followed evaluation methodology. Last,
we provide a brief description of the RS used in the experiments.

Datasets. We used three collections with explicit feedback in
form of 1-5 ratings: MovieLens 1M2, LibraryThing and BeerAd-
vocate3. Table 2 indicates the number of users, items and ratings,
as well as the density (percentage of user-item pairs that have a
rating) and the Gini coefficient for measuring the long tail (i.e., the
inequality in the distribution of ratings across items) of the datasets.

We created the training and test splits of the datasets by taking
80% of the ratings of each user for the training set and the remaining
data is used as test set. We avoid further biases by having the same
proportion of training and test data for each user.

Evaluation methodology. Several protocols for offline evalu-
ation in Recommender Systems have been proposed [3, 19]. We
decided to follow the AllItems approach which has been regarded
as a fair evaluation methodology and is similar to how systems are
evaluated in IR (where no hold-out test set is available) [3]: for each
user u, we rank all items in the dataset that have not been rated
by u in the training set. This methodology consists in ranking all
items in the test set except those already rated by the target user in
the training set. In this way, an ideal recommender system will be
able to achieve a perfect score in all the studied metrics. Note that
this evaluation procedure is highly correlated to other variants [3].

For assessing the robustness to incompleteness, on the one hand,
we use the methodology for studying the sparsity bias (presented
in Sec. 4) sweeping from samples with 100% of the ratings of the
original test set to samples with 5% of the ratings in steps of 5% to
simulate the sparsity bias. We compute the average of 50 samples of
each test set size which provides a good estimate in our experiments.
On the other hand, when using the methodology for analysing the
popularity bias (see Sec. 4), we start from using the ratings of 100%
of items to using only the ratings of the 80% least popular items in
steps of 1% to simulate the popularity bias.

Additionally, many IR metrics are based on binary relevance:
each item is either relevant or non-relevant for a given user. In this
work, since we focused on explicit feedback datasets, we have to
specify how to transform the ratings (a form of incomplete graded
relevance) to binary relevance. For this purpose, we set the rele-
vance threshold τ to 4, i.e., we consider non-relevant every item

2https://grouplens.org/datasets/movielens
3http://snap.stanford.edu/data/web-BeerAdvocate.html

rated below τ . Those items that are not rated by the target user in
the test set are neither relevant nor non-relevant—they are equiva-
lent to the unjudged documents in the Cranfield paradigm.

Recommender Systems. When examining metrics, we need
systems to compare. Previous works in IR studying different metrics
employed the runs submitted to TREC [9, 24, 44]. Since we do not
have an equivalent in RS, we implemented 21 recommendations
techniques and used their outputs to study the properties of several
IR metrics4. Note that we have chosen multiple types of algorithms
to have a representative set of recommendation techniques.

• Random, Popularity: basic baselines.
• CHI2,KLD,RSV,Rocchio’sWeights [38]: neighbourhood-
based techniques that stem from Rocchio’s feedback model.

• RM1, RM2 [29]: neighbourhood-based techniques that use
relevance-based language models.

• LM-WSR-UB,LM-WSR-IB [40]: user-based and item-based
approaches that with language models for neighbourhoods.

• NNCosNgbr-UB,NNCosNgbr-IB [14]: user-based and item-
based versions of a neighbourhood technique.

• SLIM [28]: sparse linear methods.
• HT [45]: graph-based technique
• SVD, PureSVD, BPRMF, WRMF [14, 21, 30, 37]: matrix
factorization techniques.

• LDA [6]: Latent Dirichlet Allocation.
• PLSA [20]: Probabilistic Latent Semantic Analysis.
• UIR-Item [43]: probabilistic user-item relevance model.

6 CHOOSING AMONG CUT-OFFS
When applying a ranking metric, we have to select the cut-off.
Recommenders usually show only a few suggested items because
users seldom consider more than the top ones. For this reason,
recommender systems literature usually employ shallow cut-offs
such as 5 or 10 [18]. However, the selection of the exact value of the
cut-off in some research papers is somewhat arbitrary. Although RS
typically present few recommendations to their users, deeper cut-
offs may provide a more reliable assessment of the recommenders
offline evaluation. Therefore, next, we analyse which cut-offs are
preferable regarding robustness and discriminative power.

Correlation Among Cut-offs. We study Kendall’s correlation
between systemswhen using the samemetric with different cut-offs.
We find high correlations between rankings when studying cut-offs
from 5 to 100. Overall, the correlation between cut-offs above 20 is
very high. Those correlations are almost always higher than 0.9 on
the LibraryThing and BeerAdvocate datasets. Note that previous
work has considered that two rankings with a correlation above
0.9 are almost equivalent [41]. On the MovieLens dataset, most of
the correlations are above 0.85 and the lowest found correlation
was between P@5 and P@100 and Recall@5 and Recall@100 with
a value of 0.76. For the sake of space, we choose a representative
example: Fig. 1 shows the correlation between different cut-offs of
nDCG on MovieLens 1M. The largest discrepancy is between the
cut-off at 5 and the rest of cut-offs. However, all the correlations are
at least 0.9 which represents a very strong correlation. Therefore,
we can conclude from this experiment that the choice of the cut-off

4We provide the source code of the experiments and the complete output of the
recommender systems at http://www.dc.fi.udc.es/~dvalcarce/metrics.html.

https://grouplens.org/datasets/movielens
http://snap.stanford.edu/data/web-BeerAdvocate.html
http://www.dc.fi.udc.es/~dvalcarce/metrics.html
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Figure 1: Correlation between different cut-offs of nDCG
metric on the MovieLens 1M dataset.
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Figure 2: Kendall’s correlation of different cut-offs of nDCG
with respect to themselves using the full test set when in-
creasing the sparsity bias on the MovieLens 1M dataset.

does not affect the ranking of the systems severely; however, it may
affect the robustness or the discriminative power.

Robustness Among Cut-offs. We test the robustness to spar-
sity and popularity of different cut-offs from 5 to 100 of each metric
following the procedure explained in Sec. 4. The results confirm that
larger cut-offs yield better figures of robustness when increasing
the sparsity and the popularity bias of the test set. As a represen-
tative example, Fig. 2 plots the robustness to the sparsity bias of
different cut-offs of nDCG on MovieLens 1M. Likewise, Fig. 3 plots
the robustness to the popularity bias of different cut-offs of nDCG.
In both figures, we can see that robustness increases as we use
deeper cut-offs. This phenomenon also occurs in the other studied
metrics on the three datasets with slight variations. We omit them
due to lack of space.

Discriminative Power Among Cut-offs. We study the dis-
criminative power (DP) of each metric using cut-offs from 5 to 100.
Using the procedure described in Sec. 4, we plot the p-values of
the paired statistical tests sorted by decreasing value on the Movie-
Lens 1M (see Fig. 4). We observe that deeper cut-offs (above 50)
consistently provide better figures of DP than shallower cut-offs.
Different metrics on the three datasets present similar results.

Implications. In light of these results, we can conclude that
the studied metrics with deeper cut-offs are more robust to the
sparsity and popularity biases and have better discrimina-
tive power. Additionally, since the ranking of systems produced
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Figure 3: Kendall’s correlation of different cut-offs of nDCG
with respect to themselves using the full test set when in-
creasing the popularity bias on the MovieLens 1M dataset.
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Figure 4: Analysis of the discriminative power of different
cut-offs of nDCG on the MovieLens 1M dataset.

by a metric when varying the cut-off from 5 to 100 does not change
notably, we should prefer deeper cut-offs. Therefore, if there is no
strong reason to choose a shallow cut-off such as 5 or 10, calculating
the metric over a larger ranking (let say n = 100 recommendations)
should be preferred in offline experiments. Note that such deep cut-
off provides better properties even though we may (and generally
will) lack n relevance judgements for each user.

7 CHOOSING AMONG METRICS
In the previous section, we compared each metric against them-
selves using different cut-offs and we found that a cut-off of n = 100
is a good choice due to its robustness and discriminative properties.
Now, we fix the cut-off to 100 and compare the previous metrics
among each other to study which have more desirable properties—
robustness and discriminative power.

Correlation Among Metrics. Herlocker et al. studied the cor-
relation among some metrics (some of them barely used anymore)
using only variants of one collaborative filtering algorithm on one
dataset and recommends further investigation [19]. Therefore, we
study the correlation among the system orderings according to
different modern ranking metrics on three datasets. Fig. 5 shows
Kendall’s correlation among metrics on the MovieLens 1M, Library-
Thing and BeerAdvocate datasets. On the LibraryThing collection,
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all correlations are above 0.9 threshold which indicates that the met-
rics produce almost identical rankings. On the other two datasets,
we observed stronger differences with some correlations below 0.8.

We see that MRR differs noticeably, especially on the MovieLens
1M and the LibraryThing datasets. Bpref also shows a low correla-
tion with the other metrics on the BeerAdvocate collection. Note
that bpref is poorly correlated with MAP on this dataset which is a
surprising result since bpref was designed to do so [9]. We suspect
that this may be produced by the highly skewed long tail of this
dataset. Instead, MAP is strongly correlated with nDCG on the
three datasets. Nevertheless, the ranking produced by the rest of
the metrics showed a fairly strong correlation among them.

Robustness Among Metrics. Fig. 6 depicts the results of the
experiments of robustness to the sparsity bias. We can see that all
the metrics are fairly robust to this bias since the correlation is
above 0.9 even when removing half of the test set. Precision and
nDCG showed very good figures of robustness to sparsity on the
three datasets (precision especially on BeerAdvocate). In contrast,
bpref, and to a lesser extent infAP and MRR, show poor robust-
ness to sparsity. This result is interesting because it is different
from what happens in IR. On the one hand, bpref and infAP are
techniques proposed for dealing with incomplete judgements in
IR [9, 44], but in top-N recommendation they are less robust than
other metrics. We should note that bpref and infAP were designed
for approximating average precision in scenarios with incomplete
judgements while this metric is not such gold standard in recom-
mendation. Still, it is surprising that MAP showed better robustness
figures than bpref and infAP on LibraryThing and BeerAdvocate.
On the other hand, utility-based metrics such as MRR were found
to be more resilient to changes in pooling depth which is related to
the sparsity bias in recommendation [24].

Fig. 7 shows the robustness to the popularity bias. On the Beer-
Advocate dataset, the correlations quickly drop after removing a
small percentage of the most popular items even reaching negative
correlation values. This phenomenon is likely caused by the highly
skewed long tail distribution of this dataset. Therefore, it is difficult
to draw conclusions from this collection. Overall, precision is the
best metric in terms of robustness to popularity whereas MRR is
the worst one. The robustness to the popularity bias of the rest of
the metrics depends heavily on the dataset.

We can claim that MRR is the least robust metric. This utility-
based metric suffers heavily from sparsity and popularity biases. In
contrast, precision is the most robust metric. More sophisticated
metrics such as nDCG also present good figures of robustness;
however, their additional complexity may be the reason why they
are less robust than simple binary metrics such as precision.

Discriminative Power Among Metrics. Fig. 8 reports our
findings in terms of discriminative power of the different studied
metrics. We also present the values of DP (an approximation of the
area under the p-value curve) in Table 3. Although the results vary
across datasets, we can find some general trends. We see that bpref,
and to a lesser extent infAP, presents low discriminative power
across all datasets. In contrast, nDCG and precision (in this order)
present the highest discriminative power on the test collections
with great difference to the rest of the metrics. Finally, MAP, Recall
and MRR show an erratic performance in terms of discriminative
power depending on the dataset.

Table 3: Values of DP (lower is better) of P, Recall, MAP,
nDCG, MRR, bpref and infAP (using a cut-off of 100) on the
MovieLens 1M, LibraryThing and BeerAdvocate datasets.

Dataset P Recall MAP nDCG MRR bpref infAP

MovieLens1M 2.6 7.0 2.8 1.4 15.5 9.9 8.4
LibraryThing 1.5 5.9 3.6 0.2 2.9 5.4 3.8
BeerAdvocate 1.9 8.3 10.7 4.4 5.8 12.7 4.8

8 CONCLUSIONS AND FUTUREWORK
In this paper, we studied the robustness and discriminative power of
several ranking metrics, originally used in IR, when applied to the
top-N recommendation task. To this end, we adapted and extended
previous methodologies developed in IR for studying robustness
against incompleteness and discriminative power.

We found that deeper cut-offs (around 100) offer better robust-
ness to sparsity and popularity biases than shallower cut-offs (5-10)
which are traditionally used in RS evaluation. Therefore, we con-
clude that we should employ deeper cut-offs because they are more
reliable in terms of robustness and discriminative power in offline
evaluations. Although only a few recommendations are displayed
to users, the use of deeper cut-offs allow us to perform more robust
and discriminative evaluations of recommender systems.

Our findings suggest that precision, a simple binary metric,
is very robust to sparsity and popularity biases. Normalised Dis-
counted Cumulative Gain also presented high robustness to the
sparsity bias and moderate robustness to the popularity bias. More-
over, in terms of discriminative power, nDCG and to a lesser degree
precision showed the best figures of all the tested metrics. We found
that bpref and infAP—which were proposed to address incomplete-
ness in IR—as well as MRR perform poorly in RS evaluation.

We envision to extend this work to different types of metrics.
Apart from ranking accuracy, diversity and novelty are also im-
portant properties of recommender systems [11]. It would be in-
teresting to analyse which diversity and novelty metrics provide
better robustness or discriminative power. Furthermore, in this
work, we have focused on the AllItems methodology because it
is the most similar to IR evaluation [3], but we also plan to study
further evaluation procedures. Finally, we intend to analyse the
impact of different dataset partitioning schemes such as temporal
splits and n-fold cross-validation.
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Figure 5: Correlation of P, Recall, MAP, nDCG,MRR, bpref and infAP (using a cut-off of 100) with each other on theMovieLens
1M, LibraryThing and BeerAdvocate datasets.
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Figure 6: Kendall’s correlation of P, Recall, MAP, nDCG, MRR, bpref and infAP (using a cut-off of 100) with respect to them-
selves using the test set when increasing the sparsity bias on the MovieLens 1M, LibraryThing and BeerAdvocate collections.
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Figure 7: Kendall’s correlation of P, Recall, MAP, nDCG, MRR, bpref and infAP (using a cut-off of 100) with respect to them-
selves using the test set when increasing the popularity bias on theMovieLens 1M, LibraryThing and BeerAdvocate collections.
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Figure 8: Analysis of the discriminative power of P, Recall, MAP, nDCG, MRR, bpref and infAP (using a cut-off of 100) on the
MovieLens 1M, LibraryThing and BeerAdvocate datasets.
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