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ABSTRACT
Query expansion is a successful approach for improving In-
formation Retrieval e↵ectiveness. This work focuses on pseu-
do-relevance feedback (PRF) which provides an automatic
method for expanding queries without explicit user feedback.
These techniques perform an initial retrieval with the origi-
nal query and select expansion terms from the top retrieved
documents. We propose two linear methods for pseudo-
relevance feedback, one document-based and another term-
based, that models the PRF task as a matrix decomposition
problem. These factorizations involve the computation of
an inter-document or inter-term similarity matrix which is
used for expanding the original query. These decomposi-
tions can be computed by solving a least squares regression
problem with regularization and a non-negativity constraint.
We evaluate our proposals on five collections against state-
of-the-art baselines. We found that the term-based formula-
tion provides high figures of MAP, nDCG and robustness in-
dex whereas the document-based formulation provides very
cheap computation at the cost of a slight decrease in e↵ec-
tiveness.

CCS Concepts
•Information systems ! Information retrieval; In-
formation retrieval query processing; Query refor-
mulation; Retrieval models and ranking;

Keywords
Information retrieval; linear methods; pseudo-relevance feed-
back; query expansion; linear least squares

1. INTRODUCTION
Two natural ways of approaching the enhancing of retrieval
e↵ectiveness are by improving the retrieval model or by mod-
ifying the query prompted by the user. In this paper, we
focus on the latter: how to alter the original query to obtain
a better rank. Query expansion techniques aim to add new
terms to the query. This expanded query is expected to pro-
vide better retrieval results than the initial one. Relevance
feedback is one of the most reliable types of query expan-
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sion methods, but it requires users to indicate which docu-
ments from those retrieved with the original query are rele-
vant [29]. An alternative method for expanding the queries
which does not need interaction from the user is pseudo-
relevance feedback (PRF). This approach is based on the
assumption that the top documents retrieved are relevant.
From these pseudo-relevant documents (which form the so-
called pseudo-relevant set), PRF techniques extract terms
(with their corresponding weights) to expand the original
query. This assumption is not too strong if the retrieval
model provides decent results. In fact, research has shown
that PRF is one the most e↵ective techniques to improve
the retrieval quality [28, 27, 8, 26, 4, 13, 6, 14, 15, 21, 16,
23, 41].

The language modeling framework is a fertile area of re-
search for PRF techniques [15, 32, 16]. However, in this
article, we propose a novel framework for the PRF task
which is not based on language models, but in linear meth-
ods, which we call LiMe. In particular, we propose two
modelings of the PRF task as matrix decomposition prob-
lems called DLiMe (Document-based Linear Methods) and
TLiMe (Term-based Linear Methods). LiMe framework and
the TLiMe model were first presented in our previous arti-
cle [39]. In this work, we extend the LiMe framework by
proposing DLiMe.

RFMF was the first formulation of PRF as a matrix decom-
position problem [41] and computes a latent factor represen-
tation of documents/queries and terms using non-negative
matrix factorization. In contrast, in this manuscript, we
propose a di↵erent decomposition that stems from the com-
putation of inter-document or inter-term similarities. Pre-
vious work on translation models has exploited this concept
of inter-term similarities [2, 12]; however, to the best of our
knowledge, no state-of-the-art PRF approach directly lever-
ages inter-document or inter-term similarities. Our matrix
formulations enable to compute these similarities that yield
within the query and the pseudo-relevant set. We use the in-
formation of these relationships between documents or terms
to expand the original query.

Since producing a good rank of expansion terms is critical for
a successful PRF technique, the modeling of inter-term sim-
ilarities seems to be a desirable property. Additionally, com-
puting good weights for those expansion terms is a critical
factor in the performance of a PRF technique. We also think
that modeling the relationship between pseudo-relevant doc-
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uments can be a faster way to produce expansion terms be-
cause the number of documents is much smaller than the
number of terms in the pseudo-relevant set. In fact, our ex-
periments show that the computation of inter-term similar-
ities produces high-quality rankings of expansion terms and
weights. In contrast, our proposal based on inter-document
similarities is computationally very cheap at the expense of
slightly worse expansion terms.

As [41] showed, an advantage of addressing PRF as a matrix
decomposition problem is that it admits di↵erent types of
features for representing the query and the pseudo-relevant
set. Since these features are independent of the retrieval
model, LiMe is a general framework for PRF that can be
plugged on top of any retrieval engine. Although we can plug
in retrieval-dependent features or a theoretical probabilistic
weighting function into LiMe if desired, we leave those ideas
for future work. In this and previous paper, we explore well-
known and straightforward weighting functions which allow
us to outperform state-of-the-art techniques.

LiMe modeling of the PRF task paves the way for devel-
oping multiple PRF algorithms since the proposed formu-
lations of the matrix decompositions can be calculated in
various ways. In this paper, we use a method based on reg-
ularized linear least squares regression. On the one hand, we
employ a `2 regularization scheme to avoid overfitting. On
the other hand, we use `1 regularization to enforce sparsity
into the learned inter-document or inter-term similarities.
This method provides an automatic feature selection which
gives us a more compact solution with the corresponding ef-
ficiency gains. The combination of `1 and `2 regularization
for linear least squares problems is also known as an elastic
net regression in Statistics [44]. Additionally, we add non-
negativity constraints to force the computed similarities to
be positive to increase the interpretability of the models.

We thoroughly evaluate DLiMe and TLiMe on five TREC
collections. The obtained results show that TLiMe outper-
forms state-of-the-art baselines regarding several common
e↵ectiveness metrics. Moreover, TLiMe achieved high val-
ues of robustness compared to the baselines. These findings
highlight the applicability of TLiMe as a pseudo-relevance
feedback technique. In contrast, DLiMe provides a compu-
tationally cheaper alternative with a slight decrease in e↵ec-
tiveness. It is important to note that LiMe framework can
exploit di↵erent features allowing the exploration of further
features schemes.

In summary, the contributions of this paper are DLiMe and
TLiMe, two novel matrix decomposition formulations of the
PRF task involving inter-document and inter-term similar-
ities and an algorithm based on constrained elastic net re-
gression for solving the proposed matrix decompositions and
computing the expansion terms. The empirical evaluation
of the e↵ectiveness of the proposed methods against state-
of-the-art baselines shows that DLiMe and TLiMe are com-
petitive PRF techniques.

2. BACKGROUND
In this section, we first describe pseudo-relevance feedback
(PRF). Then, we focus on state-of-the-art PRF techniques
based on the language modeling framework [24] because they

perform notably well in practice [13, 15, 16, 41]. Afterward,
we introduce previous work on PRF using matrix factoriza-
tion [41]. Finally, we introduce linear methods for regression
problems since our proposal rests on these models.

2.1 Pseudo-Relevance Feedback (PRF)
Query expansion methods aim to add new terms to the orig-
inal query. These techniques can improve the performance
of retrieval models when answering the users’ information
needs. Using true relevance feedback from the user is highly
e↵ective, but also di�cult to obtain. Hence, automatic
query expansion techniques, which do not require feedback
from the user, can be beneficial in practice [5]. Given the
utility of these methods, it is not surprising that initial work
on automatic query expansion dates from the sixties [18].
Manifold strategies for approaching this problem have been
developed [5]; however, the foundations of PRF were estab-
lished in the late seventies [8]. Pseudo-relevance feedback
(also known as blind relevance feedback) is a highly e↵ec-
tive strategy to improve the retrieval accuracy without user
intervention [8, 26, 4, 42, 13, 6, 14, 15, 21, 23, 16, 41]. In-
stead of using explicit feedback information from the user,
the top retrieved documents by the user’s original query are
assumed to be relevant. These documents constitute the
pseudo-relevant set. PRF techniques produce an expanded
version of the original query using the information from the
pseudo-relevant set. PRF methods use the expanded query
for a second retrieval, and the results of the second ranking
are presented to the user.

A plethora of strategies for weighting the candidate expan-
sion terms using the pseudo-relevant set information has
been developed. The Rocchio framework [28] was one of the
very early successful methods presented in the context of the
vector space model. Rocchio algorithm modifies the query
vector in a direction which is closer to the centroid of the
relevant documents vectors and further from the centroid of
non-relevant documents vectors. In [4], the authors used this
framework with di↵erent term weighting functions including
those based on pseudo-relevant feedback instead of relevance
feedback such as the Binary Independence Model [27], the
Robertson Selection Value [26], the Chi-square method [4]
or the Kullback-Leibler distance method [4].

2.2 PRF based on Language Models
Among all the PRF techniques in the literature, those devel-
oped within the Statistical Language Model framework [24]
are arguably the most prominent ones because of their sound
theoretical foundation and their empirical e↵ectiveness [15].
Within the language modeling framework, documents are
ranked according to the KL divergence D(·k·) between the
query and the document language models, ✓Q and ✓D, which
is rank equivalent to the negative cross-entropy [12]:

Score(D,Q) = �D(✓Qk✓D)
rank
=
X

t2V

p(t|✓Q) log p(t|✓D) (1)

where V is the vocabulary of the collection. To obtain better
results, instead of using the original query model ✓Q, we use
✓
0
Q which is the result of the interpolation between ✓Q and
the estimated feedback model ✓F [1, 15]:

p(t|✓0Q) = (1� ↵) p(t|✓Q) + ↵ p(t|✓F ) (2)
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where ↵ 2 [0, 1] controls the relative importance of the feed-
back model with respect to the query model. Therefore, the
task of a PRF technique under this framework is to provide
an estimate of ✓F given the pseudo-relevant set F . Next, we
remind two state-of-the-art PRF techniques based on the
language modeling framework [15].

2.2.1 Relevance-Based Language Models
Relevance-based language models or, for short, Relevance
Models (RM) are a state-of-the-art PRF technique that ex-
plicitly introduces the concept of relevance in language mod-
els [13]. Although RM were initially conceived for standard
PRF [13], they have been used in di↵erent ways such as the
generation of query variants [6], cluster-based retrieval [14]
or collaborative filtering recommendation [22, 35, 36, 37].

Lavrenko and Croft [13] proposed two models for estimat-
ing the relevance: RM1 (which uses i.i.d. sampling) and
RM2 (based on conditional sampling). We remind solely
RM1 since it has shown to be more e↵ective than RM2 [15].
RM1 estimates can be computed as follows when assuming
uniform document prior probabilities:

p(t|✓F ) /
X

D2F

p(t|✓D)
Y

q2Q

p(q|✓D) (3)

where p(t|✓D) is the smoothed maximum likelihood estimate
(MLE) of the term t under the language model of the doc-
ument D with Dirichlet priors as the preferred smoothing
technique [42, 13]. RM1 is typically called RM3 when it is
interpolated with the original query (see Eq. 2) [1].

2.2.2 MEDMM
The Maximum-Entropy Divergence Minimization Model (also
known as MEDMM) [16] is a PRF technique based on the
Divergence Minimization Model (DMM) [42] which stems
from the language modeling framework. It is similar to the
Rocchio algorithm from the vector space model if we use
the pseudo-relevant set to compute the relevant documents
vectors and the collection model for the non-relevant docu-
ments vectors [28]. MEDMM aims to find a feedback model
✓F which minimizes the distance to the language models of
the documents of the pseudo-relevant set and, at the same
time, maximizes the distance to the collection model ✓C (the
assumed non-relevant model). This model has a parameter
� to control the IDF e↵ect and parameter � to control the
entropy of the feedback language model:

✓F = argmin
✓

X

D2F

↵D H(✓, ✓D)� �H(✓F , ✓C)� �H(✓) (4)

where H(·, ·) denotes the cross entropy and H(·) denotes the
entropy.

MEDMM also gives a weight ↵D for each document based
on the posterior of the document language model:

↵D = p(✓D|Q) =
p(Q|✓D)P

D02F p(Q|✓0D)
=

Q
t2Q p(t|✓D)

P
D02F

Q
t02Q p(t0|✓0D)

(5)
The analytic solution to MEDMM, obtained with Lagrange

multipliers, is given by [16]:

p(t|✓F ) / exp

 
1
�

X

D2F

↵D log p(t|✓D)� �

�
log p(t|✓C)

!
(6)

where p(t|✓D) is the smoothed MLE of the term t under the
language model ✓D using additive smoothing with parameter
�. On the other hand, p(t|✓C) represents the MLE of the
term t in the collection. The feedback model computed by
MEDMM is also interpolated with the original query as in
Eq. 2.

2.3 PRF based on Matrix Factorization
Other authors have focused on developing PRFmodels based
on di↵erent ideas. In particular, RFMF was the first tech-
nique that applied matrix factorization to the PRF task [41].
This approach builds a document-term matrix X from the
query and the pseudo-relevant set. They built this matrix
using TF-IDF or weights derived from the language model-
ing framework. RFMF reconstructs, through non-negative
matrix factorization (NMF), the document-term matrix and
use the new weights as a scoring function to rank candi-
dates terms for expansion. This approach is inspired by the
Recommender Systems literature where matrix factorization
techniques are commonplace [11]. RFMF finds the latent
document and term factors with a particular parameter for
the number of dimensions d of the latent factors.

Formally, NMF is a matrix factorization algorithm which de-
composes the matrix X 2 Rm⇥n

+ in two matrices U 2 Rm⇥d
+

and V 2 Rd⇥n
+ such that X ⇡ UV . U represents the la-

tent factors of the query and the pseudo-relevant documents
whereas V represents the latent factors of the terms.

2.4 Linear Methods
Linear methods are a simple but successful collection of
techniques that have been used for regression and classi-
fication tasks. Given n features and m data points, ~y =
(y1, . . . , ym)T is the column vector which contains the re-
sponse and ~x1, . . . , ~xn are the m-dimensional vectors that
contains each of the n features of the m observations. A
linear method try to predict the response ~y using a linear
combination of ~x1, . . . , ~xn. The vectors of features can be ar-
ranged in the form of a matrix X of m rows and n columns.
Linear regression aims to find the optimal values of the co-
e�cients ~w = (w1, . . . , wn)

T that minimize the error ~✏:

~y = X ~w + ~✏ = w1 ~x1 + · · ·+ wn ~xn + ~✏ (7)

In particular, ordinary linear least squares models try to
find the best approximate solution of this system of linear
equations where the sum of squared di↵erences between the
data and the prediction made by the model serves as the
measure of the goodness of the approximation:

~w
⇤ = argmin

~w
k~✏k22 = argmin

~w
k~y �X ~wk22 (8)

Linear least squares loss is strictly convex; thus, it has a
unique minimum. Moreover, the simplicity of the model
favours its explainability and interpretability. However, this
model su↵ers from overfitting. For tackling this problem, it
is common to add `2 or Tikhonov regularization (this model
is also known as ridge regression in Statistics [9]). Imposing
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a penalty based on the squared `2-norm of the coe�cients ~w

produces a shrinking e↵ect which is controlled by the non-
negative parameter �2:

~w
⇤ = argmin

~w
k~y �X ~wk22 + �2 k~wk22 (9)

An alternative strategy to ridge regression is imposing a
penalty based on the `1-norm of the coe�cient vector. This
approach is commonly known as lasso regression in Statistics
[34]. This approach performs automatic feature selection as
the value of the non-negative parameter �1 grows:

~w
⇤ = argmin

~w
k~y �X ~wk22 + �1 k~wk1 (10)

Since both, ridge and lasso regressions, have beneficial prop-
erties, Zou and Hastie [44] developed a technique combining
both `1 and `2 regularization: the elastic net, which is a gen-
eralization of ridge and lasso regression. This approach can
perform shrinkage and feature selection at the same time
controlled by the non-negative parameters �1 and �2:

~w
⇤ = argmin

~w
k~y �X ~wk22 + �1 k~wk1 + �2 k~wk22 (11)

3. LIME: LINEAR METHODS FOR PRF
LiMe is designed for ranking the candidate terms for produc-
ing an expanded query Q

0. As it is usual in PRF, LiMe uses
only information about the original query Q and the pseudo-
relevant set F . The set F is composed of the top-k docu-
ments retrieved using the original query Q. We should note
that LiMe treats the query as another document. Thus, for
convenience, we define the extended feedback set F

0 as the
pseudo-relevant set plus the original query (F 0 = {Q} [ F )
and we denote its cardinality by m = |F 0| = k + 1. We
consider as candidate terms the subset of words from the
collection vocabulary V that appear in F

0. We refer to this
set by VF 0 and we denote its cardinality by n = |VF 0 |.

3.1 LiMe Framework
We can define LiMe using matrix or vector formulation. To
understand better the idea behind LiMe, we initially present
our technique under a matrix formulation. Afterward, we in-
troduce the vector representation which is much more con-
venient for its implementation.

Considering the query as another pseudo-relevant document,
we define the matrix X = (xij) 2 Rm⇥n. The first row rep-
resents the original query Q while the rest rows correspond
to the k documents from F . Each column of X corresponds
to a term from VF 0 . Each element xij represents a feature
between the document (or query) corresponding to the i-th
position and the term tj represented with the j-th column
of X. Therefore, each row of X is a sparse feature vector
representing the query or a pseudo-relevant document.

The objective of LiMe is to factorize this matrix X into the
product of itself and another matrix. In the case of TLiMe,
we build an inter-term matrix W = (wij) 2 Rn⇥n

+ whereas
in the case of DLiMe, we build an inter-document matrix
Z = (zij) 2 Rm⇥m

+ .

3.1.1 TLiMe Formulation

The matrix W represents the inter-term similarity between
pairs of words in VF 0 . In particular, each entry wij symbol-
izes the similarity between terms ti and tj . To increase the
interpretability of the model, we constrain the similarities
to be non-negative. Moreover, to avoid the trivial solution
(W equal to the identity matrix) we enforce that the main
diagonal of W are all zeros. Formally, we define TLiMe as
an algorithm that computes the following decomposition:

X ⇡ XW

s.t. diag(W ) = 0, W � 0
(12)

We formulate this matrix decomposition task as a constrained
linear least squares optimization problem. We want to min-
imize the residual sum of squares of the factorization. Addi-
tionally, to avoid overfitting and to enforce a sparse solution
we apply the elastic net penalty which combines `1 and `2

regularization. In this way, the objective function of LiMe
is the following one:

W
⇤ = argmin

W

1
2
kX �X Wk2F + �1 kWk1,1 +

�2

2
kWk2F

s.t. diag(W ) = 0, W � 0
(13)

Note that the matrix `1,1-norm (denoted by k·k1,1) is equiva-
lent to the sum of the `1-norm of the columns. On the other
hand, the squared Frobenius norm (denoted by k·k2F ) is cal-
culated as the sum of the squares of each matrix element
which is equivalent to the sum of the squared `2-norm of
the columns. Using these equivalences between the matrix
and vector norms, we can split this matrix formulation by
columns rewriting the optimization problem in the following
vector form:

~w
⇤
·j = argmin

~w·j

1
2
k~x·j �X ~w·jk22 + �1 k~w·jk1 +

�2

2
k~w·jk22

s.t. wjj = 0, ~w·j � 0
(14)

where the non-negativity constraint is applied to the ele-
ments of ~w·j vector which is the j-th column of the W ma-
trix. Similarly, ~x·j represents the j-th column of the X ma-
trix. For each term j in VF 0 , we train an elastic net [44]
with an equality constraint to zero in one coe�cient and
non-negativity constraints on the rest of the coe�cients.

We merge the solutions of the regression problems depicted
in Eq. 14 to build the inter-term similarity matrix W

⇤. We
use the computed matrix decomposition to reconstruct the
first row of X (which we will denote by x̂1·) as follows:

x̂1· = ~x1·W
⇤ (15)

Note that, by construction, X is a sparse matrix (hence also
the row vector ~x1·) and W

⇤ will be a sparse matrix due to
the `1 regularization. Thus, the product between the row
vector ~x1· and the matrix W

⇤ is highly e�cient. We use
the pseudo-relevant documents for learning the inter-term
similarities, but we reconstruct the first row of X because
we want to expand only the query.

3.1.2 DLiMe Formulation
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The document-based linear method for PRF (DLiMe) is
based on the computation of the matrix Z = (zij) 2 Rm⇥m

+ .
This matrix represents the inter-document similarity be-
tween pairs of elements from the extended pseudo-relevant
set F

0 (i.e., the query and the pseudo-relevant documents).
The matrix formulation of DLiMe is analogous to TLiMe:

X ⇡ Z X

s.t. diag(Z) = 0, Z � 0
(16)

We also constrain Z to be non-negative to foster interpretabil-
ity and enforce the diagonal to be zero to avoid the trivial
solution. Since we are only interested in reconstructing the
first row of X, we only need to compute the first row of
Z. Therefore, DLiMe factorization can be reduced to a sin-
gle constrained linear least squares optimization problem as
follows:

~z
⇤
1· = argmin

~z1·

1
2
k~z1· � ~z1·Xk22 + �1 k~z1·k1 +

�2

2
k~z1·k22

s.t. z11 = 0, ~z1i � 0
(17)

Note that compared to TLiMe, where n least squares prob-
lem have to be solved, DLiMe is much more e�cient because
it only involves solving one least squares problem. To re-
construct the first row of X we simply need to perform the
following vector-matrix multiplication:

x̂1· = ~z
⇤
1·X (18)

3.2 LiMe Feedback Model
LiMe feedback model is created from x̂1·, which can be re-
constructed using either DLiMe or TLiMe. We can normal-
ize this vector to obtain a probability estimate. In this way,
the probability of the j-th term given the feedback model is
given by:

p(tj |✓F ) =

8
<

:

x̂1jP
tv2VF 0 x̂1v

if tj 2 VF 0 ,

0 otherwise
(19)

We only rank those terms that appear in the pseudo-relevant
set or the query. Although some PRF techniques can rank
all the terms in the collection, in practice, it is common to
only rank those appearing in the pseudo-relevant set or the
query [13, 41]. In fact, scoring terms that do not appear
in F

0 would contradict the foundations of PRF since this
approach is based on local information (i.e., the pseudo-
relevant set and the query).

Although both LiMe and RFMF decomposes a similar ma-
trix, they use di↵erent objective functions and optimization
algorithms. Additionally, LiMe employs elastic net regular-
ization. In contrast, RFMF is based on non-negative factor-
ization which can deal with non-negative and sparse data
while LiMe deals with this data by enforcing non-negativity
constraints in the optimization problem. Additionally, LiMe
discovers inter-document (DLiMe) or inter-term similarities
(TLiMe) that yield within the pseudo-relevant set and the
query while RFMF learns document and term latent factor
representations.

Next, we discuss how we fill matrix X = (xij) with features
relating query/documents i with terms j.

3.3 Feature Schemes
One advantage of LiMe is its flexibility: we can use any fea-
ture scheme to build matrix X. To foster sparsity in matrix
X, we decided to fill with zeros all those entries that corre-
spond to terms that do not appear in the current document.
This approach will provide a quite sparse matrix which can
be more e�ciently decomposed than a dense one.

Let s(w,D) be the function that assigns a score to the term
w given the document D and let f(w,D) be the frequency
of occurrence of term w in document D, the matrix X is
filled in the following manner:

xij =

8
><

>:

s(wj , Q) if i = 1 and f(wj , Q) > 0,

s(wj , Di�1) if i > 1 and f(wj , Di�1) > 0,

0 otherwise

(20)

We explored several strategies based on well-known weight-
ing functions used in Information Retrieval. We studied sev-
eral term frequency measures: raw frequency counts, bina-
rized counts and logarithmic versions. Additionally, we tried
di↵erent TF-IDF formulations. We achieved the best results
using the following TF-IDF weighting function proposed by
Salton [31]:

stf-idf (w,D) = (1 + log2 f(w,D))⇥ log2
|C|

df (w)
(21)

where |C| is the number of documents in the collection and
df (w) represents the document frequency of term w (i.e.,
the number of documents in the collection where the term
w occurs).

In any case, other alternatives may be possible. In fact, in
previous work, we also reported the performance for the log-
arithmic TF heuristic [39]. For example, it may be worth
exploring features related to the first retrieval such as the
contribution of an individual term to the document score
within a particular retrieval model; however, in that case,
LiMe would not be independent of the retrieval technique.
Also, we could derive probabilistic weighting functions (as
RFMF does) at the expense of introducing a few new pa-
rameters to tune into the model. We leave for future work
the investigation of additional features schemes. Neverthe-
less, the ability of LiMe for performing well with simple and
well-known features such as TF-IDF is remarkable. Also,
this weighting function is supported by decades of research
in Information Retrieval.

3.4 Implementation Details
Equation 14 shows that the computation of matrix W

⇤ can
be divided in multiple linear regression problems, one for
each vector ~w

⇤
·j which represents a term in VF 0 . Thus, each

column of matrix W
⇤ can be computed separately and, if

needed, in parallel without any dependencies among them.
In contrast, DLiMe only requires to solve one least squares
problem (Eq. 17). To solve these regression problems, we
used the highly e�cient BCLS1 (Bound-Constrained Least

1See http://www.cs.ubc.ca/~mpf/bcls
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Squares) library, which implements a two-metric projected-
descent method for solving bound-constrained least squares
problems.

An additional optimization for TLiMe is to drop part of the
matrix W

⇤. This matrix is used for computing expansion
terms when multiplied by vector ~x1· (see Eq. 15). Therefore,
we only need those rows that correspond to a term in the
original query. If we only store those similarities, we save
much space since the number of terms in a query prompted
by a user is tiny compared to the number of rows.

4. EXPERIMENTS
In this section, we assess the performance of LiMe against
state-of-the-art techniques. The experiments were performed
using Terrier [17] on five TREC collections. We describe the
evaluation methodology and explain the choice of baselines
and the parameter setting. Finally, we present and analyze
the results comparing the behavior of LiMe concerning the
baselines.

4.1 Evaluation Methodology
We conducted the experiments on diverse TREC collections
commonly used in PRF literature [15, 16, 41]: AP88-89,
TREC-678, Robust04, WT10G and GOV2. The first one is
a subset of the Associated Press collection from years 1988
and 1989. The second collection is based on TREC disks
4 and 5. The third dataset was used in the TREC Robust
Track 2004 and consists of poorly performing topics. The
fourth one, the WT10G collection, is a general web crawl
used in the TREC Web track 2000-2001. Finally, we also ran
our experiments on a large dataset, the GOV2 collection,
which is a web crawl of .gov websites from 2004 (used in
the TREC Terabyte track 2004-2006 and the Million query
track 2007-2008). We applied training and test evaluation
on all collections. We found the model hyperparameters that
maximize MAP (mean average precision) using the training
topics, and we used the test topics to evaluate the perfor-
mance of the methods. Table 1 describes each collection and
the training and test splits.

We produced a rank of 1000 documents per query. We eval-
uated MAP and nDCG (normalized discounted cumulative
gain) using trec_eval2 at a cut-o↵ of 1000. Additionally,
we measured the RI (robustness index or reliability of im-
provement [30]) against the non-expanded query. This met-
ric, which ranges in the interval [�1, 1], is computed as the
number of topics improved by using PRF minus the num-
ber of topics hurt by the PRF technique divided by the
number of topics. We employed one-tail permutation test
with 10,000 randomizations and p < 0.05 to measure if the
improvements regarding MAP and nDCG were statistically
significant [33]. We cannot apply a paired statistic to RI
because it is a global metric.

We used title queries from TREC topics. We preprocessed
the collections with the standard Terrier stopwords removal
and Porter stemmer since previous work recommended the
use of stemming and stopwords removal [15].

2See http://trec.nist.gov/trec_eval

Table 1: Collections statistics.

Collection #docs
Avg doc Topics

length Training Test

AP88-89 165k 284.7 51-100 101-150
TREC-678 528k 297.1 301-350 351-400
Robust04 528k 28.3 301-450 601-700
WT10G 1,692k 399.3 451-500 501-550
GOV2 25,205k 647.9 701-750 751-800

4.2 Baselines and Parameter Setting
We employed the state-of-the-art language modeling frame-
work for performing the first and second stage retrievals [24].
In particular, we used the KL divergence model (see Eq. 1)
which allow us to introduce a feedback model easily [12]. For
smoothing the document language models, we used Dirichlet
priors smoothing [43] with parameter µ = 1000. To compare
the e↵ectiveness of our proposals, we employed the following
state-of-the-art baselines:

LM First, we should always compare a PRF technique against
the performance of a retrieval model without feedback infor-
mation. We used language modeling retrieval with Dirichlet
priors (µ = 1000).

RFMF We included this PRF technique because it is based
on the non-negative factorization of a document-term ma-
trix obtained from the query and the pseudo-relevant set
[41]. We set the number of dimensions of the factorization,
d, to the size of the relevant set plus one as the authors rec-
ommended [41]. We used the TF-IDF weighting function.

MEDMM We also employed the maximum-entropy diver-
gence minimization model which is recognized as one of the
most competitive PRF techniques [16]. We followed the rec-
ommendations of the authors, and we set the IDF parameter
� to 0.1, the entropy parameter � to 1.2 and the additive
smoothing parameter � to 0.1 [16].

RM3 Relevance-based language models are an e↵ective PRF
technique based on the language modeling framework. We
use Dirichlet priors for smoothing the maximum likelihood
estimate of the relevance models. We used RM3, the most
e↵ective estimate, which uses i.i.d. sampling method and
interpolates the original query with the feedback model [13,
1]. We set the Dirichlet priors smoothing parameter µ

0 to
1000 as it is typically done [15, 16, 41].

For all the PRF models, we swept the number of top k doc-
uments retrieved in the first stage among {5, 10, 25, 50, 75,
100} and the number of expansion terms e among {5, 10, 25,
50, 75, 100}. We swept the interpolation parameter ↵ from
0 to 1 in steps of 0.1. Regarding LiMe, we trained the �1

and �2 parameters. We tuned the values of �1 among {0.01,
0.1, 1.0} and parameter �2 among {10, 25, 50, 100, 150, 200,
250, 300, 350, 400, 450}. We selected those parameters that
maximize the values of MAP in the training set.

4.3 Results and Discussion
The results of the experiments regarding MAP, nDCG, and
RI are summarized in Table 2. Overall, all the PRF tech-

APPLIED COMPUTING REVIEW  DEC. 2018,  VOL. 18,  NO. 4 10



niques outperform the language modeling baseline without
query expansion. However, TLiMe is the only method that
o↵ered significant improvements over LM in MAP and nDCG
on all collections. DLiMe showed competitive e↵ectiveness
concerning MEDMM and RM3.

To further analyze if PRF techniques are beneficial, we mea-
sured the robustness index. This value is positive for all
the methods on every collection. This value means that,
on average, more queries were improved rather than wors-
ened due to the PRF techniques. Either DLiMe or TLiMe
achieved the highest figures in RI on every dataset except
for MEDMM on the WT10G collection. Additionally, RM3
achieve the same robustness index as TLiMe does on the
Robust04 collection.

On all datasets, TLiMe achieved the highest results regard-
ing MAP and nDCG. No baseline outperformed TLiMe on
any dataset. TLiMe significantly surpassed RFMF on four
out of five datasets regarding MAP and nDCG. Regarding
RM3, TLiMe significantly outperformed RM3 on three col-
lections (concerning MAP or nDCG). The strongest base-
line, MEDMM, was only significantly surpassed by TLiMe
on the AP88-89 collection. However, on all datasets, TLiMe
showed higher values in nDCG and MAP than MEDMM. Al-
though no baseline significantly improved TLiMe, MEDMM
significantly surpassed RM3 and DLiMe regarding nDCG
and MAP on the TREC-678 collection. Also, DLiMe, RM3,
and MEDMM significantly improved RFMF in terms of MAP
and nDCG on several datasets.

It is interesting to remark that the PRF techniques achieved
the smallest improvements in the WT10G collection. This
small improvement is probably due to the nature of the web
which is a noisy media. Also, the values of RI on this dataset
are the lowest.

Regarding the di↵erences between DLiMe and TLiMe, the
latter approach showed better figures of MAP and nDCG on
all datasets. Nevertheless, the di↵erences are significant only
on the TREC-678 collections. In contrast, DLiMe provided
higher RI than TLiMe on GOV2 and the same figure on
AP88-89 collections

4.3.1 Query Analysis
To provide insights into the good results achieved by DLiMe
and TLiMe, we manually studied the expanded queries pro-
duced by the tested PRF methods. Table 3 shows the top 10
expansion terms for the TREC topic 664 (“American Indian
Museum”) on the Robust04 collection.

RM3 provided bad expansion terms by adding very com-
mon uninformative terms such as “will”, “1” or “new”. Those
terms seem to be a problem of low IDF e↵ect. In contrast,
MEDMM yielded much better expansion terms. However,
some of them are of dubious utility such as “live” or “part”.
RFMF provided specific terms, but some of them are com-
pletely unrelated to the topic (e.g., “dolphin” or “rafaela”).
Hence, the inferior performance of RFMF is likely to be due
to the introduction of noisy terms. Regarding our meth-
ods, we can see than DLiMe provided good expansion terms.
Still, this approach included the term “hey” which we think
is uninformative. In this case, TLiMe yielded the best ex-
pansion terms. All of them are specific and related to the

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0 50 100 150 200 250 300 350 400 450 500

M
A

P

�2

AP88-89

TREC-678

Robust04

WT10G

Gov2

a) DLiMe

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0 50 100 150 200 250 300 350 400 450 500

M
A

P

�2

AP88-89

TREC-678

Robust04

WT10G

Gov2

b) TLiMe

Figure 1: Sensitivity of DLiMe and TLiMe
techniques to �2 on each collection. The rest of the

parameters were fixed to their optimal values.

topic.

In the light of the results, we can claim that RM3 and
MEDMM tend to foster those terms that appear in the ma-
jority of the pseudo-relevant set in contrast to matrix fac-
torization approaches. LiMe was capable of selecting very
specific and relevant terms such as “smithsonian” or “chu-
mash”. RFMF was also able to include relevant terms such
as “professor” but it also added non-related terms. There-
fore, the main advantage of the matrix formulation is its
ability to select discriminative words without being biased
to popular and non-informative terms in the pseudo-relevant
set. However, our approach based on inter-term or inter-doc
similarities can select relevant terms while RFMF factoriza-
tion approach based on document and term latent factors is
incapable of filtering non-related terms.

4.3.2 Sensitivity Analysis of Parameters
Regarding the parameters of LiMe, we observed that the dif-
ferences in e↵ectiveness between DLiMe and TLiMe when we
changed the value of �1 were minor. We can set �1 to 0.01
reducing the number of parameters to tune and obtaining
good results. Nevertheless, the inclusion of `1 regularization
into LiMe models is still beneficial since it provides sparsity
to the learned matrix W with the corresponding space sav-

APPLIED COMPUTING REVIEW  DEC. 2018,  VOL. 18,  NO. 4 11



0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

5 10 25 50 75 100

M
A

P

k

AP88-89

TREC678

Robust04

WT10G

GOV2

a) RFMF varying docs.

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

5 10 25 50 75 100

M
A

P

e

AP88-89

TREC678

Robust04

WT10G

GOV2

b) RFMF varying terms.

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.0 0.2 0.4 0.6 0.8 1.0

M
A

P

↵

AP88-89

TREC678

Robust04

WT10G

GOV2

c) RFMF varying query interpolation.
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d) MEDMM varying docs.
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e) MEDMM varying terms.
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f) MEDMM varying query
interpolation.
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g) RM3 varying docs.

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

5 10 25 50 75 100

M
A

P

e

AP88-89

TREC678

Robust04

WT10G

GOV2

h) RM3 varying terms.
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Figure 2: Sensitivity of RFMF, MEDMM, RM3, DLiMe and TLiMe to k (the number of feedback
documents), e (the number of expansion terms) and ↵ (the interpolation parameter of the original query

with the expansion terms) on each collection. The rest of the parameters were fixed to their optimal values.
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Table 2: Values of MAP, P@5, nDCG and RI for LM, RFMF, MEDMM, RM3, DLiMe and TLiMe
techniques on each collection. Statistically significant improvements according to permutation test (p<0.05)

w.r.t. to LM, RFMF, MEDMM, RM3, DLiMe and TLiMe are superscripted with a, b, c, d, e and f ,
respectively.

Collection Metric LM RFMF MEDMM RM3 DLiMe TLiMe

AP88-89
MAP 0.2349 0.2774a 0.3010ab 0.3002ab 0.3112ab 0.3149abcd

nDCG 0.5637 0.5749a 0.5955ab 0.6005ab 0.6058ab 0.6085ab

RI � 0.42 0.42 0.50 0.52 0.52

TREC-678
MAP 0.1931 0.2072 0.2327abde 0.2235ab 0.2206ab 0.2357abde

nDCG 0.4518 0.4746 0.5115abde 0.4987ab 0.4936ab 0.5198abde

RI � 0.23 0.26 0.40 0.44 0.46

Robust04
MAP 0.2914 0.3130a 0.3447ab 0.3488ab 0.3435ab 0.3517ab

nDCG 0.5830 0.5884 0.6227ab 0.6251ab 0.6247ab 0.6294ab

RI � 0.07 0.32 0.37 0.32 0.37

WT10G
MAP 0.2194 0.2389a 0.2472a 0.2470a 0.2368a 0.2476a

nDCG 0.5212 0.5262 0.5324 0.5352 0.5290 0.5398a

RI � 0.30 0.36 0.20 0.26 0.30

GOV2
MAP 0.3310 0.3580a 0.3790ab 0.3755ab 0.3731ab 0.3830ab

nDCG 0.6325 0.6453 0.6653ab 0.6618ab 0.6588ab 0.6698abd

RI � 0.42 0.66 0.60 0.72 0.62

Table 3: Top 10 expansion terms for the TREC topic 664 (“American Indian Museum”) when using the
di↵erent PRF methods on the Robust04 collection.

a) RFMF

term weight

indian 0.1725
museum 0.1685
american 0.1505
professor 0.0193
tribal 0.0160
ancient 0.0155
dolphin 0.0153
rafaela 0.0140
activist 0.0137
racist 0.0137

b) MEDMM

term weight

indian 0.1511
museum 0.0802
american 0.0780
cultur 0.0210
year 0.0177
live 0.0153
nation 0.0148
artifact 0.0146
part 0.0139
tribal 0.0127

c) RM3

term weight

indian 0.1285
american 0.0895
museum 0.0874
year 0.0219
will 0.0209
west 0.0182
1 0.0167
tribal 0.0158
time 0.0149
new 0.0147

d) DLiMe

term weight

indian 0.1392
museum 0.1365
american 0.1257
smithsonian 0.0394
artifact 0.0307
hey 0.0272
tribal 0.0271
cultur 0.0250
chumash 0.0219
tribe 0.0213

e) TLiMe

term weight

indian 0.1392
museum 0.1364
american 0.1256
tribe 0.0393
artifact 0.0306
cultur 0.0272
tribal 0.0271
nation 0.0249
chumash 0.0219
smithsonian 0.0212

ings. Regarding �2, we plotted the values of MAP achieved
by DLiMe and TLiMe with di↵erent amount of `2 regular-
ization in Fig. 1. Except for the WT10G collection, the
parameter �2 is relatively stable among the values 150 and
400 for both DLiMe and TLiMe.

We also studied how DLiMe and TLiMe behave varying the
size of the pseudo-relevant set k, the number of expansion
terms e and the interpolation parameter ↵ against the base-
lines RFMF, MEDMM, and RM3. Figure 2 summarizes
the results of the sensitivity analysis regarding MAP. The
general trend is that a high number of pseudo-relevant doc-
uments hurts the performance of the PRF techniques. The
optimal number of feedback documents was never higher
than 25. LiMe methods and RM3 are quite stable, and
they behave optimally with 5-10 documents. In contrast,
RFMF and MEDMM may require up to 25 documents in
the pseudo-relevant set depending on the dataset.

The optimal number of expansion terms is quite variable.
MEDMM and RM3 require more expansion terms than any
other approach except on the WT10G dataset which is the
noisiest one. LiMe methods are robust to noisy collections
and work well with a high number of terms on WT10G. In
contrast, RFMF is the technique that requires the smallest
number of expansion terms in general. Finally, DLiMe and
TLiMe are situated between the two extremes.

Regarding the interpolation parameter ↵, except for the
GOV2 collection, we observed that the optimal values for
DLiMe and TLiMe lie within a narrower interval than the
optimal values for RFMF, MEDMM, and RM3. Neverthe-
less, we can see that ↵ has a notable impact on any PRF
technique and we should adequately tune it. Overall, the
performance of RFMF is very unstable when we vary ↵ (to
a lesser extent, this is also true when varying the other pa-
rameters). We also found that when we do not interpo-
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late the feedback model with the original query by setting
↵ = 1 (i.e., when we use the feedback model as the expanded
query), RM3 showed the lowest performance. In general, we
observed that DLiMe, TLiMe, and MEDMM generate better
feedback models to use in isolation.

5. RELATED WORK
Pseudo-relevance feedback (PRF) is a fertile area of research
in Information Retrieval [28, 27, 8, 26, 4, 13, 6, 14, 15, 32,
21, 23, 16, 41]. Among the PRF techniques, those based on
the language modeling framework have showed great e↵ec-
tiveness [15]. Therefore, we used them as baselines and de-
scribed them in Section 2. Additionally, we included RFMF
as a baseline because it was the first work that modeled the
PRF task as a matrix factorization problem [41].

PRF methods have been adapted to collaborative filtering
recommendation with great success [22]. In particular, rele-
vance-based language models [22, 36, 37, 38] and the Rocchio
framework [35]. Conversely, RFMF is a case of a recommen-
dation technique applied to PRF [41].

Following this analogy between PRF and collaborative fil-
tering, we can find a state-of-the-art recommendation tech-
nique, SLIM [20], which is also based on linear methods.
SLIM decomposes the full user-item feedback producing an
item-item similarity matrix using `1 and `2 regularization.
With this decomposition, they reconstruct the full user-item
feedback matrix to generate recommendations. In contrast,
we only need to predict the first row of X since we only have
to expand the query. As SLIM does, LiMe fills with zeros all
the missing values of the input matrix. In the beginning, in
Recommender Systems, those unknown values were not set
to zero. Instead, the objective function was optimized only
for the known elements. However, later research found that
this procedure produces worse rankings than dealing with
the whole matrix considering all missing values as zeros [7].

Although RFMF and LiMe are PRF techniques based on
matrix factorization, they compute di↵erent decompositions.
The di↵erences in performance are explained by the use of
di↵erent objective functions and optimization algorithms.
LiMe minimizes the elastic net loss and RFMF minimizes
the KL-divergence of the NMF decomposition. This diver-
sity in performance is also found in collaborative filtering
where approaches such as SLIM outperforms several alter-
native matrix factorization techniques [20].

Linear methods have also been used in Information Re-
trieval. For example, [19] proposed a learning to rank ap-
proach based on linear models that directly maximize MAP.
Moreover, linear methods have been applied to other tasks
such a query di�culty prediction [3]. In the context of PRF,
[25] used logistic regression (a linear classification method)
to discriminate between relevant and non-relevant terms.
However, to the best of our knowledge, multiple elastic net
models have never been applied before to the PRF task.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we presented LiMe, a framework where the
PRF task is modeled as a matrix decomposition problem
which involves the computation of inter-term similarities.

In previous work, we proposed TLiMe, a technique based
on inter-term similarities. In this extended version, we also
present DLiMe which is based on an inter-document matrix.
TLiMe and DLiMe factorizations are solved as linear least
squares problems with `1 and `2 regularization and non-
negativity constraints. For that purpose, we use not only the
information from the pseudo-relevant set but also the orig-
inal query before expansion. The experimental evaluation
showed that TLiMe outperforms state-of-the-art baselines
on five TREC datasets whereas DLiMe shows competitive
e↵ectiveness with a reduced computational cost.

This work paves the way for further investigation on linear
methods for pseudo-relevance feedback. The obtained re-
sults reveal the potential of LiMe as a general PRF method
usable on top of any retrieval model. LiMe is a flexible
framework that allows the introduction of di↵erent document-
term features. The good results achieved by DLiMe and
TLiME using only TF-IDF indicate that there may be room
for improvements. Therefore, exploring alternative feature
schemes seems to be a promising research direction.

We also envision to include a richer representation of text
features into the model. For example, the use of features
extracted from Wikipedia has proved to be beneficial in the
PRF task [40]. Additionally, we plan to study how other
similarity measures may be useful for PRF. In particular, we
plan to study translation models because they usually rely
on inter-term similarities [2, 12]. Previous work on trans-
lation models learned inter-term similarities from training
data [2] or employed mutual information [10].
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[21] J. Parapar and Á. Barreiro. Promoting Divergent
Terms in the Estimation of Relevance Models. In
Proceedings of the 3rd Cnternational Conference on
Advances in Information Retrieval Theory, ICTIR ’11,
pages 77–88. Springer-Verlag, sep 2011.
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Linear Methods for Pseudo-Relevance Feedback. In
Proceedings of the 33rd Annual ACM Symposium on
Applied Computing, SAC ’18, pages 678–687, New
York, NY, USA, 2018. ACM.

[40] Y. Xu, G. J. Jones, and B. Wang. Query Dependent
Pseudo-Relevance Feedback Based on Wikipedia. In
Proceedings of the 32Nd International ACM SIGIR
Conference on Research and Development in
Information Retrieval, SIGIR ’09, page 59, New York,
NY, USA, 2009. ACM.

[41] H. Zamani, J. Dadashkarimi, A. Shakery, and W. B.
Croft. Pseudo-Relevance Feedback Based on Matrix
Factorization. In Proceedings of the 25th ACM
International on Conference on Information and
Knowledge Management, CIKM ’16, pages 1483–1492,
New York, NY, USA, 2016. ACM.

[42] C. Zhai and J. La↵erty. Model-based Feedback in the
Language Modeling Approach to Information
Retrieval. In Proceedings of the 10th International
Conference on Information and Knowledge
Management, CIKM ’01, page 403, New York, NY,
USA, 2001. ACM.

[43] C. Zhai and J. La↵erty. A Study of Smoothing
Methods for Language Models Applied to Information
Retrieval. ACM Transactions on Information Systems,
22(2):179–214, 2004.

[44] H. Zou and T. Hastie. Regularization and Variable
Selection via the Elastic Net. Journal of the Royal
Statistical Society: Series B (Statistical Methodology),
67(2):301–320, 2005.

APPLIED COMPUTING REVIEW  DEC. 2018,  VOL. 18,  NO. 4 16



ABOUT THE AUTHORS: 

Daniel Valcarce is a Ph.D. student at the University of A Coruña (Spain). He 
obtained his B.Sc. and M.Sc. degrees in Computer Science from the same university. 
His research interests cover recommender systems, information retrieval and 
machine learning. He is particularly interested in adapting information retrieval 
models to solve recommendation problems. He has been reviewer for multiple 
conferences such as ECIR, RecSys, CIKM and SIGIR. For more information, go to 
https://www.dc.fi.udc.es/~dvalcarce. 

Javier Parapar is an Assistant Professor at the University of A Coruña (Spain). He 
was President of the Spanish Society for IR from 2014 to 2018. Javier Parapar holds 
a B.Sc.+M.Sc. in Computer Science and he got his Ph.D. in Computer Science (cum 
laude) in 2013, both from the University of A Coruña  (Spain). His current research 
interests include but are not limited to information retrieval evaluation, 
recommender systems, text mining, and summarization. He regularly serves as 
reviewer and PC member of conferences such as ACM RecSys, The Web 
Conference (WWW), ACM SIGIR, ECIR, etc. He is a member of IP&M editorial 
board and a regular reviewer for journals such as ACM TOIS, IRJ, DKE and TKDE. 
For more information, go to https://www.dc.fi.udc.es/~parapar. 

Álvaro Barreiro is a Professor in Computer Science at the University of A Coruña 
(Spain) and the group leader  of the Information Retrieval Lab.  He has supervised 
five doctoral theses and five research projects of the National R&D program, as well 
as other regional projects and R&D projects with companies. His research interests 
include information retrieval models, efficiency in information retrieval systems, 
text and data analysis and classification, evaluation and recommender systems. He 
has been acknowledged as ACM Senior Member and he is  a member of ACM and 
ACM-SIGIR, BCS and BCS-IRSG, AEPIA and SERI societies. For more 
information, go to https://www.dc.fi.udc.es/~barreiro. 

APPLIED COMPUTING REVIEW  DEC. 2018,  VOL. 18,  NO. 4 17


	Introduction
	The Problem
	Theoretical Background
	System model
	The Constant Bandwidth Server
	DVFS
	GRUB-PA

	Implementation in Linux
	Deadline Scheduling
	Frequency Scaling
	Implementing GRUB-PA

	Experimental Evaluation
	Hard real-time schedulability
	Badly dimensioned reservations
	Changing the reservation periods
	Coping with frequency switch times
	Using multiple cores
	Soft real-time schedulability

	Related Work
	Conclusions
	Acknowledgments
	References

