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Abstract. Null Hypothesis Significance Testing is the de facto tool for
assessing effectiveness differences between Information Retrieval systems.
Researchers use statistical tests to check whether those differences will
generalise to online settings or are just due to the samples observed in
the laboratory. Much work has been devoted to studying which test is
the most reliable when comparing a pair of systems, but most of the
IR real-world experiments involve more than two. In the multiple com-
parisons scenario, testing several systems simultaneously may inflate the
errors committed by the tests. In this paper, we use a new approach
to assess the reliability of multiple comparison procedures using simu-
lated and real TREC data. Experiments show that Wilcoxon plus the
Benjamini-Hochberg correction yields Type I error rates according to
the significance level for typical sample sizes while being the best test in
terms of statistical power.
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1 Introduction

A thorough evaluation methodology is important to advance in the develop-
ment of effective retrieval systems. In Information Retrieval (IR), researchers
use TREC-like collections to evaluate systems and make inferences about their
effectiveness differences. These collections provide a limited number of topics
(usually, 50). Null Hypothesis Significance Testing (NHST) is a tool to improve
the certainty of those inferences over the few available topics. Statistical tests
serve to assess if differences observed in laboratory settings would generalise and
hold in operational, real-world settings. Several studies have explored which sta-
tistical test is the most reliable for IR evaluation, but most of them are centred
around the comparison of just two systems [9, 18, 19, 24, 26–29]. Few works have
validated multiple testing procedures to compare more than two systems [3, 16].

A typical IR search experiment involves comparing the effectiveness of various
systems against several baselines. In this scenario, we are interested in distin-
guishing the best ones, and thus we need to test every system against all others.
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If we have m retrieval systems, comparing each one against all others requires
k = m(m−1)

2 different pairwise evaluations. With NHST, this means we have a
family of k different null hypotheses, one for each possible pair of systems, that
we are testing simultaneously1. When conducting multiple testing, we need to
be very careful. If we make a decision about whether to reject each null hypoth-
esis without accounting for the fact that we have performed several tests, we
may end up rejecting many true null hypotheses, i.e. having a very high Type
I error rate. In terms of new research discoveries, this means that a researcher
performing multiple tests without any adjustment that accounts for multiple
tests will likely find positive improvements where there may be none in reality.
For example, Sanderson and Ferro recently showed that 40%-50% of uncorrected
significance tests in IR research are likely Type I errors, concluding that multiple
testing corrections are critical for experimental work [10].

There are several adjustment procedures for addressing this problem. The
common idea behind them is to adjust the p-values by accounting for the fact
that we have several null hypotheses tested. The aim is to control the overall
Type I error rate and thus improve the confidence in the decision to reject H0.
Several works have advocated the use of adjustment procedures for IR evaluation
when comparing more than two systems [10, 11, 23], but few studies have empir-
ically validated the reliability of these procedures in IR [3, 16]. Our work aims
to contribute to fill that gap. Boytsov et al. [3] examined the behaviour of sev-
eral adjustment procedures using a collection with tens of thousands of topics.
They concluded that multiple comparison procedures seem to over-adjust the
p-values and thus end up with a higher rate of false negatives (i.e. low average
power) when having a sample size of 50 queries. Unadjusted procedures seem
more attractive since they have fewer false negatives but at the price of hav-
ing more false positives. More recently, Ihemelandu and Ekstrand [16] employed
simulated IR and RecSys data over effectiveness scores and concluded that the
best adjustment was Benjamini-Yekutieli since it yielded the lowest Type I error
rate and showed great average power in mixed-effect-size experiments.

In this work, we use two different approaches to explore the behaviour of
multiple comparison adjustments in a typical IR experiment. First, we employ
past TREC data to simulate new systems with realistic ranking behaviour by
adopting the simulation approach by Parapar et al. [18]. This method learns a
model from search system’s results and then uses this model to create different
experimental situations. We construct scenarios where every system is equal to
all others and scenarios where every system is different from the rest. With this
certainty about the truth or falseness of the null hypothesis for every pairwise
comparison, we can accurately estimate the Type I error rates and complete
power of the tests. Second, we use real TREC data from the Million Query to
further validate our claims. We take the effectiveness scores of a series of systems
over hundreds of topics as the ground truth of their differences. By having a large
sample size, we may assume that the observed performance is a good estimation

1We may have only one global null hypothesis: whether all systems are equal. How-
ever, we believe pairwise hypotheses are more interesting in IR evaluation.
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of the whole population. Thus, with the effectiveness values from those topics
we may decide whether two systems have equal average performance. Then,
we sample different subsets of those topics, evaluate the systems only on those
samples, and observe which test decisions agree more with the ground truth.

We evaluated some of the commonest tests in IR evaluation, namely, the
t-test, the Wilcoxon Signed-Rank test, the adjusted two-way ANOVA, and
the permutation test for multiple comparisons (randomised TukeyHSD). We
used the following adjustment procedures: Bonferroni [8], Holm [13], Benjamini-
Hochberg [1] and Benjamini-Yekutieli [2]. Results show that unadjusted tests
yield an exceedingly high Type I error rate, emphasising the need to use adjust-
ment procedures when multiple testing. Interestingly, most adjustment proce-
dures do not reach the expected designed ratio of Type I errors. In fact, they
produce an error rate lower than expected, especially when adjusting p-values
yielded by a t-test, although they improve as the number of topics increases.
Results on real TREC data show that Wilcoxon plus the Benjamini-Hochberg
adjustment is the best in terms of power, and thus, we recommend it for future
work.

2 Background

IR experiments commonly involve comparing the performance of several systems
by computing effectiveness scores over a series of topics. Statistical tests are
required to determine if differences between those scores can be ascribed to
something different from random chance. The typical approach in IR is using a
two-sided paired test, with the null hypothesis H0 being the equality of mean
scores. Given a pair of systems, we compute a test statistic using their per-topic
scores and then we compute a p-value. This p-value quantifies the probability
of obtaining a comparable or more extreme test statistic value under the null
hypothesis. Based on the p-value, we decide whether to reject the null hypothesis
of the systems being equal. Rejecting H0 when the p-value is below a given
threshold α provides us with a way of controlling the Type I error rate. The
problem when comparing more than just one pair of systems—which is usually
the case—is that we are testing several hypotheses at the same time, which
may inflate the Type I error rate. This is known as the multiple comparison
problem (MCP). If we have m retrieval systems, comparing all pairs of systems
requires k = m(m−1)

2 different null hypotheses. The significance level α controls
the probability of incorrectly rejecting the null hypothesis when it is true. Thus,
the probability of correctly accepting every null hypothesis when they are all
true is (1 − α)k. The probability of committing at least one Type I error is
1 − (1 − α)k. This is the family-wise error rate (FWER)2. For example, if we
have m = 6 systems, then we would do k = 6(6−1)

2 = 15 tests and, with α = 0.05,
the FWER would be equal to 0.53. In other words, we would have a 53% chance
of committing one Type I error, i.e. incorrectly identify a result as significant.

2Assuming that the k tests are independent.



4 Otero et al.

2.1 Controlling the Family-wise Error Rate

Several strategies have been proposed to control the FWER. Two of the most
popular are Bonferroni’s and Holm’s methods. The common idea is to raise
the bar of evidence required to reject any null hypothesis. In other words, these
strategies make the reject decision more conservative, which improves confidence
in the decision to reject H0.

Bonferroni Correction. The Bonferroni correction adjusts the p-value at
which every null is rejected based on the total number of tests being per-
formed [8]. Specifically, if we are performing k tests, we only reject those with a
p-value ≤ α

k . This very strict correction ensures the FWER is lower than α, but
being so strict may result in a considerable loss of power.

Holm’s Method. Holm’s method is also known as Holm’s step-down procedure
or Holm-Bonferroni method [13]. In this case, the threshold that we will use to
reject each null hypothesis will depend on the p-values of the rest of hypotheses.
This is different to the Bonferroni correction, where the threshold only depends
on the number of hypotheses being tested. Let p1 ≤ p2 ≤ ... ≤ pk−1 ≤ pk be
the p-values of each hypothesis sorted in ascending order, and let Hi be the
hypothesis associated with pi. The method proceeds as follows:

1. If p1 > α
k , accept all the hypotheses. This is, no difference is significant.

2. If p1 ≤ α
k reject H1 and consider H2.

3. If p2 > α
k−1 , accept Hi≥2.

4. If p2 ≤ α
k−1 , reject H2 and consider H3.

5. Repeat the process until finding the first j such that pj >
α

k−j+1

Other examples of corrections are the Simes-Hochberg [12, 25], Hommel [14,
15] and Rom [21] methods. We focus on Bonferroni and Holm since they are the
most popular.

These corrections are post-hoc adjustments, i.e., we first compute an unad-
justed test and then employ an adjustment procedure to correct the p-values.
There are another alternatives that already take into account the multiple testing
scenario when modelling distributions under the null hypothesis. For example,
the two-way ANOVA with TukeyHSD correction and its randomised version, the
randomised TukeyHSD test [4].

Two-way ANOVA with TukeyHSD correction. The two-way ANOVA
tests the omnibus hypothesis that all the systems compared are statistically
equal. Rejecting this hypothesis means that there is one system different from
the rest, but we do not know nothing about the pairwise comparisons. Thus,
we need to follow-up the ANOVA with a TukeyHSD test, which will give us a
p-value for each pairwise comparison.
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Randomised TukeyHSD. This test is a generalisation of the permutation test
to multiple comparisons. At each step, the test permutates each array of per-topic
scores and then computes the difference between the mean scores for every pair
of systems, using the perturbed arrays. The p-value for each pair is the number
of times that the maximum perturbed difference (i.e. the difference between
the maximum score and the minimum score after pertubation) is larger than the
observed difference for this pair. We have included a pseudo-code in Algorithm 1.

Algorithm 1 Paired Randomised Tukey HSD
1: Input
2: X n×m topic-system scores matrix.
3: B number of permutations.
4: Output
5: P n× n matrix holding a p-value for each pairwise system comparison.
6: for k ← 1 to B do
7: initialise n×m matrix X ′

8: for each topic t do
9: row t of X ′ ← permutation of values in row t of X

10: end for
11: d′ ← maxi X̄ ′

i −minj X̄ ′
j ▷ X̄ ′

i is the mean of column i
12: for each pair of systems i, j do
13: if d′ > |X̄i − X̄j | then
14: Pi,j ← Pi,j +

1
B

15: end if
16: end for
17: end for

The main counterpart of these procedures that control the FWER is making
the comparison more conservative. This may reduce the power of the test—with
respect to unadjusted procedures—, increasing the number of Type II errors3.
In fact, there will always be a trade-off between controlling the FWER and the
power to reject the null hypothesis. Recall from the previous section that the
FWER is defined as the probability of making at least one false positive error.
Controlling this error makes very unlikely to reject any null hypothesis, and as
the number of hypotheses grows, this reduces the power.

2.2 Controlling the False Discovery Rate

A recent class of approaches for the MCP focuses on controlling for what is
known as the false discovery rate (FDR). The FDR is the proportion of false
positives among the differences predicted as significant [1]. The rationale is to
make the test less strict but still be able to control the ratio of Type I errors.

3A Type II error happens when the null hypothesis is incorrectly accepted.
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Benjamini-Hochberg procedure (BH). The first strategy of this kind was
proposed by Benjamini and Hochberg [1]. Let pj be the j-th smallest p-value out
of the k p-values, and let Hj be the hypothesis associated with pj . The FDR δj
for hypothesis Hj is bounded by k×pj

j ≤ δj . Now, if we want an FDR of δ for
the whole experiment, then we must reject all hypotheses that satisfy:

pj ≤ δ
j

k

Benjamini-Yekutieli procedure (BY). Other alternative is the Benjamini-
Yekutieli procedure [2]. This procedure refines the bound used by the BH pro-
cedure, such that we must reject the hypotheses that satisfy:

pj ≤ δ
j

k
∑k

i=1
1
i

It is important to understand the differences between the notions of α and δ.
Suppose we control the FDR (δ) for k hypotheses at a level of 0.05. This means
that if we repeat the experiment many times, we should expect, on average,
that 5% of the rejected null hypotheses will be false positives. Now suppose
that we control the FWER (α) for k hypotheses at a level of 0.05. This means
that we should expect to make at least one false positive 5% of the times. Here
we can see why controlling for the FDR is less stringent than controlling the
FWER. In fact, when having just k = 10 comparisons (something very likely in
IR, since we only need 5 different systems to perform 10 pairwise comparisons),
simulations show that controlling the FWER at 0.05 causes the power to fall
below 60% [17, Chapter 13].

In this work, we evaluate both adjustments that control the FWER and those
that control the FDR.

3 Method

We study the behaviour of several multiple comparison procedures by adopting
the simulation approach by Parapar et al. [18]. This method allows us to simulate
systems with realistic behaviour while controlling the truth or falseness of the
null hypothesis. With full control over the null, we can compute accurate error
and power rates of the adjustment procedures.

The simulation first fits a regressor for each topic-system pair that exists
in a given collection. It uses the relevance data of each document in the given
ranking. Using relevance data is less risky and requires fewer assumptions than
using score distributions to model the behaviour of a retrieval system [18, 20, 27].
This regressor models the appearance of relevant and non-relevant documents
on the ranking according to their position. The fitted regressor has this form:

hθ =
1

1 + e−θ0−θ1·p
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where p is the position in the ranking, θ0 and θ1 are the fitted parameters, and
hθ is the probability of relevance at position p.

By sampling from the set of topic regressors, we can generate multiple simu-
lated rankings for the same system to compare the adjustment procedures under
H0. We show how this sampling is performed in Algorithm 2. Then, by mod-
ifying the parameters θ0 and θ1 of each fitted regressor, we can simulate bet-
ter and worse systems and compare the adjustment procedures under H1. This
stochastic simulation models the behaviour of ranking systems in a realistic way,
where some queries are improved, and some are degraded, as shown by Parapar
et al. [18]. Instead of using this simulation to generate just pairs of two sys-
tems [18], we use this approach to simulate scenarios with multiple comparisons.
In particular, we simulate two different scenarios:

Algorithm 2 Algorithm for sampling.
1: Input
2: hθ A fitted logistic regressor.
3: Output
4: R A simulated ranking.
5: R← {};
6: for position← 1 to rank_size do
7: BernoulliParam← hθ(position)
8: Draw a sample rel_position ∼ Bernoulli(BernoulliParam)
9: R[position]← rel_position ▷ rel_position is either 0 or 1

10: end for

Scenario 1: Every Null Hypothesis is True. We fit a different regressor
for each system-topic pair. We simulate m new rankings for the same system
pair by sampling the regressors without modifying their parameters. Since we
did not modify the parameters of the regressor, we know we are under H0, and
each system is equal to the rest. The steps to simulate systems in this scenario
are:

1. Given a run with results for every topic, fit a different regressor for each
topic-system using the relevance values in the ranking.

2. Sample n random system regressors m times, thus creating m different sys-
tem runs from the same regressor, which include rankings for n different top-
ics, without modifying the parameters θ0 and θ1. In this way, the k = m(m−1)

2
null hypotheses are all true.

For each system run, we perform 1000 repetitions of this process to compute
accurate Type I error rates. This error rate is the percentage of the 1000 times
that the test rejected at least one of the k nulls (p-value ≤ α).
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Scenario 2: Every Null Hypothesis is False. With the same fitted regres-
sors, we simulate m new system runs while modifying the parameters of the
regressors before sampling, so that each run is different from the rest. The steps
to simulate system outputs in this scenario are:

1. For every run, use the same fitted regressors as before.
2. Modify the parameters of each regressor by a given proportion prop. In

particular, if θi is positive we set θnewi = θi · (1 + prop). If θi is negative, we
set θnewi = θi · 1

1+prop
3. Sample each of the n topic-system altered regressor once, thus creating one

different run from the same regressor, but with different parameters. This
run should be a prop% better in terms of performance. Thus, H0 is false.

4. Repeat Steps 2 and 3 m − 1 times, changing the prop value. Since we are
modifying the parameters in every step, the k different null hypotheses are
all false.

In this case, we know that the k = m(m−1)
2 null hypotheses are all false

because, in every step, we have modified the regressor’s parameters.
For each run, we perform 1000 iterations of this process to accurately estimate

the power of the tests. In this case, the power is the percentage of the 1000 times
a given test rejects all the k hypotheses.

4 Experiments

We used the simulation methods to evaluate the t-test, the Wilcoxon Signed-
Rank test, the Bonferroni and Holm methods that control the FWER, the
Benjamini-Hochberg (BH) and Benjamini-Yekutieli (BY) procedures that con-
trol the FDR, the two-way ANOVA with TukeyHSD correction, and its ran-
domised version, the randomised TukeyHSD test. We focused on the two-sided
paired case, which is common in IR experimentation. We used the data of the
TREC-8 and TREC-7 datasets. Results had same trends across both datasets,
so we are only reporting those on TREC-8 due to space constraints. This dataset
includes 129 runs, where each run is the result of one system for the 50 topics of
the collection. We performed 1000 simulations for each topic-system pair, using
m ∈ {3, 5, 10} systems and n ∈ {10, 30, 50} topics. We used Average Precision
(AP) as the measure to score the runs. We also experimented with Normalized
Discounted Cumulative Gain (NDCG), and the results followed the same trends,
so we only reported AP due to space constraints. We set α = 0.05 as is common
in IR. For computing the randomised TukeyHSD test, we set B = 100 000 per-
mutations (see Algorithm 1). To allow other researchers to reproduce our results,
we have released our code4.

Scenario 1: Every Null Hypothesis is True. We have summarised the re-
sults for the first scenario in Figure 1. In this scenario, for each system, we created

4https://github.com/davidoterof/ecir2025

https://github.com/davidoterof/ecir2025
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Fig. 1: Family-wise error rate of evaluated procedures. Each row is a different number of
systems (k is the number of pairwise comparisons). Each column is a different number
of topics. The dashed line is the confidence level α = δ = 0.05.

different runs that are all statistically equal. In other words, for each simulation
step, we have a family of null hypotheses that are all true. Thus, we compute the
FWER as the number of times that an adjustment procedure marked at least
one null hypothesis as false. We are plotting this FWER in this figure. Each bar
corresponds to the average of 129 · 1000 = 129 000 simulations (1000 simulations
per each of the 129 runs of the collection). Plots on the same column correspond
to the same topic set size, and plots on the same row correspond to the same
number of systems.

First, we observe that these results agree with the theory of the multiple com-
parison problem: unadjusted procedures have an exceedingly high Type I error
rate. In terms of publication bias, performing statistical tests without adjustment
may lead researchers to incorrectly identify an advancement when there may be
none. Thus, these results serve to further insist on the idea that researchers
should employ some adjustment when performing multiple comparisons. In this
regard, the unadjusted wilcoxon always yielded a higher error rate than the
unadjusted t-test, a finding consistent with previous research [18].

Regarding the adjusted tests, we observe that the randomised TukeyHSD is
the only one that matches the expected error rate. The others lag far behind, es-
pecially those based on the unadjusted t-test. These other adjustments seem
to better match the expected error rate as the number of topics increases. In this
regard, in addition to the randomised TukeyHSD, the wilcoxon+bh also matches
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the expected error rate with 50 topics almost exactly. Interestingly, the BY pro-
cedure, which controls the FDR and should be less conservative than Bonferroni
and Holm, yields systematically lower Type I error rates. We see some concerning
results regarding the ANOVA+TukeyHSD procedure, which yielded very high
error rates for 50 topics when the number of systems is small. Overall, these
results suggest that the adjustment procedures are over-adjusting the p-values,
making the tests more conservative than what would be desirable. A test that
yields very low error rates may seem more appealing since it means that it is
committing fewer false positives. However, as Parapar et al. argued [18], this
means that the adjusted p-values do not accurately estimate the probability of
finding the observed difference between systems when H0 is true. The confidence
level α is a value chosen by the researcher before performing the test, and this
value represents the confidence the researcher can have when rejecting H0. A
test that does not conform to the expected error rate means that is not accom-
plishing the design objective of the test. In practice, this has the consequence
of the test sacrificing the designed power. Simply put, this means that we are
working with a lower real confidence level, which shortens the critical region,
making less likely to reject the null hypothesis [7].

Scenario 2: Every Null Hypothesis is False. We present results for the sec-
ond scenario in Figure 2. In this scenario, every null hypothesis is false, that is,
every comparison between any pair of systems should be flagged as significant.
We measure the complete power, i.e., the probability to reject every null hypoth-
esis when they are all false, as in this case. There are alternative definitions of
power: minimal power, the probability of rejecting at least one null hypothesis;
and average power, the ratio of rejected null hypotheses. However, we believe
that complete power is of more interest for IR evaluation, since it is common to
find several pairs actually different systems when multiple testing in IR.

We observe that with few topics tests have almost no power. This goes in line
with the already known result that more topics provide more power [5, 24, 29].
The wilcoxon + bh and the unadjusted wilcoxon are clear winners, since they
yield higher power values in every case. We also observe that, in general, the most
powerful adjustment procedures are those that better met the Type I expected
error rate in the previous experiment. Thus, this allows us to conclude that
being unable to meet the proportion of expected Type I errors results in a loss
of power. Additionally, we see that adjustment procedures do not generally result
in a loss of power with respect to unadjusted tests. Interestingly, the randomised
TukeyHSD, a test recommended and used in other works [4, 22], and that almost
perfectly matched the expected Type I error rate, has very low power. This test
is very conservative in considering a result as significant because the observed
difference has to be larger than the difference between the maximum perturbed
mean and the minimum perturbed mean (see Algorithm 1). Since we have to
perform many permutations (B) for the algorithm to converge, many of these
permutations will likely yield a difference larger than the observed one, thus
increasing the p-values. This effect becomes even more severe as the number
of hypotheses tested grows. As we see in Figure 2, with 10 and 45 hypotheses
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Fig. 2: Complete power of evaluated procedures. Each row is a different number of
systems (k is the number of pairwise comparisons). Each column is a different number
of topics. Solid lines correspond to wilcoxon-based tests. Dashed lines correspond to
t-test-based tests. This figure is better viewed in colour.

(second and third rows), this test has virtually no power. Thus, a researcher
employing this test will likely fail to detect results that are indeed significant.

Experiments on the Million Query Data. As we have seen, our simulation
framework allowed us to study the behaviour of several adjustment procedures
for multiple testing under common IR evaluation setups. The validity of this sim-
ulation to generate realistic ranking behaviour was already demonstrated in the
past [18]. They showed how simulated rankings had strong ranking correlations
with real systems and also tested the similarity between the two AP distribu-
tions (real TREC system vs. simulated one) and found no noticeable difference.
However, we acknowledge that relying only on simulated data might be risky.
Some researchers pointed out that this way of simulating per-query improve-
ments, which allowed us a comparison where H0 was false, although stochastic,
might not be realistic with respect to how real retrieval systems behave. For
this reason, we also experimented with the data of the Million Query Track of
2009 [6], following the same approach as Boytsov et al. [3], to further evaluate
our claims under H1. This collection includes 35 runs and 687 topics with judge-
ments. We use the average AP scores of the runs on the 687 topics as a proxy of
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Fig. 3: Average power observed in the Million Query experiment. For each sample size
we performed 2000 sampling iterations. Solid lines correspond to wilcoxon-based tests.
Dashed lines correspond to t-test-based tests. Image is better viewed in colour.

long-term performance. We set a threshold γ = 0.05%, and consider every pair
of systems with a MAP difference—over 687 topics—larger than γ as different.
In this way, we establish the relative performance between every pair of systems.
This resulted in 590 pairs of systems that were actually different—according to
our criterion—among the 595 possible pairs. For the 5 lefout pairs, we cannot
conclude they are actually equal. The fact that they do not have a difference
larger than the 0.05% does not mean that they are equal. In other words, we do
not have enough evidence to state that they are actually equivalent. We centre
our analysis on the comparisons where H0 is false—the pairs that are different—
and we evaluate the average power. In particular, we want to evaluate if the out-
put of the tests with fewer topics agrees with the ground truth. To this aim,
given a sample size, we sampled different subsets of topics and measured the
performance of the runs on each subset. We carried out 2000 iterations of the
sampling process and performed unadjusted and adjusted tests to assess if sys-
tems’ differences on these subsets were significant. We evaluated if the output
of the tests in the sampled subsets agrees with the ground truth.

We show the results of this experiment in Figure 3. The average power is
the ratio of correctly rejected null hypotheses. From these results, we highlight
several findings. Regarding the unadjusted tests, wilcoxon has more power than
the t-test for every sample size, something we already observed in our simu-
lation experiment. This result is consistent with past research [18]. Regarding
the adjusted tests, the BH procedure is the most powerful, particularly when
applied over an unadjusted Wilcoxon, agreeing again with results on simulated
data. We also highlight that the randomised TukeyHSD, which yields remarkably
good results in terms of expected FWER, performs poorly in terms of power.
For sample sizes larger than 50, is indeed the worst test. In light of these results,
we recommend researchers to avoid employing this test, since it likely leave out
interesting and significant results.
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5 Conclusions

Several works have advocated for using adjusted tests for IR evaluation when
performing multiple tests to avoid publishing supposedly significant results when
they were just due to chance. We have empirically investigated the behaviour of
several alternatives for controlling the error rates in this kind of scenario. To this
aim, we used realistic TREC simulated data that allowed us to have complete
control over the truth or falseness of the null hypothesis. We computed accurate
error and power rates under different scenarios with different sample sizes. Our
results show that, indeed, multiple testing without any adjustment drastically
increases the Type I error rate. This result serves to further insist on the idea of
emplolying some adjusted test when multiple testing in IR evaluation. In terms
of Type I errors, only one procedure, the randomised TukeyHSD, behaved as
expected, controlling the expected error rate for every topic set size we tested.
The rest of the procedures, especially when adjusting p-values yielded by a two-
sided t-test, showed error rates much lower than the expected. Although this may
seem better from a practical perspective, we have argued that a test that does
not agree with the expected error rate may not be appropriate and may result
in a loss of power. This effect is alleviated as the number of topics increases.
In particular, the BH procedure is the one that benefits most from the increase
in the number of topics, matching the expected error rate almos exactly with
50 topics. We also showed, both with simulated and real data from the Million
Query Track, that adjusted tests do not cause a loss of power compared to the
unadjusted ones since we observed that they yield virtually the same power
for any sample size and any number of hypotheses we evaluated. Among the
adjusted tests, the wilcoxon+bh yielded the highest power in every case.

Overall, our approach allowed us to pinpoint which test works better in
different experimental conditions, i.e. different number of topics and different
number of systems under comparison. Regarding the question of which test to use
for IR experimentation, we recommend a Wilcoxon Sign Rank test and employing
the Benjamini-Hochberg procedure to adjust the p-values. In our experiments,
this combination was always the second best in terms of Type I errors. In terms
of power, it is the most powerful combination after the unadjusted tests.
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