
Explicit Negation in Linear-Dynamic Equilibrium Logic
Felicidad Aguado1, Pedro Cabalar,1 Jorge Fandinno2, Gilberto Pérez1 and Concepción Vidal1

Abstract. In this paper, we revisit a temporal extension of Equilib-
rium Logic (the logical characterisation of Answer Set Programming)
that introduces Linear Dynamic Logic modalities. In particular, we
further incorporate to this extension (we call Linear Dynamic Equilib-
rium Logic) an explicit negation operator, treated as a regular logical
connective. We explain several formal properties of this new exten-
sion. For instance, we prove that some temporal operators that were
not inter-definable, become so if we allow the use of explicit negation.
Finally, we also introduce and study a new temporal operator called
“while,” that is an implicational dual of “until” and may be useful as a
basic connective for temporal logic programming.

1 Introduction
Based on the answer set (or stable model) semantics [12, 13] for logic
programs, Answer Set Programming [17, 18] (ASP) has become one
of the most successful paradigms for practical Knowledge Represen-
tation and problem solving. Although ASP is naturally equipped for
solving static combinatorial problems up to NP complexity (or ΣP2 in
the disjunctive case) its application to temporal scenarios has been fre-
quent since its very beginning, partly due to its early use for reasoning
about actions and change [14]. Temporal problems normally suppose
an extra challenge for ASP for several reasons. On the one hand, they
normally raise the complexity (in the case of classical planning, for
instance, it becomes PSPACE-complete [6]), although this is usually
accounted for by making repeated calls to an ASP solver. On the other
hand, temporal scenarios also pose a representational challenge, since
the basic ASP language does not support temporal expressions.

To fill this representational gap, a temporal extension of ASP called
Temporal Equilibrium Logic (TEL) was proposed in [10] and ex-
tensively studied later on [1]. This formalism constitutes a modal
linear-time extension of Equilibrium Logic [19] which, in its turn,
is a complete logical characterisation of (standard) ASP based on
the intermediate logic of Here-and-There (HT) [16]. In a recent line
of research [9], TEL was extended to cope with finite traces (which
are closer to ASP computation), leading to an implementation of
a first temporal ASP solver, telingo [8]. Finally, following simi-
lar steps to [11], where the relation between Linear-Time Temporal
Logic (LTL) [20] and Linear Dynamic Logic (LDL) for finite traces
was studied, an LDL extension of ASP was analogously introduced
in [5, 7]. This latest extension, called Linear Dynamic Equilibrium
Logic (DEL), essentially introduces dynamic logic modalities that
allow for describing temporal paths in terms of regular expressions.
To put an example, the formula [¬help∗](¬help→ sos) behaves as
a logic program rule that repeats sending an sos while no evidence
of help has been received along a sequence of states. DEL is general

1 IRLab / CITIC Research Center, University of A Coruña, Spain. emails:
{aguado,cabalar,gperez,eicovima}@udc.es

2 University of Potsdam, Germany. email: fandinno@uni-potsdam.de

enough to cover LDL, as it shares the same syntax but introduces non-
monotonicity with the definition of temporal stable models. It also
covers LTL and TEL as particular cases, since LTL temporal operators
can be defined as particular cases of DEL expressions: for instance
�α (i.e. α always holds) can be represented in DEL as [>∗]α. Despite
of this generality and as a consequence of its novelty, many features
of DEL are still unexplored. In the implementation side, an extension
of telingo to incorporate dynamic logic expressions is being devel-
oped. On the theoretical ground, however, there are still many open
representational issues such as expressiveness in comparison to TEL
or in combination with other ASP extensions.

In this paper, we study one of such combinations that has not been
tackled so far: the incorporation of the explicit negation operator (as
a regular logical connective) into temporal ASP. Both in ASP and
in its logical counterpart, Equilibrium Logic, the standard negation
operator stands for default negation, that is, ¬p represents that “there
is no evidence about p.” However, in many ASP scenarios, and in
most of those related to reasoning about actions, we frequently find a
second negation operator, we call explicit negation and denote as ‘∼’.
This second negation represents explicit falsity so that ∼ p means
that “there is evidence about the falsity of p.” Explicit negation was
first introduced3 in [13] and is extensively used nowadays in ASP,
although only applied to atoms. Its treatment as a logical connective
was first proposed with the definition of Equilibrium Logic [19] and
was recently revised in [2] for a better behaviour with respect to pro-
gram reduct transformations. For instance, using this operator, we may
not only write rules like ¬guilty →∼guilty , meaning that guilty is
explicitly false by default, but also nest ∼ in an arbitrary way, as in
∼ (money ∧ time) →∼ travel meaning that I do not travel if I do
not have time and money. This last expression is actually equivalent
to the pair of rules ∼money →∼ travel and ∼ time →∼ travel .
Although [2] provides a full interpretation based on stable models
for arbitrary propositional theories with explicit negation, the use of
this operator in temporal ASP has been completely unexplored up
to date. In this paper, we provide an extension of DEL for incorpo-
rating explicit negation and study its properties. Since TEL can be
defined as a particular case of DEL, we also provide a semantics for
explicitly negated linear-time temporal operators. For instance, we
prove De Morgan-style properties and show that ∼3danger is actu-
ally equivalent to � ∼ danger , that is, danger is always explicitly
false. Moreover, we prove that explicit negation allows some inter-
definability of operators like �p ≡∼3 ∼p something well-known
to fail in TEL when using default negation, that is, �p 6≡ ¬3¬p.
In the last part of the paper, as a result emerged from the study of
DEL, we introduce a new temporal operator for TEL called while and
somehow dual to the standard until from LTL.

This paper is organised as follows. The next section introduces the
syntax and semantics of DEL with explicit negation, defining tempo-

3 Called there classical negation.

ral operators from LTL as abbreviations. This section also explains
the different types of equivalences that arise and provides several fun-
damental properties. Section 3 is focused on the while operator and
provides properties that characterise its relation to until and release.
Finally, Section 4 concludes the paper.

2 Syntax and semantics
Given a set A of propositional variables (called alphabet), the gram-
mar rules for dynamic formulas ϕ and path expressions ρ are mutually
defined as in [11], but adding here the explicit negation operator ∼in
the following way:

ϕ ::= a | ⊥ | > | [ρ]ϕ | 〈ρ〉ϕ | ∼ϕ
ρ ::= τ | ϕ? | ρ+ ρ | ρ ; ρ | ρ∗ | ρ−

Each ρ is a regular expression formed with the path constant τ (read as
“step”) plus the usual test construct ϕ? from Dynamic Logic (DL [15])
and the converse operator ρ− for switching the temporal orientation
from future to past and vice versa. A path expression not containing
any test construct ϕ? is said to be test-free. Note that, as in [11], we
depart from DL, where atomic path expressions are actions from a
different sort from propositional atoms. Here, we only define one
atomic expression, τ, but will allow using Boolean formulas for that
role too, introducing them through an abbreviation. Still, the reader
may have noticed that formulas do not include Boolean operators.
This is because they can be actually defined in terms of the necessity
and possibility modalities in the following way:

ϕ ∧ ψ def
= 〈ϕ?〉ψ ϕ ∨ ψ def

= 〈ϕ? + ψ?〉>
ϕ→ ψ

def
= [ϕ?]ψ ¬ϕ def

= ϕ→ ⊥

Double implication ϕ ↔ ψ is defined in the usual way as (ϕ →
ψ) ∧ (ψ → ϕ). Note that, while conjunction is expressed in terms of
possibility 〈ϕ?〉ψ, its dual for the necessity operator [ϕ?]ψ is not a
disjunction, but an implication instead. This is an important feature,
since implication in intuitionistic and intermediate logics (like HT)
is an elementary Boolean connective that cannot be defined in terms
of the others. Note also that default negation ¬ϕ follows the standard
definition from intuitionistic negation in terms of implication ϕ→ ⊥
which, in our case, amounts to [ϕ?]⊥. We say that a formula is
propositional if it only contains combinations of ∧,∨,→,¬,⊥,>,∼
and atoms. We will allow using any propositional formula φ as a path
expression standing for (φ?; τ), something also done in LDL [11].
In particular, this allows us using > as the path expression (>?; τ)
which, as we see below, amounts to τ. Another abbreviation we use is
the sequence of n repetitions of some expression ρ defined as ρ0 def

= τ?
and ρn+1 def

= ρ; ρn. For instance, ρ3 = ρ; ρ; ρ; τ? which amounts to
ρ; ρ; ρ, as we will see when describing the semantics. We sometimes
use ρ+ def

= ρ; ρ∗, that is, repeating ρ at least once.
As with Boolean connectives, LTL modal connectives can be de-

fined as derived operators as follows:

◦ϕ def
= 〈τ〉ϕ ◦̂ϕ def

= [τ]ϕ

3ϕ
def
= 〈τ∗〉ϕ �ϕ def

= [τ∗]ϕ

ϕU ψ
def
= 〈(ϕ?; τ)∗〉ψ ϕW ψ

def
= [(ψ?; τ)∗]ϕ

ϕ R ψ def
= (ψ U (ϕ ∧ ψ)) ∨�ψ F def

= ◦̂⊥

Operators ◦, 3, �, U, R are the standard next, eventually, always,
until and release from LTL. Operator ◦̂ is the weak dual of next and is
relevant for finite traces: ◦̂ϕ means that ϕ holds in the next state, if

there is a next state. Using the weak next we can define, for instance,
formula F as ◦̂⊥ = [τ]⊥ that holds when we are at the final situation
of a (finite) trace. The expression ϕW ψ is new: it corresponds to the
genuine necessity-dual4 of until and it is read as “repeat ϕ while ψ
holds.” Note how this formula in DEL is different from release, which
is the standard dual operator of until in LTL. We discuss this new
operator in detail in Section 3. Analogous past-oriented operators can
be defined by replacing above any path expression ρ by its converse
ρ−. For instance •ϕ def

= 〈τ−〉ϕ would correspond to the previous
operator. For simplicity, we omit past-oriented temporal formulas in
this paper since all the properties studied here are trivially extrapolated
to that case.

A formula is temporal, if it includes only Boolean and temporal
operators. A dynamic formula is said to be conditional if it contains
some occurrence of an atom p ∈ A inside a [·] operator; it is called
unconditional otherwise. Note that formulas with atoms in implication
antecedents or negated formulas are also conditional, since they are
derived from [·] . For instance, [p?]⊥ is conditional, and is actually
the same as p→ ⊥ and ¬p. As usual, a (dynamic) theory is a set of
(dynamic) formulas.

For the semantics, we rely on the idea of linear sequences of states,
called traces. An explicit literal is a formula just formed by an atom
a ∈ A or its explicit negation ∼ a. A state H over alphabet A is a
consistent set of explicit literals for atoms in A, that is, there is no
atom p ∈ A for which {p,∼ p} ⊆ H . Now, for denoting intervals
of time points we use the following notation. Given x ∈ N and
y ∈ N ∪ {ω}, we let [x..y] stand for the set {i ∈ N | x ≤ i ≤ y}
and [x..y) for {i ∈ N | x ≤ i < y}. A trace H of length λ over
alphabet A is a sequence of states H = 〈Hi〉i∈[0..λ). Trace H is
infinite if λ = ω and finite otherwise, that is, λ ∈ N. Given traces
H = 〈Hi〉i∈[0..λ) and H′ = 〈H ′i〉i∈[0..λ) both of length λ, we write
H ≤ H′ if Hi ⊆ H ′i for each i ∈ [0..λ); accordingly, H < H′ iff
both H ≤ H′ and H 6= H′.

A Here-and-There trace (for short HT-trace) of length λ over
alphabet A is a sequence of pairs 〈Hi, Ti〉i∈[0..λ) such that Hi ⊆ Ti
are states for any i ∈ [0..λ). As before, an HT-trace is infinite if
λ = ω and finite otherwise. We can simply represent an HT-trace
as a pair of traces 〈H,T〉 of length λ where H = 〈Hi〉i∈[0..λ) and
T = 〈Ti〉i∈[0..λ) and H ≤ T. A particular type of HT-traces satisfy
H = T and are called total. The intuition of using these two traces is
the same from HT and Equilibrium Logic: explicit literals in Hi are
those that can be proved at time point i; explicit literals not in Ti are
those at i for which there is no proof; and, finally, explicit literals in
Ti \Hi are assumed to be true, but have not been proved.

We proceed to extend the linear dynamic logic of HT (DHT) pre-
sented in [7] to cope with explicit negation. This will be achieved
by additionally providing a falsification relation |=dual to DHT
regular satisfaction |=. Both relations are defined on a double induc-
tion. Given any HT-trace M = 〈H,T〉, we define DHT satisfaction
(falsification) of formulas, M, k |= ϕ (M, k |=ϕ), in terms of
two accessibility relations for path expressions ‖ρ‖M|= ⊆ N2 and

‖ρ‖M6 |=⊆ N2 whose extents depend on |= and |=.

Definition 1 (DHT satisfaction / falsification) An HT-trace M =
〈H,T〉 of length λ over alphabet A satisfies a dynamic formula ϕ at
time point k ∈ [0..λ) written M, k |= ϕ, if the following conditions
hold:

1. M, k |= > and M, k 6|= ⊥

4 We actually changed the order of ϕ and ψ with respect to until to facilitate a
more natural reading of while.

2. M, k |= a if a ∈ Hk for any atom a ∈ A
3. M, k |= 〈ρ〉ϕ if M, i |= ϕ for some i with (k, i) ∈ ‖ρ‖M|=
4. M, k |= [ρ]ϕ if M′, i |= ϕ for all i with (k, i) ∈ ‖ρ‖M

′

|=
for both M′ = M and M′ = 〈T,T〉

5. M, k |=∼ϕ if M, k |=ϕ

An HT-trace M = 〈H,T〉 of length λ over alphabet A falsifies a
dynamic formula ϕ at time point k ∈ [0..λ) written M, k |=ϕ, if the
following conditions hold:

6. M, k 6 |=> and M, k |=⊥
7. M, k |=∼a if ∼a ∈ Hk for any atom a ∈ A
8. M, k |=〈ρ〉ϕ if M, i |=ϕ for all i, (k, i) ∈ ‖ρ‖M6 |=
9. M, k |=[ρ]ϕ if M, i |=ϕ for some (k, i) ∈ ‖ρ‖M

′

|= where
M′ = 〈T,T〉

10. M, k |=∼ϕ if M, k |= ϕ

where, for any HT-trace M, ‖ρ‖M|= ⊆ N2 and ‖ρ‖M6 |=⊆ N2 are two
relations on pairs of time points inductively defined as follows. For
each relation R ∈ { |=, 6 |=}:

11. ‖τ‖MR
def
= {(i, i+ 1) | i, i+ 1 ∈ [0..λ)}

12. ‖ϕ?‖M|=
def
= {(i, i) |M, i |= ϕ} and

‖ϕ?‖M6 |=
def
= {(i, i) |M, i 6 |=ϕ}

13. ‖ρ1+ρ2‖MR
def
= ‖ρ2‖MR ∪ ‖ρ2‖

M
R

14. ‖ρ1 ; ρ2‖MR
def
=

{(i, j) | (i, k) ∈ ‖ρ1‖MR and (k, j) ∈ ‖ρ2‖MR for some k}
15. ‖ρ∗‖MR

def
=
⋃
n≥0 ‖ρ

n‖MR
16. ‖ρ−‖MR

def
= {(i, j) | (j, i) ∈ ‖ρ‖MR } 2

Conditions 1-4 are the standard ones for DHT without explicit nega-
tion, as defined in [7]. The main difference here with respect to LDL
is that the necessity operator must be checked both in the H and the
T trace. This is related to the strong relation between [·] and intuition-
istic implication since, as we saw before, ϕ→ ψ is actually defined
as [ϕ?]ψ. Condition 5 and its dual 10 assert that the ∼ operator just
switches from satisfaction to falsification and vice versa. Then, condi-
tions from 6-9 are duals of 1-4. In the case of 6 and 7, this duality is
straightforward. Falsification of 〈ρ〉ϕ is also quite natural: we replace
|= by |=and change the quantification over i from existential to
universal. The only special requirement here is that the pairs (k, i)
for interpreting ρ will use the 6 |=relation in ‖ρ‖M6 |=. This condition
is required in order to obtain the expected interpretation for 〈ϕ?〉ψ
with respect to its reading as conjunction ϕ ∧ ψ, where by “expected”
we mean the semantics defined in [2] for explicit negation in propo-
sitional formulas. This means that M, k |=ϕ ∧ ψ should amount to
M, k |=ϕ or M, k |=ψ. From 7 and its duality to 2, the condition
we get for M, k |=〈ϕ?〉ψ must have the form M, i |=ψ for all i,
(k, i) ∈ ‖ϕ?‖MR for some relation R. Since the test just forces i = k
if relation R holds, we would get: M, k |=ψ or M, k R ϕ does not
hold. Thus, to get the expected result, the only possibility is taking
R to be 6 |=. Condition 9 is also limited by the expected behaviour
of explicit negation of implication which, in its turn, was the main
reason to introduce the explicit negation variant in [2]. Following
that paper, M, k |=ϕ → ψ should be equivalent to M, k |=ψ and
M′, k |= ϕ with M′ = 〈T,T〉. This was proved there to preserve
the expected behaviour with respect to reduct-based syntactic trans-
formations similar to the original Gelfond-Lifschitz reduct [12]. In
our context, falsifying implication corresponds to M, k |=[ϕ?]ψ

and we can see that, under Condition 9, this amounts to make i = k
and assert M, k |=ψ and (k, k) ∈ ‖ρ‖M

′

|= . But this is equivalent to
M, k |=ψ and M′, k |= ϕ as we intended. The following theorem
proves that the interpretation we obtain for satisfaction/falsification
of derived Boolean connectives is exactly the one proposed in [2].

Theorem 1 Let M = 〈H,T〉 be an HT-trace of length λ over al-
phabet A and k ∈ [0..λ). Given the respective definitions of derived
operators, we get the following satisfaction and falsification condi-
tions:

1. M, k |= α ∧ β iff M, k |= α and M, k |= β
2. M, k |=α ∧ β iff M, k |=α or M, k |=β
3. M, k |= α ∨ β iff M, k |= α or M, k |= β
4. M, k |=α ∨ β iff M, k |=α and M, k |=β
5. M, k |= α→ β iff M′, k 6|= α or M′, k |= β

for both M′ = M and M′ = 〈T,T〉
6. M, k |=α→ β iff 〈T,T〉, k |= α and M, k |=β

The next property guarantees that the interpretations of path ex-
pressions are always inside the time point limits (this is especially
important for finite traces).

Proposition 1 Relations ‖ρ‖M|= and ‖ρ‖M6 |= defined above satisfy

‖ρ‖M|= ⊆ [0..λ)× [0..λ) and ‖ρ‖M6 |=⊆ [0..λ)× [0..λ) . 2

The following proposition relates ‖ρ‖M|= and ‖ρ‖M6 |=and shows an
interesting property of test-free path expressions.

Proposition 2 For any regular expression ρ and any HT-trace M,

‖ρ‖M|= ⊆ ‖ρ‖
M
6 |=.

In addition, if ρ is test-free, then

‖ρ‖M|= = ‖ρ‖M6 |== ‖ρ‖M
′

|= = ‖ρ‖M
′

6 |=,

for any HT-traces M = 〈H,T〉 and M′ = 〈T,T〉.

Proof . Notice that, when ρ is test-free, then ‖ρ‖M|= = ‖ρ‖M6 |=. On

the other hand, if ϕ is any formula: ‖ϕ?‖M|= ⊆ ‖ϕ?‖M6 |= because
M, k |= ϕ implies M, k 6 |=ϕ for any k. 2

An HT-trace M is a model of a dynamic theory Γ if M, 0 |= ϕ for
all ϕ ∈ Γ. We write DHT(Γ, λ) to stand for the set of DHT models
of length λ of a theory Γ, and define DHT(Γ)

def
=
⋃ω
λ=0 DHT(Γ, λ),

that is, the whole set of models of Γ of any length. When Γ = {ϕ}
we just write DHT(ϕ, λ) and DHT(ϕ).

A formula ϕ is a tautology (or is valid), written |= ϕ, iff M, k |= ϕ
for any HT-trace M and any k ∈ [0..λ). We call the logic induced by
the set of all tautologies (Linear) Dynamic logic of Here-and-There
(DHT for short).

We introduce non-monotonicity by defining the temporal version
of stable models.

Definition 2 (Temporal equilibrium/stable model) A total THT-
trace 〈T,T〉 of length λ is a temporal equilibrium model of a theory
Γ if 〈T,T〉 ∈ DHT(Γ, λ) and there is no 〈H,T〉 ∈ DHT(Γ, λ)
with H < T. When this happens, we say that T is a temporal stable
model of Γ. 2

The logic induced by temporal equilibrium models is called Linear
Dynamic Equilibrium Logic (DEL). To illustrate the effect of DEL,

suppose we wish to represent a scenario for breaking the glass of a fire
extinguisher, but hitting the glass may arbitrarily fail. One possible
representation could be the following theory:

[τ∗;hit?] (broken ∨ ¬broken) (1)

[τ∗; broken] broken (2)

[τ∗;∼broken; (¬broken)?] ∼broken (3)

∼broken ∧ [(∼broken)+]hit (4)

The first formula, (1), means that hitting the glass may cause it to
be broken. The expression broken ∨ ¬broken is not a tautology in
DEL: it acts as a choice rule deriving the fact broken or not. For-
mula (2) is an abbreviation5 of [τ∗; broken?; τ] broken and tells us
that once the glass is broken, it remains so from then on. The im-
plicative formula (3) is the inertia rule for being unbroken ∼broken:
it is similar to (2) but adds the extra condition (¬broken)? mean-
ing that we check that there is no evidence of broken (using default
negation) in the resulting state. Finally, (4) tells us that the glass is
initially unbroken and that we will keep hitting it while it remains
unbroken. This theory has temporal stable models satisfying either
〈 (hit∧ ∼ broken)∗; broken∗ 〉> (that is, we succeeded to break
the glass at some arbitrary time point) or 〈 (hit∧ ∼ broken)∗ 〉>
(that is, we hitted the glass forever without success). In the case of
infinite traces, we could reject this last possibility including a fairness
constraint of the form [(τ∗;hit∧ ∼broken)∗]⊥ so hitting without
breaking the glass cannot occur infinitely often.

The introduction of explicit negation causes that a valid formula
ϕ↔ ψ does not guarantee equivalence of the arbitrary substitution
of ϕ by ψ in any context. We define, in fact, different types of equiv-
alence. Two formulas ϕ,ψ are said to be weakly equivalent, written
ϕ ≡w ψ, whenever M, k |= ϕ iff M, k |= ψ for any HT-trace M
and any k ∈ [0..λ). This is the same as requiring that ϕ ↔ ψ is a
tautology but does not mean that we can replace ϕ by ψ and vice
versa in any context. For obtaining a congruence relation, we can
use⇔ defined by ϕ ⇔ ψ

def
= (ϕ ↔ ψ) ∧ (∼ϕ ↔∼ψ). Moreover,

we say that two formulas ϕ,ψ are equivalent, written ϕ ≡ ψ, when-
ever M, k |= ϕ iff M, k |= ψ and M, k |=ϕ iff M, k |=ψ, for
any HT-trace M and any k ∈ [0..λ). This last equivalence is the
same as requiring that ϕ⇔ ψ is a tautology. Note that this relation,
ϕ ≡ ψ, is stronger than coincidence of models DHT(ϕ) = DHT(ψ).
For instance, DHT(•>) = DHT(〈τ−〉>) = ∅ because models are
checked at the initial situation k = 0 and there is no previous situa-
tion at that point, so DHT(•>) = DHT(⊥). However, in general,
•> 6≡ ⊥ since •> is satisfied for any k > 0 (for instance ◦•> 6≡ ◦⊥
but ◦•> ≡ > instead).

One interesting equivalence for explicit negation is

∼∼ϕ ≡ ϕ (5)

since in HT or, any of its extensions, removing double default nega-
tion is not possible, that is, in general ¬¬ϕ 6≡ ϕ.

As with formulas, we say that path expressions ρ1 and ρ2 are
equivalent, written ρ1 = ρ2, when ‖ρ1‖MR = ‖ρ2‖MR for any HT-
trace M and relation R ∈ {|=, 6 |=}. For instance, it is easy to see
that:

(ρ1; ρ2); ρ3 = ρ1; (ρ2; ρ3) ρ∗ = >? + (ρ; ρ∗)
>?; ρ = ρ;>? = ρ ρ; ρ∗ = ρ∗; ρ

5 As we said before, following [11], we allow a propositional formula φ as an
abbreviation of expression (φ?; τ). That is, when no ”?” is appended, we
actually perform an additional one-step jump.

The following equivalences of path expressions proved in [7] allow
us to push the converse operator inside, until it is only applied to >.
These equivalences are preserved with the introduction of explicit
negation too:

Proposition 3 For all path expressions ρ1, ρ2 and ρ and for all
formulas ϕ, the following equivalences from [7] are maintained:

(ρ−)− = ρ (ϕ?)− = ϕ? (ρ∗)− = (ρ−)∗

(ρ1 + ρ2)− = ρ−1 + ρ−2 (ρ1; ρ2)− = ρ−2 ; ρ−1

Similarly, DHT with explicit negation also preserves a fundamental
feature of HT called persistence as explained below.

Proposition 4 (Persistence) For any HT-trace 〈H,T〉 of length λ,
any dynamic formula ϕ and any path expression ρ, we have:

1. 〈H,T〉, k |= ϕ implies 〈T,T〉, k |= ϕ, for all k ∈ [0..λ)
2. 〈H,T〉, k |=ϕ implies 〈T,T〉, k |=ϕ, for all k ∈ [0..λ)

3. ‖ρ‖〈H,T〉|= ⊆ ‖ρ‖〈T,T〉|= and ‖ρ‖〈H,T〉6 |= ⊇ ‖ρ‖〈T,T〉6 |= . 2

Persistence is a property known from intuitionistic logic; it expresses
that accessible worlds satisfy the same or more formulas than the
current world, where T is “accessible” from H in HT. This also ex-
plains the semantics of [ρ]ϕ, which behaves as a kind of intuitionistic
implication (used to define ‘→’ as a derived operator) and so, it must
hold for all accessible worlds, viz. 〈H,T〉 and 〈T,T〉.

As explained in [7], DHT collapses to LDL when we force total
traces 〈T,T〉, so we write T, k |= ϕ to represent LDL satisfaction,
which in fact can be just seen as an abbreviation of 〈T,T〉, k |= ϕ.
Similarly, the accessibility relation for path expressions in LDL cor-
responds here to ‖ρ‖〈T,T〉|= or just ‖ρ‖T|=. Since our new Definition 1
is also equipped with falsification and explicit negation, it provides an
explicit negation operator for LDL as a side effect too: it just amounts
to restrict traces to be total. By doing so, the main relevant change
occurs in the interpretation of [·] which, as expected, becomes simpler.
Conditions 4 and 9 become:

4’. M, k |= [ρ]ϕ if M, i |= ϕ for all i, (k, i) ∈ ‖ρ‖M|=
9’. M, k |=[ρ]ϕ if M, i |=ϕ for some i, (k, i) ∈ ‖ρ‖M|=

where M = 〈T,T〉. The reader may wonder why relation ‖ρ‖M|= is
preserved in both items 4’ and 9’ rather than switched as happens
with |= versus |=. The reason is that [ρ]ϕ is a kind of implication
that, to become false, must make its antecedent about (k, i) true and
make its consequent about ϕ false. Total interpretations (i.e., LDL
interpretations) can be forced by the inclusion of the excluded middle
axiom for default negation:

[τ∗] (L ∨ ¬L) (6)

for any explicit literal L of the form p or ∼p and any atom p ∈ A.
The next theorem shows the derived satisfaction and falsification

relations for temporal operators from LTL. As intended, satisfaction
coincides with the one from standard THT with finite traces [9],
but we also provide explicit negation and falsification for this logic,
something not achieved so far.

Theorem 2 Let M = 〈H,T〉 be an HT-trace of length λ over al-
phabet A and k ∈ [0..λ). Given the respective definitions of derived
operators, we get the following satisfaction and falsification condi-
tions:

1. M, k |= F iff k + 1 = λ

2. M, k |=F iff k + 1 < λ
3. M, k |= ◦α iff k + 1 < λ and M, k + 1 |= α
4. M, k |=◦α iff k + 1 = λ or M, k + 1 |=α
5. M, k |= ◦̂α iff k + 1 = λ or M, k + 1 |= α
6. M, k |=̂◦α iff k + 1 < λ and M, k + 1 |=α
7. M, k |= 3α iff M, i |= α for some i ∈ [k..λ)
8. M, k |=3α iff M, i |=α for all i ∈ [k..λ)
9. M, k |= �α iff M, i |= α for all i ∈ [k..λ)

10. M, k |=�α iff M, i |=α for some i ∈ [k..λ)
11. M, k |= α U β iff for some i ∈ [k..λ), we have M, i |= β and

M, j |= α for all j ∈ [k..i)
12. M, k |=α U β iff for all i ∈ [k..λ), we have M, i |=β or

M, j |=α for some j ∈ [k..i)

The proof of the previous theorem follows more or less directly
from the definitions, but proving the derived semantics for the release
operator is more involved. We provide the characterisation of release
in the following two propositions.

Proposition 5 Given two formulas α and β and an HT-interpretation
M, the following assertions are equivalent:

1. M, k |= β U (α ∧ β) ∨�β (or M, k |= α R β)
2. for all i ∈ [k..λ), we have that M, i |= β or M, j |= α, for some
j ∈ [k..i) (or M, k |=∼α U ∼β)

Proof . Suppose that 1 is true. If M, k |= �β, then we deduce 2.
If M, k 6|= �β, take:

i
def
= min{j ≥ k | M, j 6|= β}

Then M, i 6|= β and M, j |= β for any k ≤ j < i. On the other hand,
M, k |= β U (α ∧ β), so there exists s ≥ k such that M, s |= α,
M, s |= β and M, j |= β for any k ≤ j < s. Take r ≥ k and
suppose that M, r 6|= β. We would like to show that M, j |= α
for some k ≤ j < r. By definition of i, we can say that r ≤ i. If
M, j 6|= α for all k ≤ j < r, then s ≥ r (since M, s |= α) and
s > r (since M, s |= β and M, r 6|= β). But then M, r 6|= β and
r < s which contradicts the fact that M, j |= β for any k ≤ j < s.

Now suppose that 2 is true. If M, k |= �β, then we obviously
deduce 1. If M, k 6|= �β, take:

i
def
= min{j ≥ k | M, j 6|= β}

Since M, i 6|= β, by 2) we know that M, j |= α for some k ≤ j < i.
This implies that M, j |= β. Finally, if k ≤ r < j, then r < i, so
M, r |= β. We conclude that M, k |= β U (α ∧ β). 2

Proposition 6 Given two formulas α and β and an HT-interpretation
M, the following assertions are equivalent:

1. M, k |=β U (α ∧ β) ∨�β (or M, k |=α R β)
2. for some i ∈ [k..λ), we have that M, i |=β and M, j |=α, for

any j ∈ [k..i) (or M, k |=∼α U ∼β)

Proof . Suppose that 1 is true, then M, k |=�β and M, k |=β U
(α ∧ β). Take:

i
def
= min{j ≥ k | M, j |=β}

Then M, i |=β and M, j 6 |=β for any k ≤ j < i. If M, r 6 |=α, for
some k ≤ r < i, then (k, r) ∈ ‖(β?; τ)∗‖M6 |=because if k ≤ j < r,
then j < i and M, j 6 |=β. Then M, r |=α or M, r |=β. Since

r < i, M, r 6 |=β so we would have that M, r |=α which is a
contradiction.

Now suppose that 2 is true. Then M, k |=�β. Take:

i
def
= min{j ≥ k | M, j |=β}

Then M, i |=β and M, j 6 |=β for any j < i. Suppose that (k, r) ∈
‖(β?; τ)∗‖M6 |=, this implies that M, j 6 |=β for any k ≤ j < r, so
i ≥ r because M, i |=β. If i = r, then M, r |=β and, if r < i, then
M, r |=α. Any case, we have show that M, r |=α∧β which shows
that M, k |=β U (α ∧ β). 2

These two propositions allow us to prove an interesting De Morgan-
style relation (through explicit negation) between until and release:

Theorem 3 For any pair of formulas α and β, we have

αU β ≡ ∼(∼α R ∼β) (7)

α R β ≡ ∼(∼α U ∼β) (8)

Proof . For proving (7), we have to show that, for any HT-
interpretation M and k ∈ [0..λ):

M, k |= αU β iff M, k |=∼α R ∼β

and
M, k |=αU β iff M, k |=∼α R ∼β

By Proposition 6, M, k |=∼ α R ∼ β iff M, k |= α U β. On
the other hand, Proposition 5 implies that M, k |=∼ α R ∼ β iff
M, k |=αU β.

For proving (8) it suffices to see:

∼(∼α U ∼β) ≡ ∼ (∼(∼∼α R ∼∼β)) by (7)
≡ α R β by (5)

2

This result is interesting because, in regular THT, these De
Morgan-style equivalences do not hold for default negation. Moreover,
[4] proved that R cannot be defined in terms of U and ◦ in standard
THT. Theorem 3 is showing that, once explicit negation is introduced,
we can indeed define release in terms of until and vice versa.

It is perhaps worth to wonder whether [·] and 〈·〉 are also inter-

definable using a similar De Morgan-style analogy, say [ρ]ϕ
?≡∼

〈ρ〉 ∼ϕ. Unfortunately, this does not hold since necessity involves a
kind of implication, possibility a conjunction, and the former cannot
be represented in terms of the latter in HT, even by introducing
explicit negation. In the general case, we can prove, at most, one
of the directions for De Morgan-style properties. However, if ρ is
test-free, then both directions are guaranteed. This is formally stated
below:

Theorem 4 Given a regular expression ρ, two formulas ϕ and ψ and
an HT-trace M, we always have:

1. M, k |= ∼〈ρ〉∼ϕ implies M, k |= [ρ]ϕ for any k ∈ [0..λ)
2. M, k |=∼〈ρ〉∼ϕ implies M, k |=[ρ]ϕ for any k ∈ [0..λ)
3. If ρ is test-free, then:

∼〈ρ〉∼ϕ ≡ [ρ]ϕ and ∼ [ρ]∼ϕ ≡ 〈ρ〉ϕ

Proof . First, notice that, if M, k |=〈ρ〉∼ϕ and (k, i) ∈ ‖ρ‖M|= ,

then (k, i) ∈ ‖ρ‖M6 |=by Proposition 2, so M, i |= ϕ. Moreover, when

(k, i) ∈ ‖ρ‖T|=, we can apply Proposition 4 and Proposition 2 to

deduce that (k, i) ∈ ‖ρ‖M6 |=, so M, i |= ϕ and T, i |= ϕ.

On the other hand, if M, k |=∼〈ρ〉∼ϕ or, equivalently, M, k |=
〈ρ〉∼ϕ, we know that there exists (k, i) ∈ ‖ρ‖M|= such that M, i |=ϕ.

Since ‖ρ‖M|= ⊆ ‖ρ‖
T
|=, we deduce that M, k |=[ρ]ϕ.

The equivalence between the formulas when ρ is test-free follows
from Proposition 2. 2

Notice that, when ρ is not test-free we can not guarantee this result
anymore. In fact, take α and β two formulas. Then:

∼〈α?〉∼β ≡∼(α∧ ∼β) ≡∼α ∨ β,

whereas:
[α?]β ≡ α→ β

and ∼ α ∨ β and α → β are not equivalent in HT with explicit
negation.

On the other hand,

∼ [α?]∼β ≡∼(α→∼β) ≡w (¬¬α ∧ β),

and:
〈α?〉β ≡ α ∧ β.

Theorem 4 can be used on temporal operators defined with test-free
path expressions, like 3,�, ◦ and ◦̂, so we immediately obtain:

Corollary 1 Given a formula ϕ, we always have:

• ◦ϕ ≡∼◦̂ ∼ϕ
• 3ϕ ≡∼� ∼ϕ

• ◦̂ϕ ≡∼◦ ∼ϕ
• �ϕ ≡∼3 ∼ϕ

Again, this result is interesting because for standard THT, [4] also
proved that � cannot be defined in terms of 3 and ◦, while this can
be done now by resorting to explicit negation. Another interesting
application of this result is that it provides a new method for proving
THT equivalences by resorting to De-Morgan-style transformations
using ∼ for the proofs. For instance, suppose we have developed a
proof for the THT tautology:

3p⇔ p ∨ ◦3p (9)

The dual property �p ⇔ p ∧ ◦̂�p cannot be directly derived from
(9) in THT as we would do in LTL by introducing negations ¬, but
can be now derived if we use the explicit negation ∼ instead. In this
way, we can construct the following sequence of equivalent formulas:

3 ∼p ⇔ ∼p ∨ ◦3 ∼p Replacing p by ∼p in (9)
∼3 ∼p ⇔ ∼(∼p ∨ ◦3 ∼p) Property of⇔
∼3 ∼p ⇔ ∼∼p ∧ ∼◦3 ∼p De Morgan on ∨

�p ⇔ p ∧ ◦̂ ∼3 ∼p Corollary 1; double negation
�p ⇔ p ∧ ◦̂�p Corollary 1

We conclude this section by observing that, in the same way that
DHT collapses to LDL by adding axiom (6) (i.e. forcing total traces),
when we restrict the syntax to temporal theories, THT collapses to
LTL. Therefore, Definition 1 is also providing a semantics for LTL
with explicit negation.

3 The While operator
In the previous section, we introduced a new temporal operatorϕW ψ
defined as [(ψ?; τ)∗]ϕ and read as “repeat ϕ while ψ.” This operator
is not usual in LTL because, in that logic, it can be easily defined in
terms of U or R:

Proposition 7 In LTL, we have the following equivalences:

α W β ≡ ¬(β U ¬α) ≡ ¬β R α

α U β ≡ ¬¬(α U ¬¬β)

≡ ¬(¬β W α) 2

In THT, however, these equivalences do not hold. Given M =
〈H,T〉, the derived semantics that we obtain for W is:

• M, k |= ϕW ψ iff for all i ∈ [k..λ) such that for all j ∈ [k..i)
M′, j |= ψ implies M′, i |= ϕ, for both M′ = M and M′ =
〈T,T〉;

• M, k |=ϕW ψ iff for some i ∈ [k..λ) we have M, i |=ϕ and
for all j ∈ [k..i) 〈T,T〉, j |= ψ.

This means that, unlike U and R, operator W has an implicational
nature. As a consequence, there is no clear way to represent W in
terms of the other operators6. For instance, for the connection between
U and W through explicit negation we can just guarantee:

Theorem 5 Given two formulas ϕ and ψ, an HT-trace M = 〈H,T〉
and any k ∈ [0..λ), the following conditions hold

1. M, k |= ∼(ϕU ψ) implies M, k |= ∼ψW ϕ
2. M, k |=∼(ϕU ψ) implies M, k |=∼ψW ϕ
3. M, k |= ∼(ϕW ψ) iff M, k |= ¬¬ψ U ∼ϕ
4. M, k |=¬¬ψ U ∼ϕ implies M, k |=∼(ϕW ψ)

Proof . The first and second assertions can be proved by apply-
ing Theorem 4, because ϕ U ψ = 〈(ϕ?; τ)∗〉ψ and ∼ ψ W ϕ =
[(ϕ?; τ)∗]∼ψ.
On the other hand, M, k |=∼ (ϕ W ψ) iff there exists
(k, i) ∈ ‖(ψ?; τ)∗‖T|= and M, i |=ϕ. Since ‖(ψ?; τ)∗‖T|= =

‖(¬¬ψ?; τ)∗‖M|= , this is equivalent to say that M, k |= ¬¬ψU ∼ϕ.
For the last point, suppose that M, k |=¬¬ψU ∼ϕ. Then, for any
(k, i) ∈ ‖(¬¬ψ?; τ)∗‖M6 |=, we have that M, i |=∼ϕ or M, i |= ϕ.
This implies that M, k |= ϕW ψ because:

‖(ψ?; τ)∗‖M|= ⊆ ‖(ψ?; τ)∗‖T|=
and

‖(ψ?; τ)∗‖T|= = ‖(¬¬ψ?; τ)∗‖M|= ⊆ ‖(¬¬ψ?; τ)∗‖M6 |=

In general, the other implication is not true. Take M defined by
H0 = {p} ⊆ T0 = {p, q}, H1 = ∅ ⊆ T1 = {p, q} and Hi =
∅ ⊆ Ti = {p}, for any i ≥ 2. Then M, 0 |= pW q since (0, i) 6∈
‖(q?; τ)∗‖M|= for i ≥ 1 (q 6∈ H0) and, if (0, i) ∈ ‖(q?; τ)∗‖T|=, then
i ≤ 2 (q 6∈ Tj for j ≥ 2) and T, i |= p for i = 0, 1, 2. On the other
hand, M, 0 6 |=¬¬qU ∼ p because M, 1 6 |=∼ p (M, 1 6|= p) and
M, 0 6 |=¬¬q (M, 0 6 |=¬¬q iff M, 0 6|=∼¬¬q iff M, 0 6|= ¬¬¬q
iff M, 0 6|= ¬q iff q ∈ T0).7 2

The following equivalences describe these three operators, U, R
and W, by an inductive unfolding.

Proposition 8 In THT we have the following equivalences:

αU β ≡ β ∨ (α ∧ ◦(αU β))

α R β ≡ β ∧ (α ∨ ◦(α R β))

αW β ≡ α ∧ (β → ◦(αW β)) 2

6 We conjecture that this may be, in fact, a fundamental operator in THT,
even without explicit negation.

7 For any formula ϕ, M, k |=∼¬ϕ iff M, k |= ¬¬ϕ

The first two equivalences are well-known from LTL and also pre-
served in THT. The third equivalence shows that the W operator is
formed by a repeated application of implications. This is even clearer
in the following expansion:

Proposition 9 The formula αW β is THT equivalent to the (possibly
infinite) conjunction of rules:(i−1∧

j=0

◦jβ
)
→ ◦iα

for all i ≥ 0. 2

To see how this expression works, think about the formula w W f
where w means “pouring water” and f means “fire.” Notice that, for
i = 0, the rule body becomes an empty conjunction (>) and so this
expands to > → ◦0w which is just equivalent to fact w. For instance,
for i ∈ [0, 3] we get the rules:

w

f → ◦w
f ∧ ◦f → ◦2w

f ∧ ◦f ∧ ◦2f → ◦3w
...

That is, we start pouring water at situation 0 and, if we have fire, we
keep pouring water at 1 and check fire again, and so on. As we can
see, the effect of each f test is placed at the next situation. Thus, the
reading of w W f is like a procedural program “do pour-water while
fire”. If we want to move the test to the same situation of its effect, we
would write instead (f → w) W f whose reading would be ‘’while
fire do pour-water” and whose expansion becomes:

f → w

f ∧ ◦f → ◦w
f ∧ ◦f ∧ ◦2f → ◦2w

...

The expansion of (wW f) as a set of rules reveals its behaviour
from a logic programming point of view. For instance, a theory only
containing the formula (wW f) has a unique temporal stable model
(per each length λ > 0) in which w is only true at the initial state,
whereas f is always false, since there is no additional evidence about
fire. In LTL, the formula (wW f) is equivalent to (¬f R w), that is,
�w ∨ (w U (w ∧ ¬f)). In our formalism, however, this last formula
produces temporal stable models with arbitrary prefix sequences of
w, and even the case in which w holds in all the states of the trace.
In other words, water may be poured arbitrarily many times, even
though fire is false all over the trace.

4 Conclusions
We have introduced the explicit negation operator in Linear Dynamic
Equilibrium Logic (DEL) and its monotonic basis, Linear Dynamic
Here-and-There (DHT). The introduction of explicit negation was
done by adding a second relation of “falsification” dual to the standard
satisfaction. As a result, we obtain not only a characterisation of
explicit negation as a regular logical connective that can be combined
with modal operators, but also interesting results showing that some

temporal operators become inter-definable, when this was not possible
without explicit negation. We have also discovered and explained a
new temporal operator we called “while,” that is an implicational dual
of until and may be useful as a basic connective for temporal logic
programming. We conjecture that this new while operator cannot be
reduced to the other temporal connectives, even with the possible use
of explicit negation. We leave the proof of this conjecture for future
work. We also plan to add explicit negation to first order temporal
and dynamic theories and study its consequences for temporal logic
programs with variables [3].

ACKNOWLEDGEMENTS

We are grateful to Torsten Schaub and David Pearce for their com-
ments and suggestions, and to the anonymous reviewers whose work
has helped us to improve the paper. This work was partially supported
by Ministry of Science and Innovation, Spain (grant TIC2017-84453-
P) and Xunta de Galicia, Spain (grants GPC ED431B 2019/03 and
2016-2019 ED431G/01, CITIC).

REFERENCES
[1] Felicidad Aguado, Pedro Cabalar, Martı́n Diéguez, Gilberto Pérez, and

Concepción Vidal, ‘Temporal equilibrium logic: a survey’, Journal of
Applied Non-Classical Logics, 23(1-2), 2–24, (2013).

[2] Felicidad Aguado, Pedro Cabalar, Jorge Fandinno, David Pearce,
Gilberto Pérez, and Concepción Vidal, ‘Revisiting explicit negation in
answer set programming’, Theory and Practice of Logic Programming,
19(5-6), 908––924, (2019).

[3] Felicidad Aguado, Pedro Cabalar, Gilberto Pérez, Concepción Vidal,
and Martı́n Diéguez, ‘Temporal logic programs with variables’, Theory
and Practice of Logic Programming, 17(2), 226–243, (2017).

[4] Philippe Balbiani, Joseph Boudou, Martı́n Diéguez, and David
Fernández-Duque, ‘Bisimulations for intuitionistic temporal logics’,
CoRR, abs/1803.05078, (2018).

[5] Anne-Gwenn Bosser, Pedro Cabalar, Martı́n Diéguez, and Torsten
Schaub, ‘Introducing temporal stable models for linear dynamic logic’,
in Proceedings of the 16th International Conference on Principles of
Knowledge Representation and Reasoning, (KR 2018), eds., Michael
Thielscher, Francesca Toni, and Frank Wolter, pp. 12–21, (2018).

[6] Tom Bylander, ‘The computational complexity of propositional strips
planning’, Artificial Intelligence, 69(1), 165 – 204, (1994).

[7] Pedro Cabalar, Martı́n Diéguez, and Torsten Schaub, ‘Towards dynamic
answer set programming over finite traces’, in Proceedings of the 15th
International Conference on Logic Programming and Nonmonotonic
Reasoning,(LPNMR 2019), eds., Marcello Balduccini, Yuliya Lierler,
and Stefan Woltran, volume 11481 of Lecture Notes in Computer Sci-
ence, pp. 148–162. Springer, (2019).

[8] Pedro Cabalar, Roland Kaminski, Philip Morkisch, and Torsten Schaub,
‘telingo = ASP + time’, in Proceedings of the 15th International Confer-
ence on Logic Programming and Nonmonotonic Reasoning, (LPNMR
2019), eds., Marcello Balduccini, Yuliya Lierler, and Stefan Woltran, pp.
256–269, (2019).

[9] Pedro Cabalar, Roland Kaminski, Torsten Schaub, and Anna Schuhmann,
‘Temporal answer set programming on finite traces’, Theory and Practice
of Logic Programming, 18(3-4), 406–420, (2018).

[10] Pedro Cabalar and Gilberto Peréz, ‘Temporal Equilibrium Logic: A
First Approach’, in Proceedings of the 11th International Conference on
Computer Aided Systems Theory (EUROCAST’07), p. 241–248, (2007).

[11] Giuseppe De Giacomo and Moshe Y. Vardi, ‘Linear temporal logic
and linear dynamic logic on finite traces’, in Proceedings of the 23rd
International Joint Conference on Artificial Intelligence (IJCAI 2013),
ed., Francesca Rossi, pp. 854–860, (2013).

[12] Michael Gelfond and Vladimir Lifschitz, ‘The stable models seman-
tics for logic programming’, in Proceedings of the 5th International
Conference on Logic Programming, pp. 1070–1080, (1988).

[13] Michael Gelfond and Vladimir Lifschitz, ‘Classical negation in logic pro-
grams and disjunctive databases’, New Generation Computing, 9(3/4),
365–386, (1991).

[14] Michael Gelfond and Vladimir Lifschitz, ‘Representing action and
change by logic programs’, Journal of Logic Programming, 17(2/3&4),
301–321, (1993).

[15] David Harel, Dexter Kozen, and Jerzy Tiuryn, Dynamic Logic, MIT
Press, 2000.

[16] Arend Heyting, ‘Die formalen Regeln der intuitionistischen Logik’, in
Sitzungsberichte der Preussischen Akademie der Wissenschaften, 42–56,
Deutsche Akademie der Wissenschaften zu Berlin, (1930). Reprint
in Logik-Texte: Kommentierte Auswahl zur Geschichte der Modernen
Logik, Akademie-Verlag, 1986.

[17] Victor Marek and Miroslaw Truszczyński, Stable models and an alter-
native logic programming paradigm, 169–181, Springer-Verlag, 1999.

[18] Ilkka Niemelä, ‘Logic programs with stable model semantics as a con-
straint programming paradigm’, Annals of Mathematics and Artificial
Intelligence, 25, 241–273, (1999).

[19] David Pearce, ‘A New Logical Characterisation of Stable Models and
Answer Sets’, in Proceedings of Non-Monotonic Extensions of Logic
Programming (NMELP’96), pp. 57–70, Bad Honnef, Germany, (1996).

[20] Amir Pnueli, ‘The temporal logic of programs’, in Proceedings of the
18th Annual Symposium on Foundations of Computer Science, SFCS
’77, pp. 46–57, Washington, DC, USA, (1977). IEEE Computer Society.

