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1. Introduction

After three decades of research in Nonmonotonic Reasoning (NMR), the paradigm of
Answer Set Programming (ASP) [33, 30, 3] has been consolidated as one of the most
prominent and successful approaches for practical knowledge representation. Great part
of this success is due to the impressive advances in implementation of efficient solvers
and development of applications. In this aspect, ASP shows some similarities to SAT
(propositional satisfiability), since it is also targeted for solving problems in the NP
complexity class (at least when we restrict to non-disjunctive ASP) and there already
exists a regular ASP solver competition [12]. However, unlike SAT, a crucial factor in
ASP which is also responsible for its success is its versatility for knowledge represen-
tation. While most applications of SAT involve an external translation of the problem
to solve into clauses in propositional logic, ASP provides a powerful language based on
logic program rules with variables, allowing non-monotonicity through default negation
and offering additional expressive features such as disjunction in the head, aggregates,
constraints on numeric variables, functions, etc. Furthermore, all these syntactic en-
hancements rely on a simple semantics, stable models [21] (or answer sets), that has
eventually become a kind of convergence point for different NMR formalisms and ap-
proaches (see the survey [27]).

Despite of all these features, there exists one important aspect in knowledge represen-
tation that has not been included among the usual ASP language extensions: temporal
reasoning. Temporal scenarios are very frequent in ASP applications and benchmarks
while many action languages have been defined as front-ends for ASP [22, 13, 20, 19].
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In fact, ASP offers essential features for a suitable formal representation of temporal
scenarios. For instance, it provides a high degree of elaboration tolerance1 [31] allowing
a simple and natural solution to typical representational issues such as the frame prob-
lem and the ramification problem (see respectively [32] and [25]). Another interesting
feature is that it allows a uniform treatment of different kinds of reasoning problems
such as prediction, postdiction, planning, diagnosis or verification. However, since ASP
is not a temporal formalism, it also involves some difficulties for dealing with temporal
problems. For instance, as most ASP tools must deal with finite domains, this addi-
tionally requires fixing a finite plan length2 with an obvious impossibility for solving
problems such as proving the non-existence of a plan for a given planning scenario or
verifying temporal properties of the transition system behaviour. In principle, one may
think that this kind of problems dealing with unbound time are typically best suited
for modal temporal logics, whose expressive power, computation methods (usually de-
cidable) and associated complexity have been extensively well-studied. Unfortunately,
as happens with SAT in the non-temporal case, temporal logics are not designed for
knowledge representation. For instance, the best known temporal logics are monotonic,
so that the frame and ramification problems constantly manifest in their applications,
even for very simple scenarios.

From the previous discussion, it seems that a reasonable choice would be trying to
get the advantages from both worlds: keeping all the nice knowledge representation fea-
tures from ASP while taking benefit from the advances in the area of modal temporal
logic. A crucial result that makes this combination possible is the logical characteri-
sation of stable models in terms of David Pearce’s Equilibrium Logic [34, 35]. While
many of the definitions of stable models described in [27] are very interesting for their
practical understanding, not all of them are so convenient when we are interested in a
purely logical formalism. Equilibrium Logic has been proved to be a powerful tool for
the theoretical analysis of ASP, motivating the study of strong equivalence1 between
logic programs [28], covering most syntactic extensions considered up to date, or being
closely related to the conception of new definitions of stable models for arbitrary propo-
sitional [15] and first order theories [17]. Another important advantage is that its formal
definition is extremely simple: it amounts to selecting a kind of minimal models among
those obtained with the (monotonic) intermediate logic of Here-and-There (HT) [23].

Using Equilibrium Logic as a starting point, the definition of new extended or hybrid
logics becomes quite straigthforward. In [11], Cabalar and Pérez-Vega proposed a formal-
ism called Temporal Equilibrium Logic (TEL) which shares the syntax of propositional
Linear-time Temporal Logic (LTL)[24, 36] but extends the semantics of Equilibrium
Logic for temporal paths of infinite length. In this way, as happened in Equilibrium
Logic, TEL models are just the result of a kind of minimisation among models of the
monotonic logic of Temporal Here-and-There (THT), a combination of HT and LTL. Of
course, for the choice of a temporal extension, many other combinations can be imag-
ined. However, it makes sense to start with one of the simplest and best-known temporal
logics which, on the other hand, suffices by far for the temporal reasoning required in
most ASP benchmarks dealing with dynamic scenarios.

This paper contains a survey of the main definitions of TEL and the most relevant
results obtained up to date, together with open topics for future work. The rest of
the paper is organised as follows. In the next section we introduce the logic of THT

1In McCarthy’s words: “A formalism is elaboration tolerant to the extent that it is convenient to modify a set of
facts expressed in the formalism to take into account new phenomena or changed circumstances.”
2In a similar technique to planning as propositional satisfiability [26].
1Two programs are strongly equivalent when they yield the same stable models even when they are included in

a common larger program or context.
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(Temporal Here-and-There) which constitutes the monotonic basis of TEL. This section
also contains an alternative three-valued characterisation plus a pair of transformations
to encode LTL in THT and vice versa. Section 3 contains the definition of temporal
equilibrium models as a kind of minimisation among THT-models of a theory. Next, we
discuss in Section 4 the property of strong equivalence and a possible method to check
it. In Section 5 we present a normal form which is closer to non-temporal ASP logic
programs. Section 6 presents two methods for computing temporal equilibrium models.
The first one is more efficient, but accepts only a syntactic subset of the normal form
described in the previous section. The second method is applicable to any arbitrary
theory, but is less efficient in its current implementation. Finally, Section 7 concludes
the paper.

2. Temporal Here-and-There

The logic of Linear Temporal Here-and-There (THT) is defined as follows. We start
from a finite set of atoms At called the propositional signature. A (temporal) formula
F is defined by the grammar:

F ::= ⊥ | p | F1 ∧ F2 | F1 ∨ F2 | F1 → F2 | ©F1 | F1 U F2 | F1 R F2

where F1 and F2 are temporal formulae in their turn and p is any atom. The unary
temporal operator© is read as “next,” and the binary temporal operators U and R are
read as “until” and “release” respectively. A formula is said to be non-modal if it does

not contain temporal operators. Negation is defined as ¬ϕ def
= ϕ→ ⊥ whereas > def

= ¬⊥.
As usual, ϕ↔ ψ stands for (ϕ→ ψ)∧ (ψ → ϕ). Other usual temporal operators can be
defined in terms of U and R as follows:

�ϕ
def
= ⊥ R ϕ ♦ϕ

def
= > U ϕ

� is read “forever” and ♦ stands for “eventually” or “at some future point.” We define
the following notation for a finite concatenation of ©’s

©0ϕ
def
= ϕ

©iϕ
def
= ©(©i−1ϕ) (with i ≥ 1)

The semantics of the logic of THT is defined in terms of sequences of pairs of propo-
sitional interpretations. A (temporal) interpretation M is an infinite sequence of pairs
mi = 〈Hi, Ti〉 with i = 0, 1, 2, . . . where Hi ⊆ Ti are sets of atoms standing for here
and there respectively. For simplicity, given a temporal interpretation, we write H (resp.
T) to denote the sequence of pair components H0, H1, . . . (resp. T0, T1, . . . ). Using this
notation, we will sometimes abbreviate the interpretation as M = 〈H,T〉. An interpre-
tation M = 〈H,T〉 is said to be total when H = T.

Definition 1 (THT-Satisfaction). The satisfaction relation |= is interpreted as follows
on THT models (M is a THT model and k ∈ N):

(1) M, k |= p iff p ∈ Hk, for any atom p ∈ At.
(2) M, k |= ϕ ∧ ψ iff M, k |= ϕ and M, k |= ψ.
(3) M, k |= ϕ ∨ ψ iff M, k |= ϕ or M, k |= ψ.
(4) M, k |= ϕ→ ψ iff for all H′ ∈ {H,T}, 〈H′,T〉, k 6|= ϕ or 〈H′,T〉, k |= ψ.
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(5) M, k |=©ϕ iff M, k + 1 |= ϕ.
(6) M, k |= ϕ U ψ iff there is j ≥ k such that M, j |= ψ and for all j′ ∈ [k, j − 1],

M, j′ |= ϕ.
(7) M, k |= ϕ R ψ iff for all j ≥ k such that M, j 6|= ψ, there exists j′ ∈ [k, j − 1],

M, j′ |= ϕ.
(8) never M, k |=⊥. �

A formula ϕ is THT-valid if M, 0 |= ϕ for any M. An interpretation M is a THT-model
of a theory Γ, written M |= Γ, if M, 0 |= ϕ, for all formula ϕ ∈ Γ. An axiomatisation
for THT is still an open topic.

We assume that a finite sequence M = m1,m2, . . . ,mn is an abbreviation of an
infinite sequence where the remaining elements coincide with mn, that is, that for i > n,
mi = mn. The logic of THT is an orthogonal combination of the logic of HT and
the (standard) linear temporal logic (LTL). When we disregard temporal operators,
we obtain the logic of HT. On the other hand, if we restrict the semantics to total
interpretations, 〈T,T〉 |= ϕ corresponds to satisfaction of formulas T |= ϕ in LTL.

2.1 THT versus LTL

As we can see in Definition 1, the main difference with respect to LTL is the interpreta-
tion of implication (item 4), that must be checked in both components, H and T, of M.
In fact, as we said before, it is easy to see that when we take total models M = 〈T,T〉,
THT satisfaction 〈T,T〉, k |= ϕ collapses to standard LTL satisfaction T, k |= ϕ so that
we will sometimes write the latter when convenient. For instance, item 4 in Definition 1
can be rewritten as:

4′. M, k |= ϕ → ψ iff (M, k |= ϕ implies M, k |= ψ) and T, k |= ϕ → ψ (LTL
satisfaction)

A result inherited from HT whose proof can be obtained by structural induction is
the so-called persistence property.

Proposition 2 (Persistence; see [5]). For any formula ϕ, any THT model M = 〈H,T〉
and any i ≥ 0, if M, i |= ϕ, then T, i |= ϕ. �

A consequence of this proposition is that the interpretation of negation ¬ϕ in 〈H,T〉
amounts to checking that ϕ does not hold in the total model T. Formally:

Corollary 3. 〈H,T〉, i |= ¬ϕ iff T, i 6|= ϕ in LTL. �

Obviously, any THT valid formula is also LTL valid, but not the other way around.
For instance, the following are THT valid equivalences:

¬(ϕ ∧ ψ)↔ ¬ϕ ∨ ¬ψ (1)

¬(ϕ ∨ ψ)↔ ¬ϕ ∧ ¬ψ (2)

©(ϕ⊕ ψ)↔©ϕ⊕©ψ (3)

©⊗ ϕ↔ ⊗© ϕ (4)

ϕ U ψ ↔ ψ ∨ (ϕ ∧©(ϕ U ψ)) (5)

ϕ R ψ ↔ ψ ∧ (ϕ ∨©(ϕ R ψ)) (6)

for any binary connective ⊕ and any unary connective ⊗. Equivalences (1),(2) mean
that De Morgan laws are valid whereas (3),(4) allow us to shift the ‘©’ operator to
all the operands of any connective. Formulas (5) and (6) provide inductive definitions
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for “until” and “release” respectively. The following result captures a general class of
LTL-valid formulas that are also THT-valid.

Proposition 4 (from [5]). Let ϕ and ψ be two formulas not containing implication1.
Then ϕ↔ ψ is THT-valid iff it is LTL-valid. �

There are, however, LTL-valid formulas that are not THT-valid. As an example, the
formula ϕ ∨ ¬ϕ (known as excluded middle axiom) is not THT valid. This feature is
inherited from the intermediate/intuitionistic nature of HT. In fact, the addition of this
axiom makes THT collapse to LTL, much in the same way as it makes intuitionistic
logic collapse to classical propositional logic. The following proposition shows that if we
add a copy of this axiom for any atom at any position of the models, we can force THT
models of any formula to be total.

Proposition 5 (from [6]). Given a temporal formula ϕ for a propositional signature
At, for every THT model 〈H,T〉, the propositions below are equivalent:

(I) 〈H,T〉, 0 |= ϕ ∧
∧
p∈At�(p ∨ ¬p),

(II) T, 0 |= ϕ in LTL, and for i ≥ 0 and p ∈ At, we have p ∈ Hi iff p ∈ Ti. �

This gives us a direct way of encoding LTL in THT, since LTL models of ϕ coincide
with its total THT models.

The translation from THT to LTL is not so straightforward. Informally speaking,
it requires adding an auxiliary atom p′ for each atom p in the signature, so that the
former captures the truth at component H in a THT model 〈H,T〉 while the latter
represents truth at T. Formally, given a propositional signature At, let us denote At∗ =
At∪ {p′ | p ∈ At} which is going to be the new propositional signature in LTL. For any
temporal formula ϕ we define its translation ϕ∗ as follows:

(1) ⊥∗ def
= ⊥

(2) p∗
def
= p′ for any p ∈ Σ

(3) (©ϕ)∗
def
= ©ϕ∗

(4) (ϕ⊕ ψ)∗
def
= ϕ∗ ⊕ ψ∗ for any binary operator ⊕ ∈ {∧,∨,U ,R}

(5) (ϕ→ ψ)∗
def
= (ϕ→ ψ) ∧ (ϕ∗ → ψ∗)

From the last point and the fact that ¬ϕ = ϕ → ⊥, it follows that (¬ϕ)∗ = (ϕ →
⊥) ∧ (ϕ∗ → ⊥) = ¬ϕ ∧ ¬ϕ∗. Similarly, (ϕ ↔ ψ)∗ = (ϕ ↔ ψ) ∧ (ϕ∗ ↔ ψ∗) and
(�ϕ)∗ = �ϕ∗, (♦ϕ)∗ = ♦ϕ∗.

We associate to any THT interpretation M = 〈H,T〉 the LTL interpretation Mt = I
in LTL defined as the sequence of sets of atoms I = {Ii}i∈N where Ii = {p′ | p ∈ Hi}∪Ti.
As a THT interpretation must satisfy Hi ⊆ Ti by construction, we may have LTL
interpretations that do not correspond to any THT one. In particular, for an arbitrary
I, we will only be able to form some M such that Mt = I when the set of primed atoms
at each Ii is a subset of the non-primed ones. In other words, only LTL interpretations
I satisfying the axiom schema:

�(p′ → p) (7)

for any atom p ∈ At will have a corresponding THT interpretation M such that I = Mt.

Example 6. M = ((∅, {p, q}), ({p}, {p, q}), ({q}, {q})) is a THT model of the theory
{�(¬p → q) ∧ ♦q}. In the same way, the corresponding LTL interpretation Mt =

1Remember that negation is a form of implication.
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({p, q}, {p′, p, q}, {q′, q}) is an LTL model of

(�(¬p→ q) ∧ ♦q)∗ ↔ �(¬p→ q)∗ ∧ (♦q)∗

↔ �((¬p→ q) ∧ ((¬p)∗ → q′)) ∧ ♦q′

↔ �((¬p→ q) ∧ ((¬p ∧ ¬p′)→ q′)) ∧ ♦q′.

Theorem 7 (from [2]). Let M = 〈H,T〉 be any THT interpretation and ϕ any formula.
For any i ≥ 0, it holds that

(a) 〈H,T〉, i |= ϕ if and only if Mt, i |= ϕ∗ in LTL; and
(b) 〈T,T〉, i |= ϕ if and only if Mt, i |= ϕ in LTL. �

Corollary 8 (from [6]). Let ϕ′ be the formula ϕ∗ ∧
∧
p∈At�(p′ → p). Then the set of

LTL models for the formula ϕ′ corresponds to the set of THT models for the temporal
formula ϕ. �

2.2 A Three-valued characterisation of THT

The intermediate logic of HT can be seen as a three-valued logic (in fact, it corresponds
to Gödel’s logic G3). The intuition behind this correspondence is that, given an HT
interpretation 〈H,T 〉 with H ⊆ T sets of atoms, we can have three possible situations
for any atom p: p ∈ H (the atom is true), p 6∈ T (the atom is false) or p ∈ T \ H
(the atom is undefined). We can extend this same idea to the case of THT defining an
alternative three-valued characterisation of this logic by seeing each mi = 〈Hi, Ti〉 as a
three-valued mapping mi : At→ {0, 1, 2}. Thus, for any atom p, mi(p) = 0 when p 6∈ Ti
(the atom is false), mi(p) = 2 when p ∈ Hi (the atom is true), and mi(p) = 1 when
p ∈ Ti \Hi (the atom is undefined). We can then define a valuation for any formula ϕ at
time point i, written1 M(i, ϕ), by similarly considering which formulas are satisfied by
〈H,T〉 (which will be assigned 2), not satisfied by 〈T,T〉 (which will be assigned 0) or
none of the two (which will take value 1). From the definitions in the previous section,
we can easily derive the following conditions:

(1) M(i, p)
def
= mi(p)

(2) M(i, ϕ ∧ ψ)
def
= min(M(i, ϕ),M(i, ψ)); M(i, ϕ ∨ ψ)

def
= max(M(i, ϕ),M(i, ψ))

(3) M(i, ϕ→ ψ)
def
=

{
2 if M(i, ϕ) ≤M(i, ψ)
M(i, ψ) otherwise

(4) M(i,©ϕ)
def
= M(i+ 1, ϕ)

(5) M(i, ϕ U ψ)
def
=

2 if ∃j ≥ i : M(j, ψ) = 2 and ∀k, i ≤ k < j ⇒M(k, ϕ) = 2
0 if ∀j ≥ i : M(j, ψ) = 0 or ∃k, i ≤ k < j,M(k, ϕ) = 0
1 otherwise

(6) M(i, ϕ R ψ)
def
=

2 if ∀j ≥ i : M(j, ψ) = 2 or ∃k, i ≤ k < j,M(k, ϕ) = 2
0 if ∃j ≥ i : M(j, ψ) = 0 and ∀k, i ≤ k < j ⇒M(k, ϕ) = 0
1 otherwise

From their definition, the interpretation of the temporal derived operators becomes
M(i,�ϕ) = min {M(j, ϕ) | j ≥ i} and M(i,♦ϕ) = max {M(j, ϕ) | j ≥ 0}.

1We use the same name M for a temporal interpretation and for its induced three-valued valuation function –

ambiguity is removed by the way in which it is applied (a structure or a function on indices and formulas).
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Under this alternative three-valued definition, an interpretation M satisfies a formula
ϕ when M(0, ϕ) = 2. When M = 〈T,T〉, its induced valuation will be just written as
T(i, ϕ) and obviously becomes a two-valued function, that is T(i, ϕ) ∈ {0, 2}.

3. Temporal Equilibrium Models

We can now proceed to describe the model selection criterion that defines temporal
equilibrium models. Given two interpretations M = 〈H,T〉 and M′ = 〈H′,T′〉 we say
that M′ is lower or equal than M, written M′ ≤ M, when T′ = T and for all i ≥ 0,
H ′i ⊆ Hi. As usual, M′ < M stands for M′ ≤M and M′ 6= M.

Definition 9 (Temporal Equilibrium Model). An interpretation M is a temporal equi-
librium model of a theory Γ if M is a total model of Γ and there is no other M′ < M,
such that M′ |= Γ. �

Note that any temporal equilibrium model is total, that is, it has the form 〈T,T〉
and so can be actually seen as an LTL-interpretation of the form T that we will call
temporal stable model.

Definition 10 (Temporal Stable Model). If 〈T,T〉 is a temporal equilibrium model of
a theory Γ then T is called a temporal stable model of Γ. �

In this way, the fact that any temporal stable model of Γ is also an LTL-model becomes
trivial.

Note that the consequence relation induced by temporal equilibrium models is non-
monotonic. In fact, when we restrict the syntax to ASP programs and the semantics
to HT interpretations of the form 〈H0, T0〉 we talk about (non-temporal) equilibrium
models, which coincide with stable models in their most general definition [15]. The
result below establishes a more general relation to non-temporal equilibrium logic/ASP.

Proposition 11 (from [11]). Let Γ be a combination of non-modal connectives
∧,∨,¬,→,⊥, with their usual grammar, with expressions like ©ip, being p an atom,
and let n be the maximum value for i in all ©ip occurring in Γ. Then 〈T,T〉 is a
temporal equilibrium model of Γ iff (1) Ti = ∅ for all i > n ; and (2) 〈X,X〉 with
X =

⋃n
i=0{©ip | p ∈ Ti} is an equilibrium model of Γ, reading each ‘©ip’ as a new

atom in the signature. �

The TEL satisfiability problem consists in determining whether a temporal formula
has a TEL model.

3.1 Examples

As a first example, consider the formula

�(¬p→©p) (8)

Its intuitive meaning corresponds to the logic program consisting of rules of the
form: p(s(X)) ← not p(X) where time has been reified as an extra parameter X =
0, s(0), s(s(0)), . . . . Notice that the interpretation of ¬ is that of default negation not
in logic programming. In this way, (8) is saying that, at any situation, if there is no
evidence on p, then p will become true in the next state. In the initial state, we have
no evidence on p, so this will imply ©p. To derive ©© p the only possibility would be
the rule ¬© p → ©© p, an instance of (8). As the body of this rule is false, ©© p
becomes false by default, and so on. It is easy to see that the unique temporal stable
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model of (8) is captured by the formula ¬p ∧�(¬p↔©p).
As a second example, take the formula ♦p. This formula informally corresponds to

an infinite disjunction p ∨ ©p ∨ © © p ∨ . . . . Again, as happens in disjunctive logic
programming, in TEL we have a truth minimality condition that will make true the
formula with as little information as possible. As a result, it is easy to see that the
temporal stable models of ♦p are captured by the formula ¬p U (p ∧ ©�¬p) whose
models are those where p holds true at exactly one position.

It is worth noting that an LTL satisfiable formula may have no temporal stable model.
As a simple example (well-known from non-temporal ASP) the logic program rule ¬p→
p, whose only (classical) model is {p}, has no stable models. If we assume that p cannot
be derived, i.e. ¬p, then the rule contradicts the assumption. On the other hand, if we
assume that p can be derived, then ¬p becomes false and we are left with no rule that
justifies a possible derivation for p.

When dealing with logic programs, it is well-known that non-existence of stable models
is always due to a kind of cyclic dependence on default negation like this. In the temporal
case, however, non-existence of temporal stable models may also be due to a lack of a
finite justification for satisfying the criterion of minimal knowledge. As an example,
consider the formula:

�(¬©p→ p) ∧ �(©p→ p) (9)

This formula has no temporal equilibrium models. To see why, note that (9) is LTL-
equivalent (and THT-equivalent) to �(¬ © p ∨ ©p → p) that, in its turn, is LTL-
equivalent to �p. Thus, the only LTL-model T of 9 has the form Ti = {p} for any i ≥ 0.
However, it is easy to see that the interpretation 〈H,T〉 with Hi = ∅ for all i ≥ 0 is also a
THT model, whereas H < T. It is worth to note that (9) was extracted from a first-order
counterpart, the pair of rules ¬p(s(X)) → p(X) and p(s(X)) → p(X), that were used
in [14] to show that an acyclic1 program without a well-founded dependence ordering
relation may have no stable models. In this case, we accordingly get no temporal stable
models.

Another example of TEL-unsatisfiable formula is �♦p, typically used in LTL to assert
that property p occurs infinitely often. This formula has no temporal stable models:
all models must contain infinite occurrences of p and there is no way to establish a
minimal H among them. Thus, formula �♦p is LTL satisfiable but it has no temporal
stable model. This formula is normally used in LTL to specify a liveness property (p
occurs infinitely often). When asserted in TEL, however, this yields a conflict with the
minimality criterion: informally speaking, for an infinite set of p’s along time, we can
always take a smaller model by removing one p. The result would also be an infinite
set of p’s. So, there is no way to get a minimal model. This does not mean a serious
limitation in expressiveness, since for practical problems, we would usually include this
type of liveness property in a constraint, rather than asserting the formula. In this
way, the constraint ¬�♦p→ ⊥ would be ruling out all models where p does not occur
intinitely often. Note also that all LTL is embeddable both in THT (Proposition 5) and
in fact in TEL too (see [6] for details).

By contrast, the next proposition states that for a large class of temporal formulas,
LTL satisfiability is equivalent to THT satisfiability and TEL satisfiability.

Proposition 12 (from [6]). Let ϕ be temporal formula built over the connectives ∨,
∧, →, © and U and such that → occurs only in subformulae of the form p →⊥ with

1A logic program is acyclic if its corresponding dependency graph contains no cycles. This graph has as vertices

the set of atoms in the program and one edge (p, q) for each rule with p in the head and q occurring in the rule
body.
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p ∈ At. The propositions below are equivalent: (I) ϕ is LTL satisfiable; (II) ϕ is THT
satisfiable; (III) ϕ has a temporal stable model, i.e. ϕ is TEL satisfiable.

Theorem 13 (Corollary 2 from [6]). THT satisfiability problem is PSpace-complete.

4. Strong equivalence

By Eq(V,Γ) we denote the set of temporal equilibrium models under signature V of
a theory Γ ⊆ LV . Remember that the consequence relation induced by temporal equi-
librium models is nonmonotonic. Thus, when dealing with equivalence of two theories,
Γ1,Γ2, the mere coincidence of equilibrium models Eq(V,Γ1) = Eq(V,Γ2) will not suf-
fice for safely replacing one by each other, since they may behave in a different way
in the presence of additional information. Two theories Γ1,Γ2 are said to be strongly
equivalent when Eq(V,Γ1 ∪ Γ) = Eq(V,Γ2 ∪ Γ) for any arbitrary theory Γ.

The following result shows that we can use translation (·)∗ from THT to LTL to
obtain a sufficient condition for TEL-strong equivalence of two temporal theories.

Theorem 14 (Main theorem from [2]). Let Γ1 and Γ2 be a pair of temporal theories,
and

∧
Γ1 and

∧
Γ2 the conjunctions of their respective sets of formulas. Then Γ1 and

Γ2 are strongly equivalent with respect to temporal equilibrium models if the formula∧
p∈At�(p′ → p)→ (

∧
Γ1 ↔

∧
Γ2)∗ is valid in LTL.

We may also use this result to detect a redundant formula ϕ in some theory Γ. To
this aim, we would have to show that Γ and Γ′ = Γ \ {ϕ} are strongly equivalent. From
the theorem above, it follows that:

Corollary 15. Let Γ be a temporal theory,
∧

Γ the conjunction of its formulas and
ϕ some arbitrary temporal formula. Then Γ and Γ ∪ {ϕ} are strongly equivalent if the
formula

∧
p∈At�(p′ → p)→ (

∧
Γ→ ϕ)∗ is valid in LTL. �

In [2], Theorem 14 was used to compare a pair of example theories for the same actions
domain, checking whether their respective representations allowed the removal of inertia
laws. This technique was automated into a prototype called tht1.

5. Normal Form

Normal forms are usually interesting for building computation methods for a given
logical formalism. For instance, in the case of Equilibrium Logic, it has been already
proved [8] that any arbitrary propositional theory is strongly equivalent to a logic pro-
gram (allowing disjunction and negation in the head). In this way, logic programs con-
stitute a normal form for Equilibrium Logic. Similarly, in the case of (monotonic) LTL,
an implicational clause-like normal form introduced in [18] was used for designing a
temporal resolution method.

Following [5], in this section we show that TEL can be similarly reduced (under strong
equivalence) to a normal form, called temporal logic programs (TLP), consisting of a set
of implications (embraced by a necessity operator) quite close to logic program rules.
The reduction into normal form starts from the structure-preserving polynomial trans-
formation presented in [9] for the non-temporal case. This transformation has as a main
feature the introduction of an auxiliary atom per each subformula in the original the-
ory. We then combine this technique with the inductive definitions of temporal operators

1Available at http://equilibriumlogic.irlab.org
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used for LTL in [18]. The obtained normal form considerably reduces the possible com-
binations of modal operators and, as we will see later, has become useful for a practical
computation of TEL models.

5.1 Temporal Logic Programs

Next, we describe the normal form we are interested in. Given a signature At, we define
a temporal literal as any expression in the set {p,©p,¬p,¬© p | p ∈ At}.

Definition 16 (Temporal rule). A temporal rule is either:

(1) an initial rule of the form

B1 ∧ · · · ∧Bn → C1 ∨ · · · ∨ Cm (10)

where all the Bi and Cj are temporal literals, n ≥ 0 and m ≥ 0.
(2) a dynamic rule of the form �r, where r is an initial rule.
(3) a fulfillment rule like �(�p→ q) or like �(p→ ♦q) with p, q atoms. �

In the three cases, the antecedent and consequent of the (unique) implication receive
the names of rule body and rule head respectively. In initial (resp. dynamic) rules, we
may have an empty head m = 0 corresponding to ⊥ – if so, we talk about an initial
(resp. dynamic) constraint. A temporal logic program1 (TLP for short) is a finite set of
temporal rules. A TLP without temporal operators, that is, a set of initial rules without
©, is said to be an ASP program2.

As an example of TLP take the program Π1 consisting of:

¬a ∧©b→©a (11)

�(a→ b) (12)

�(¬b→©a) (13)

where (11) is an initial rule and (12),(13) are dynamic rules.
Looking at the semantics of � it seems clear that we can understand a dynamic rule

�r as an infinite sequence of expressions like ©ir, one for each i ≥ 0. Using (3),(4)
we can shift ©i inside all connectives in r so that ©ir is equivalent to an initial rule
resulting from prefixing any atom in r with ©i. To put an example, if r = (13) then
©2r would correspond to (¬©2b→©3a).

Definition 17 (i-expansion of a rule). Given i ≥ 0, the i-expansion of a dynamic rule
�r, written (�r)i, is a set of rules defined as:

(�r)i
def
=

∅ if i = 0 and r contains some ‘©’
{©jr | 0 ≤ j ≤ i− 1} if i > 0 and r contains some ‘©’
{©jr | 0 ≤ j ≤ i} otherwise

If r is an initial rule, its i-expansion is defined as:

ri
def
=

{
∅ if i = 0 and r contains some ‘©’
r otherwise �

1In fact, as shown in [5], this normal form can be even more restrictive: initial rules can be replaced by atoms,
and we can avoid the use of literals of the form ¬©p.
2In ASP literature, this is called a a disjunctive program with negation in the head.
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In this way, the superindex i refers to the longest sequence of ©’s used in the rule.
For instance, (13)3 would be:

{ (¬b→©a), (¬©b→©2a), (¬©2b→©3a) }

We extend this notation to programs, so that given a TLP Π its i-expansion Πi results
from replacing each initial or dynamic rule r in Π by ri. An interesting observation
is that we can understand each Πi as a (non-temporal) ASP program for signature

Ati
def
= {“©j p” | p ∈ At, 0 ≤ j ≤ i} where we understand each “©j p” as a different

propositional atom. This same notation can be applied to interpretations. If T is an LTL
interpretation (an infinite sequence of sets of atoms) for signature At its i-expansion
would be the corresponding propositional interpretation for signature Ati defined as

Ti def
= {©jp | 0 ≤ j ≤ i, p ∈ Tj} and if M = 〈H,T〉 is a THT interpretation then its i-

expansion is defined as the HT interpretation Mi def
= 〈Hi,Ti〉. In all these cases, we also

define the ω-expansion (or simply, expansion) as the infinite union of all i-expansions

for all i ≥ 0. Thus, for instance (�r)ω
def
=
⋃
i≥0(�r)i and similarly for Πω, Atω, Tω and

Mω. It is interesting to note that, for any classical interpretation T′ for signature Atω,
we can always build a corresponding LTL interpretation T in signature At such that
Tω = T′. The following theorem establishes the correspondence between a temporal
program and its expansion.

Theorem 18. Let Π be a TLP without fulfillment rules. Then 〈T,T〉 is a temporal
equilibrium model of Π under signature At iff Tω is a stable model of Πω under signature
Atω. �

The above theorem allows us reading a TLP with initial and dynamic rules as an
ASP program with infinite “copies” of the same rule schemata. In many cases, this
allows us to foresee the temporal equilibrium models of a TLP. For instance, if we look
at our example TLP Π1, it is easy to see that we should get T0 = ∅ as the only rule
affecting the situation i = 0 is (12)0 = (a→ b). For situation i = 1 we would have rules
(©a → ©b) ∈ (12)1 and (¬b → ©a) ∈ (13)1 so that, given T0 we obtain ©a ∧ ©b,
that is, T1 = {a, b}. For i = 2, the involved rules are (©2a → ©2b) ∈ (12)2 and
(¬©b → ©2a) ∈ (13)2 so that, given T1 we obtain T2 = ∅. In a similar way, for i = 3
we have rules (©3a → ©3b) and (¬©2b → ©3a) leading to T3 = {a, b} and then this
behaviour is repeated. To sum up, we get a unique temporal equilibrium model 〈T,T〉
for Π1 where T can be captured by the regular expression ( ∅ {a, b} )+.

In some cases, however, we may face new situations that are not common in standard
ASP. For instance, consider the formula (9), that corresponds to the conjunction of two
temporal rules. As we saw before, this TLP has no temporal equilibrium models. Note
that, by Theorem 18, this means that the ASP program (9)ω has no stable models,
although it is an acyclic program and (finite) acyclic programs always have a stable
model. The intuitive reason for this is that atoms ©ip infinitely depend on the future,
and there is no way to build an ordered proof starting from facts or the absence of them
at a given end point.

11
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5.2 Reduction into TLP normal form

The reduction into TLP normal form uses an extended signature VL that contains an
atom (a label) for each formula in the original language1 LV , that is VL = {Lϕ | ϕ ∈ LV }.
For convenience, we use Lϕ

def
= ϕ when ϕ is >, ⊥ or an atom p ∈ V . This allows us

to consider VL as a superset of V . For any non-atomic formula γ, its definition, df(γ)
corresponds to:

df(γ)
def
=



�(Lγ ↔ Lϕ • Lψ) if γ = (ϕ • ψ) with • ∈ {∧,∨,→};
�(Lγ ↔©Lϕ) if γ =©ϕ;
�(Lγ ↔ Lψ ∨ (Lϕ ∧©Lγ) )
∧�(Lγ → ♦Lψ) if γ = (ϕ U ψ);

�(Lγ ↔ Lψ ∧ (Lϕ ∨©Lγ) )
∧�(�Lψ → Lγ) if γ = (ϕ R ψ).

Definition 19. For any theory Γ in LV , we define the translation σ(Γ) as:

σ(Γ)
def
= {Lϕ | ϕ ∈ Γ} ∪ {df(γ) | γ ∈ subf(Γ)}

That is, σ(Γ) collects the labels for all the formulas in Γ plus the definitions for all
the subformulas in Γ. When the main connective in γ is a derived operator ¬,♦,�, after
simplifying truth constants, we obtain the following df(γ):

df(γ) =

�(Lγ ↔¬Lϕ ) if γ = ¬ϕ;
�(Lγ ↔ Lϕ ∨©Lγ ) ∧�(Lγ → ♦Lϕ) if γ = ♦ϕ;
�(Lγ ↔ Lϕ ∧©Lγ ) ∧�(�Lϕ → Lγ) if γ = �ϕ.

Let T be any LTL interpretation {Ii}i∈N and V some set of atoms: we denote T ∩ V
to stand for the LTL interpretation {I ′i}i∈N where I ′i = Ii ∩V . Similarly, given the THT
interpretation M = 〈H,T〉, we write M ∩ V to stand for 〈H ∩ V,T ∩ V 〉.

Lemma 20. Let M be a model of a theory Γ in LV . Then, there exists some M′ such
that M = M′ ∩ V and M′ |= σ(Γ).

Lemma 21. Let Γ be a THT theory in LV and M a model for σ(Γ). Then for any
γ ∈ subf(Γ) and any i ≥ 0, M(i,Lγ) = M(i, γ).

Theorem 22. For any theory Γ in LV : {M | M |= Γ} = {M′ ∩ V | M′ |= σ(Γ)}.

Clearly, the equality above is preserved if we include an arbitrary theory Γ′ ⊆ LV as
follows {M |M |= Γ∪ Γ′} = {M′ ∩ V |M′ |= σ(Γ)∪ Γ′} and then we take the minimal
models on both sides.

Since the transformation adds new auxiliary atoms, we must refine the idea of strong
equivalence for theories with extended signatures.

Definition 23 (Strong faithfulness). We say that a translation σ(Γ) ⊆ LU of some
theory Γ ⊆ LV with V ⊆ U is strongly faithful if, for any theory Γ′ ⊆ LV :

Eq(V,Γ ∪ Γ′) = {M ∩ V | M ∈ Eq(U, σ(Γ) ∪ Γ′)}

Corollary 24. Translation σ(Γ) is strongly faithful.

1In this way, VL is infinite, but when we later translate a given theory Γ, we can just take VL as a label per each

subformula.
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Transformation σ(Γ) is obviously modular, and its polynomial complexity can be
easily deduced, but is not a temporal logic program yet, as it contains nested implica-
tions. However, we can apply some simple transformations on implication, conjunction
and disjunction that have been shown to be strongly equivalent at the (non-temporal)
propositional level1 [9], and obtain a TLP without changing the signature VL. For each
definition df(γ), we define the strongly equivalent set (understood as the conjunction) of
temporal logic program rules df∗(γ) as shown in Figure 1. The temporal logic program
σ∗(Γ) is obtained by replacing in σ(Γ) each subformula definition df(ϕ) by the corre-
sponding set of rules df∗(ϕ). Note that, as σ∗(Γ) is strongly equivalent to σ(Γ) (under
the same vocabulary) it preserves strong faithfulness with respect to Γ. Figure 2 shows
the translation that results for derived operators after applying their definitions. To illus-
trate the effect of σ∗ consider the example theory Γ1 just consisting of �(¬p→ q U p).
The translation σ∗(Γ1) consists of the conjunction of L4 plus the rules in the df∗(γ)
columns of tables in Figure 3.

γ df(γ) df∗(γ)

ϕ ∧ ψ �(Lγ ↔ Lϕ ∧ Lψ)

�(Lγ → Lϕ)

�(Lγ → Lψ)

�(Lϕ ∧ Lψ → Lγ)

ϕ ∨ ψ �(Lγ ↔ Lϕ ∨ Lψ)

�(Lϕ → Lγ)

�(Lψ → Lγ)

�(Lγ → Lϕ ∨ Lψ)

ϕ→ ψ �(Lγ ↔ (Lϕ → Lψ)

�(Lγ ∧ Lϕ → Lψ)

�(¬Lϕ → Lγ)

�(Lψ → Lγ)

�(Lϕ ∨ ¬Lψ ∨ Lγ)

ϕ U ψ �(Lγ ↔ Lψ ∨ (Lϕ ∧©Lγ))

∧ �(Lγ → ♦Lψ)

�(Lγ → Lψ ∨ Lϕ)

�(Lγ → Lψ ∨©Lγ)

�(Lψ → Lγ)

�(Lϕ ∧©Lγ → Lγ)

�(Lγ → ♦Lψ)

ϕ R ψ
�(Lγ ↔ Lψ ∧ (Lϕ ∨©Lγ))

∧ �(�Lψ → Lγ)

�(Lψ ∧ Lϕ → Lγ)

�(Lψ ∧©Lγ → Lγ)

�(Lγ → Lψ)

�(Lγ → Lϕ ∨©Lγ)

�(�Lψ → Lγ)

Figure 1. Transformation σ∗(γ) generating a temporal logic program.

Although σ∗(Γ) is systematically applied on any subformula, for a practical imple-
mentation, we can frequently avoid the introduction of new labels, when the obtained
expressions are already a TLP. For instance, in the example above, it would actually
suffice with considering the replacement of (p U q) by label L1 to get Γ1 = �(¬p→ L1)
which is already a TLP. The next result shows that the computation of σ∗(Γ) has a
polynomial (in fact, linear) complexity on the size of Γ.

1These transformations for propositional operators contain expressions that are redundant in classical logic, but
not in the logic of Here-and-There. The method in [10] can be used to show that these are, in fact, their possible

minimal representations as sets of program rules.
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γ df∗(γ)

¬ϕ �(Lγ ∧ Lϕ → ⊥) �(¬Lϕ → Lγ)

♦ϕ
�(Lγ → Lϕ ∨©Lγ) �(Lϕ → Lγ)

�(Lγ → ♦Lϕ) �(©Lγ → Lγ)

�ϕ
�(Lϕ ∧©Lγ → Lγ) �(Lγ → Lϕ)

�(�Lϕ → Lγ) �(Lγ →©Lγ)

Figure 2. Transformation σ∗(γ) that results for derived operators.

γ df∗(γ)

q U p

�(L1 → p ∨ q)
�(L1 → p ∨©L1)
�(p→ L1)

�(q ∧©L1 → L1)
�(L1 → ♦p)

¬p �(L2 ∧ p→ ⊥)
�(¬p→ L2)

γ df∗(γ)

¬p→ p U q

�(L3 ∧ L2 → L1)
�(¬L2 → L3)
�(L1 → L3)

�(L2 ∨ ¬L1 ∨ L3)

�(¬p→ q U p)

�(L3 ∧©L4 → L4)
�(L4 → L3)
�(L4 →©L4)

�(�L3 → L4)

Figure 3. Transformation σ∗(Γ1) for example theory Γ1 = {�(¬p→ q U p)} .

Theorem 25. Translation σ∗(Γ) is linear and its size can be bounded as follows:
size(σ∗(Γ)) ≤ 2 |Γ|+ 34 size(Γ).

6. Computing Temporal Stable Models

In this section we consider two methods for computing temporal equilibrium/stable mod-
els. It must be noted that a temporal stable model has the form of an LTL-interpretation,
that is, an infinite sequence of propositional interpretations. Furthermore, it is quite
usual that a theory has an infinite set of temporal stable models. Thus, the usual be-
haviour of ASP solvers enumerating finite stable models is not applicable here. Fortu-
nately, this infinite set of infinite structures is not arbitrary: temporal stable models
show a regularity and, in fact, it can always be captured as the input language of a
Büchi automaton1 [4].

The two methods presented here are of different nature. The first method is more
efficient and has been implemented in a tool that allows using variables, something
more comfortable for practical examples. However, it is only applied to a syntactic
subset of the normal form presented in the previous section, so it does not cover the
full expressiveness of TEL. The second method accepts any arbitrary TEL theory and
is based on an automata construction method. It has also helped to fix some complexity
bounds for THT and TEL satisfiability. However, its current practical implementation
generates automata of a rather large size, making this choice much more inefficient.

6.1 Splitting and Loop Formulas

We have seen that programs like (9) may have no temporal stable models due to,
informally speaking, an “infinite dependence on the future.” Fortunately, most ASP

1A Büchi automaton is a regular automaton for words of infinite length so that the word is accepted iff it visits

an acceptance state an infinite number of times.
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programs dealing with transition systems represent rules so that past does not depend
on the future. This is what we called future projected dependence and can be captured
by the following subclass of TLPs.

Definition 26 (Splitable TLP (STLP)). A TLP Π for signature At is said to be
splitable if Π consists of rules of any of the forms:

B ∧N → H (14)

B ∧©B′ ∧N ∧©N ′ →©H ′ (15)

�(B ∧©B′ ∧N ∧©N ′ →©H ′) (16)

where B and B′ are conjunctions of atoms, N and N ′ are conjunctions of negative
literals like ¬p with p ∈ At, and H and H ′ are disjunctions of atoms. �

The set of rules of form (14) in Π will be denoted ini0(Π) and correspond to initial
rules for situation 0. The rules of form (15) in Π will be represented as ini1(Π) and
are initial rules for the transition between situations 0 and 1. Finally, the set of rules
of form (16) is written dyn(Π) and contains dynamic rules. Both in (15) and (16), we
understand that operator © is actually shifted until it only affects to atoms – this is
always possible due to equivalences (3), (4). By abuse of notation, we will also use the
formulas B,B′, N,N ′, H and H ′ as sets that respectively contain the atoms that occur
in each respective formula.

Notice that a rule of the form �(B ∧ N → H) (i.e., without © operator) is not
splitable but can be transformed into the equivalent pair of rules B ∧ N → H and
�(©B ∧©N →©H) which are both splitable. For instance, (12) becomes the pair of
rules:

a→ b (17)

�(©a→©b) (18)

As an example, (9) is not splitable, whereas Π1={(11),(13),(17),(18)} is splitable being
ini0(Π1)={(17)}, ini1(Π1)={(11)} and dyn(Π1)={(17),(13)}. In particular, in (11) we
have the non-empty sets B′ = {b}, N = {a} and H ′ = {a}, whereas for (13) the sets
are N = {b}, H ′ = {a}.

The most interesting feature of splitable TLPs is that we can apply the so-called
splitting technique [29] to obtain their temporal equilibrium models in an incremental
way. Let us briefly recall this technique for the case of ASP programs. Following [29] we
define:

Definition 27 (Splitting set). Let Π be an ASP program consisting of (non-temporal)
rules like (14). Then a set of atoms U is a splitting set for Π if, for any rule like (14)
in Π: if H ∩U 6= ∅ then (B ∪N ∪H) ⊆ U . The set of rules satisfying (B ∪N ∪H) ⊆ U
are denoted as bU (Π) and called the bottom of Π with respect to U . �

Consider the program:

a→ c (19)

b→ d (20)

¬b→ a (21)

¬a→ b (22)
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The set U = {a, b} is a splitting set for Π being bU (Π) = {(21), (22)}. The idea of
splitting is that we can compute first each stable model X of bU (Π) and then use the
truth values in X for simplifying the program Π \ bU (Π) from which the rest of truth
values for atoms not in U can be obtained. Formally, given X ⊆ U ⊆ At and an ASP
program Π, for each rule r like (14) in Π such that B ∩ U ⊆ X and N ∩ U is disjoint
from X, take the rule r• : B• ∧N• → H where B• = (B \ U) and N• = (N \ U). The
program consisting of all rules r• obtained in this way is denoted as eU (Π, X). Note
that this program is equivalent to replacing in all rules in Π each atom p ∈ U by ⊥ if
p 6∈ X and by > if p ∈ X.

In the previous example, the stable models of bU (Π) are {a} and {b}. For the first
stable model X = {a}, we get eU (Π \ bU (Π), {a}) = {> → c} so that X ∪ {c} = {a, c}
should be a stable model for the complete program Π. Similarly, for X = {b} we get
eU (Π \ bU (Π), {b}) = {> → d} and a “completed” stable model X ∪ {d} = {b, d}. The
following result guarantees the correctness of this method in the general case.

Theorem 28 (from [29]). Let U be a splitting set for a set of rules Π like (14). A set
of atoms X is a stable model of Π if, and only if both

(i) X ∩ U is a stable model of bU (Π);
(ii) and X \ U is a stable model of eU (Π \ bU (Π), X ∩ U). �

In [29] this result was generalised for an infinite sequence of splitting sets, showing an
example of a logic program with variables and a function symbol, so that the ground
program was infinite. We adapt next this splitting sequence result for the case of splitable
TLPs in TEL.

From Definition 17 we can easily conclude that, when Π is a splitable TLP, its program
expansions have the form Π0 = ini0(Π) and Πi = ini0(Π)∪ ini1(Π)∪ dyn(Π)i for i > 0.

Proposition 29. Given a splitable TLP Π for signature At and any i ≥ 0:

(i) Ati is a splitting set for Πω;
(ii) and bAti(Π

ω) = Πi. �

Given any rule like r like (15) of (16) and a set of atoms X, we define its simplification
simp(r,X) as:

simp(r,X)
def
=

{
©B′ ∧©N ′ →©H ′ if B ⊆ X and N ∩X = ∅
> otherwise

Given some LTL interpretation T, let us define now the sequence of programs:

Π[T, i]
def
= eAti

(
Πω \Πi , Ti

)
that is, Π[T, i] is the “simplification” of Πω by replacing atoms in Ati by their truth
value with respect to Ti. Then, we have:

Proposition 30.

Π[T, 0] = (dyn(Π)ω \ dyn(Π)1) ∪ {simp(r, T0) | r ∈ ini1(Π) ∪ dyn(Π)}

Π[T, i] = (dyn(Π)ω \ dyn(Π)i+1) ∪ {©isimp(r, Ti) | r ∈ dyn(Π)}

for any i ≥ 1. �

As we can see, programs Π[T, i] maintain most part of dyn(Π)ω and only differ in
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simplified rules. Let us call these sets of simplified rules:

slice(Π,T, 0)
def
= Π0 = ini0(Π)

slice(Π,T, 1)
def
= {simp(r, T0) | r ∈ ini1(Π) ∪ dyn(Π)}

slice(Π,T, i+ 1)
def
= {©isimp(r, Ti) | r ∈ dyn(Π)} for i ≥ 1

Theorem 31 (Splitting Sequence Theorem). Let 〈T,T〉 be a model of a splitable TLP
Π. 〈T,T〉 is a temporal equilibrium model of Π iff

(i) T0 = T0 is a stable model of slice(Π,T, 0) = Π0 = ini0(Π) and
(ii) (T1 \At0) is a stable model of slice(Π,T, 1) and
(iii) (Ti \Ati−1) is a stable model of slice(Π,T, i) for i ≥ 2. �

As an example, let us take again program Π1 = (11), (17), (18), (13). The program
Π0

1 = ini0(Π1) = (17) has the stable model T0 = ∅ = T0. Then we take slice(Π,T, 1) =
{simp(r, T0) | r ∈ ini1(Π) ∪ dyn(Π)} that corresponds to {(©b → ©a), (©a →
©b), (> → ©a)} whose stable model is {©a,©b} = (T1 \ At0) so that T1 = {a, b}.
In the next step, slice(Π,T, 2) = {©simp(r, T1) | r ∈ dyn(Π)} = {(©2a→©2b), (>)}
whose stable model is ∅ = (T2 \ At1) so that T2 = ∅. Then, we would go on with
slice(Π,T, 3) = {©2simp(r, T2) | r ∈ dyn(Π)} = {(©3a → ©3b), (> → ©3a)} leading
to {©3a,©3b} that is T3 = {a, b} and so on.

Theorem 31 allows us building the temporal equilibrium models by considering an
infinite sequence of finite ASP programs slice(Π,T, i). If we consider each program
Π′ = slice(Π,T, i+1) for signature Ati+1\Ati then, since it is a standard disjunctive ASP
program, we can use the main result in [16] to compute its stable models by obtaining
the classical models of a theory Π′ ∪ LF (Π′) where LF stands for loop formulas. To
make the paper self-contained, we recall next some definitions and results from [16].

Given an ASP program Π we define its (positive) dependency graph G(Π) where its
vertices are At (the atoms in Π) and its edges are E ⊆ At×At so that (p, p) ∈ E for any
atom1 p, and (p, q) ∈ E if there is an ASP rule in Π like (14) with p ∈ H and q ∈ B. A
nonempty set L of atoms is called a loop of a program Π if, for every pair p, q of atoms
in L, there exists a path from p to q in G(Π) such that all vertices in the path belong
to L. In other words, L is a loop of iff the subgraph of G(Π) induced by L is strongly
connected. Notice that reflexivity of G(Π) implies that for any atom p, the singleton
{p} is also a loop.

Definition 32 (external support). Given an ASP program Π for signature At, the
external support formula of a set of atoms Y ⊆ At with respect to Π, written ESΠ(Y )
is defined by:

∨
r∈R(Y )

(
B ∧N ∧

∧
p∈H\Y

¬p
)

where R(Y ) = {r ∈ Π like (14) | H ∩ Y 6= ∅ and B ∩ Y = ∅}. �

Theorem 33 (from [16]). Given a program Π for signature At, and a (classical) model
X ⊆ At of Π then X is a stable model of Π iff for every loop Y of Π, X satisfies∨
p∈Y p→ ESΠ(Y ) �

1The original formulation in [16] did not consider reflexive edges, dealing instead with the idea of paths of length

0.
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This result can be directly applied to each finite ASP program slice(Π,T, i). As we
have slice programs for i = 0, 1, . . . , this means we would obtain an infinite sequence of
classical theories (each program plus its loop formulas). Fortunately, these theories are
not arbitrary. For situations 0, 1, we may obtain loops induced by dependencies that are
due to initial rules, but for i ≥ 2 loops follow a repetitive pattern, so they can be easily
captured using � and © operators. Thus, we just need to consider loops for situations
0, 1, 2 bearing in mind that any loop at level i = 2 will occur repeatedly from then on.
Given a splitable TLP Π its associated dependency graph G(Π) is generated from the
expanded (ASP) program Π2, so that its nodes are atoms in the signature At2 and its
loops are obtained from this finite program. For instance, given our example program
Π1, its graph G(Π1), shown in Figure 4, is obtained from the expanded program Π2

1

and, as we can see, contains the loops {©a,©b} plus {A} for any A ∈ At2.

a ©a

��

©2a

b

OO

©b

SS

©2b

OO

Figure 4. Graph G(Π1) (reflexive arcs are not displayed) corresponding to Π2
1.

Theorem 34. Let Π be a splitable TLP and T an LTL model of Π. Then 〈T,T〉 is a
temporal equilibrium model of Π iff T is an LTL model of the union of formulas LF (Y )
defined as:

Y ∨ → ESini0(Π)(Y ) for any loop Y ⊆ At0 = At
Y ∨ → ESini1(Π)∪dyn(Π)1(Y ) for any loop Y ⊆ (At1 \At0)

�

(
Y ∨ → ESdyn(Π)2\dyn(Π)1(Y )

)
for any loop Y ⊆ (At2 \At1) �

In our running example Π1 we have At0 = {a, b} and ini0(Π) = (17) with two loops
{a}, {b} where LF ({a}) = (a→ ⊥) and LF ({b}) = (b→ a). For (At1\At0) = {©a,©b}
we take the program ini1(Π1)∪ dyn(Π)1), that is, rules (11), (18), (13) ignoring �. We
get three loops leading to the corresponding loop formulas (©a → (¬a ∧ ©b) ∨ ¬b),
(©b → ©a) and (©a ∨ ©b → ¬b). Finally, for At2 \ At1 we have two loop formulas
�(©2b → ©2a) and �(©2a → ¬© b). It is not difficult to see that Π1 ∪ LF (Π1) is
equivalent to the LTL theory: ¬a ∧ ¬b ∧�(©a↔ ¬b) ∧�(©b↔ ¬b).

The technique of generating loop formulas has been implemented in a tool called
STeLP1 [7] that allows computing the temporal equilibrium models of an STLP. The
input programs of STeLP adopt the standard ASP notation for conjunction, negation
and implication, so that, an initial rule like (14) is represented as:

Am+1 v . . . v As :- A1, . . . ,An, not An+1, . . . , not Am

Operator ‘©’ is represented as ‘o’ whereas a dynamic rule like �(α → β) is written as
β ::- α. Using this notation, program Π1 becomes:

o a :- not a, o b. b ::- a. o a ::- not b.

1A STeLP web version is available at http://kr.irlab.org/stelp
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Constraints in STeLP are more general than in STLP: their body can include any
arbitrary combination of propositional connectives with o, always (standing for �) and
until (standing for U). The empty head⊥ is not represented. For instance, �(©a∧¬b→
⊥) and �¬g → ⊥ are constraints written as:

::- o a, not b. :- always not g.

In STeLP we can also use rules where atoms have variable arguments like p(X1,. . . ,Xn)

and, as happens with most ASP solvers, these are understood as abbreviations of all
their ground instances. For more details on the input language, the reader is referred
to [1]. As an example of STeLPdomain, consider the classical puzzle where we have a wolf
w, a sheep s and a cabbage c at one bank of a river. We have to cross the river carrying
at most one object at a time. The wolf eats the sheep, and the sheep eats the cabbage,
if nobody is around. Action m(X) means that we move some item w,s,c from one bank
to the other. We assume that the boat is always switching between both banks of the
river, so when no action is executed, this means we moved the boat without carrying
anything. We will use a unique fluent at(Y,B) meaning that Y is at bank B being Y an
item or the boat b. The complete encoding is shown in Figure 6.1.

% Domain predicates

domain item(X), object(Y).

static opp/2. fluent at/2. action m/1.

opp(l,r). opp(r,l). item(w). item(s). item(c).

object(Z) :- item(Z). object(b).

o at(X,A) ::- at(X,B), m(X), opp(A,B). % Effect axiom for moving

o at(b,A) ::- at(b,B), opp(A,B). % The boat is always moving

::- m(X), at(b,A), at(X,B), opp(A,B). % Action executability

::- at(Y,A), at(Y,B), opp(A,B). % Unique value constraint

o at(Y,A) ::- at(Y,A), not o at(Y,B),opp(A,B).% Inertia

::- at(w,A), at(s,A), at(b,B), opp(A,B). % Wolf eats sheep

::- at(s,A), at(c,A), at(b,B), opp(A,B). % Sheep eats cabbage

a(X) ::- not m(X). % Choice rules for action

m(X) ::- not a(X). % execution

::- m(X), item(Z), m(Z), X != Z. % Non-concurrent actions

at(Y,l). % Initial state

g ::- at(w,r), at(s,r), at(c,r). % Goal predicate

:- always not g. % Goal must be satisfied

Figure 5. Wolf-sheep-cabbage puzzle in STeLP.

The result obtained by STeLPfor this example1 is shown in Figure 6. As an example of
non-existence of plan, if we further include the rule ::- at(w,r), at(c,r), at(b,l)

meaning that we cannot leave the wolf and the cabbage alone in the right bank, then
the problem becomes unsolvable (we get a Büchi automaton with no accepting path).

6.2 Automata based method

In this section, following [6], we will provide an automata-based approach to deter-
mine whether a formula ϕ built over the propositional variables {p1, . . . , pn} has a TEL
model. This method has the advantage of being applicable to any arbitrary tempo-
ral theory and also allows us to establish some complexity bounds for THT and TEL

1We removed the goal clauses for showing the whole system behaviour.
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at(b,l),at(c,l)
at(s,l),at(w,l)

init

at(b,r),at(c,l)
at(s,r),at(w,l)

at(b,l),at(c,l)
at(s,r),at(w,l)

at(b,r),at(c,r)
at(s,r),at(w,l)

at(b,l),at(c,r)
at(s,l),at(w,l)

at(b,r),at(c,r)
at(s,l),at(w,r)

at(b,l),at(c,r)
at(s,l),at(w,r)

at(b,r),at(c,r)
at(s,r),at(w,r)

goal

at(b,l),at(c,l)
at(s,l),at(w,r)

at(b,r),at(c,l)
at(s,r),at(w,r)

m(s)

∅

m(c) m(s) m(w)

∅

m(s)

m(c)

m(s)

m(w)

Figure 6. Automaton for the wolf-sheep-cabbage example.

satisfiability problems. The method builds a Büchi automaton B over the alphabet
Σ = P({p1, . . . , pn}) such that L(B) is equal to the set of TEL consequences for ϕ.
Moreover, nonemptiness can be checked in ExpSpace, which allows to answer the open
problem about the complexity of determining whether a temporal formula has a TEL
model. This automata-based method has been implemented as a tool called ABSTEM2.

For any LTL formula ϕ, there exist several algorithms [40] that allow obtaining a
Büchi automaton that accepts the same ω-language than ϕ (see [6] for a recall of a
Büchi automaton construction method). In a first step, we can just apply one of these
algorithms to obtain a first automaton A1 that accepts LTL-models of ϕ or, equivalently,
total THT-models of ϕ. Remember that temporal stable models are also LTL-models,
so we need something else to reject those LTL-models that are not stable.

In a second step, we will strengthen the mapping ϕ′ to obtain not only THT models
of ϕ but also to constrain them to be strictly non-total (that is H < T) as follows

ϕ′′
def
= ϕ′ ∧

∨
i∈[1,n]

♦((p′i →⊥) ∧ pi)

ϕ′′ characterizes the non-total THT models of the formula ϕ. The generalized disjunction
ensures that at some position j, Hj ⊂ Tj (strict inclusion).

Lemma 35. The set of LTL models for the formula ϕ′′ corresponds to the set of non-
total THT models for the temporal formula ϕ.

Let A2 be the Büchi automaton such that L(A2) = Mod(ϕ′′), following again any
construction similar to [40]. The set L(A2) is isomorphic to the set of non-total THT
models of ϕ.

2Available at http://kr.irlab.org/?q=abstem
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Given alphabet Σ we define the extended alphabet:

Σ′ = P({p1, . . . , pn, p
′
1, . . . , p

′
n})

Let h : Σ′ → Σ be a map (renaming) between the two finite alphabets such that h(a) =
a∩{p1, . . . , pn}. h can be naturally extended as an homomorphism between finite words,
infinite words and as a map between languages. Similary, given a Büchi automaton
A2 = (Σ′, Q,Q0, δ, F ), we write h(A2) to denote the Büchi automaton (Σ, Q,Q0, δ

′, F )

such that q
a−→ q′ ∈ δ′ iff there is b ∈ Σ′ such that q

b−→ q′ ∈ δ and h(b) = a. Obviously,
L(h(A2)) = h(L(A2)) and L(h(A2)) can be viewed as the set of total THT models for
ϕ having a strictly smaller THT model.

The only remaining task is getting the intersection of total models captured by L(A1)
with models of the negation of L(h(A2)), that is, those for which we do not have a
strictly smaller ϕ-model. The class of languages recognized by Büchi automata (the
class of ω-regular languages) is effectively closed under union, intersection and comple-
mentation. Moreover, it is obviously closed under the renaming operation. Since A1,
A2, and h(A2) are Büchi automata, one can build a Büchi automaton A′ such that
L(A′) = Σω \ L(h(A2)). Similarly, one can effectively build a Büchi automaton Bϕ such
that L(Bϕ) = L(A1) ∩ L(A′). Complementation can be performed using the construc-
tions in [38] or in [37] (if optimality is required). Roughly speaking, complementation
induces an exponential blow-up. As a result, we get the next proposition.

Proposition 36 (from [6]). ϕ has a TEL model iff L(A1) ∩ (Σω \ L(h(A2))) 6= ∅.

Consequently, the set of TEL models for a given formula forms an ω-regular language.

Proposition 37. For each temporal formula ϕ, one can effectively build a Büchi au-
tomaton that accepts exactly the TEL models for ϕ.

The previous results were used in [6] to prove the following complexity bounds.

Proposition 38. Checking whether a TEL formula has a TEL model can be done in
ExpSpace.

Theorem 39. Checking whether a TEL formula has a TEL model is PSpace-hard.

Theorem 40. Checking whether two temporal formulae have the same TEL models is
decidable in ExpSpace and it is PSpace-hard.

7. Conclusions

We have provided a detailed survey on the main definitions and results for the hybrid
formalism of Temporal Equilibrium Logic (TEL), an combination of Equilibrium Logic
(a logical characterisation of answer set programming, ASP) with Linear-Time Temporal
Logic.

Although some first relevant achievements have been obtained both in the theoreti-
cal study and its corresponding computation methods, there are however, many open
topics and questions to be answered. At the theoretical level, for instance, the formal
relation (Proposition 11) established between TEL and regular Equilibrium Logic (or
ASP) is somehow weak. For instance, in the case of LTL, there exists a well-known
correspondence [24] with FOL(<) (First-order theory of linear order) – one may wonder
whether this correspondence (or a similar one) is applicable for TEL and a Quantified
Equilibrium Logic formulation of linear ordering.

Another missing result is the other direction for Theorem 14. This theorem allows us
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fixing a sufficient condition for strong equivalence, but we ignore whether this condition
is also necessary yet. This means in practice that when the current strong equivalence
test provides a negative answer, we cannot guarantee that the compared theories are
not strongly equivalent. In the non-temporal case, validity in the logic of Here-and-
There has been proved to be a necessary and sufficient condition for strong equivalence.
Existing tools for that case allow not only to answer when the strong equivalence is
not satisfied, but even to provide a piece of logic program so that, when added to the
compared theories, make them behave in a different way. A similar feature would be
desirable for the case of TEL.

Finally, one more open issue is filling the complexity gap for TEL satisfiability. At
the moment we know that this task falls between PSpace and ExpSpace.
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