
Stable Reasoning

Pedro Cabalara, David Pearceb∗∗and Agustı́n Valverdec

a University of Corunna (Spain)
cabalar@udc.es

b Universidad Politécnica de Madrid, Spain,
david.pearce@upm.es

c Universidad de Málaga, Spain,
a valverde@ctima.uma.es

today

Abstract

We give an account of stable reasoning, a recent and novel approach to prob-
lem solving from a formal, logical point of view. We describe the underlying
logic of stable reasoning and illustrate how it is used to model different domains
and solve practical reasoning problems. We discuss some of the main differences
with respect to reasoning in classical logic and we examine an ongoing research
programme for the rational reconstruction of human knowledge that may be con-
sidered a successor to the logical empiricists’ programme of the mid-20th Century.

1 Introduction

1.1 Logic and the Classical Paradigm
For most of the 20th Century logic as a scientific discipline was dominated by the
paradigm of Frege and Hilbert and the aim of providing mathematics with a secure
logical foundation. This challenging goal continued to dominate research programmes
in logic long after Gödel’s incompleteness theorems showed that the initial expectations
were unreachable. Above all the Frege-Hilbert paradigm was and still is based on a
standardised, classical conception of logic, on the axiomatic method as the basis for
reconstructing mathematical knowledge and on the method of deduction as the central
element in logical theorem proving.

The paradigm of Frege and Hilbert was challenged by various critics throughout
its lifetime but only in recent years has it been eclipsed by more progressive research

∗∗Corresponding author: david.pearce@upm.es

1

programmes within computational logic. A vibrant and searing critique of the Frege-
Hilbert paradigm was published in 1998 by the Italian logician, Carlo Cellucci in his
book Le Ragioni della Logica (Cellucci, 1998). Cellucci calls the standard paradigm
mathematical logic and discusses at length many of its significant features. Besides its
emphasis on providing a secure foundation for mathematics, key features include the
prominence of the axiomatic method, the idea of theories as embodying certain truths
and theorems as logical deductions from these. Cellucci questions many of the assump-
tions of the paradigm, especially the manner in which it focuses on closed conceptual
systems and problems of justification, while paying almost no attention to problems
of (mathematical) discovery that may involve hypothetical reasoning, induction, ab-
duction, analogy, heuristics and other methods. As a contrast to the axiomatic method
Cellucci devotes much attention to describing and motivating the analytic method in
mathematical discovery and problem solving1 and justifying the importance of treating
open systems and fallible reasoning.

While Cellucci doesn’t offer a detailed description of modern computational logic,
it is evident that some of the positive features of the analytic method can be found
in computational approaches to logic and logic-based programming languages. He
himself cites with approval six different features of Prolog that mirror aspects of the
analytic method and reasoning with open systems (while at the same time noting that
there are other important features of the analytic method that are not captured in Pro-
log). Since the publication of (Cellucci, 1998) computational logic has made many
advances. One of them has been the elaboration of a new approach to logic-based
programming known as answer set programming or ASP and the development of its
underlying logical paradigm which we will call stable reasoning. Unlike Prolog, this is
not a fully-fledged programming language, but rather a general approach to logic-based
problem solving that can also be efficiently implemented in (answer set) solvers.

We cannot claim that stable reasoning currently satisfies all the requirements pro-
posed by Cellucci for constituting a new and wholly adequate paradigm for logic. For
one thing, the focus in (Cellucci, 1998) is on mathematics and mathematical problem-
solving and discovery, while stable reasoning has a broad range of applications to many
areas of inquiry. However, we do suggest that stable reasoning is:

1. distinctly different from the Frege-Hilbert paradigm of mathematic logic;

2. close to the analytic method, sharing significant points in problem-solving;

3. able to embrace various aspects and methods of discovery;

4. able to deal with dynamical and open systems.

In this paper we will discuss stable reasoning, focussing mainly on items 1 and 2 above,
while mentioning 3 and 4 briefly towards the end.

1.2 Stable Reasoning
Stable reasoning is a recent and novel approach to problem solving from a formal, log-
ical point of view. An important difference compared to reasoning based on classical

1Closely associated with Plato and other classical scholars.

2

Classical Approach Stable Reasoning

¬P (x) = P (x) is false P (x) cannot be proved

No info on P (x) Free ¬P (x)

(all possible models) (closed-world assumption)

Predicates are Extensional Intensional
(allows inductive definitions)

Inference Monotonic Non-monotonic
(allows default reasoning)

Problem solving Predicate based Model based
1 solution = 1 solution =

1 tuple for P (x) 1 model for P (x)

Figure 1: Comparison between classical and stable reasoning.

logic is that stable reasoning can take account of default assumptions and conclusions
that follow from them (see Figure 1). It is not based on two-valued classical logic, since
this does not allow for the distinction between certain truth and truth-by-default or the
kind of truth that can be assumed when there is no evidence to the contrary. To account
for defaults in the setting of classical logic usually special syntactic devices are em-
ployed or one has to distinguish between different kinds of inference, some defeasible
others not. Stable reasoning does not require any special inference rules or syntactic
devices because it is based on a many-valued logic where precisely the distinction be-
tween certain truth and truth-by-default can be made. There is just one basic kind of
negation and one kind of inference.2

There is another important difference compared to the axiomatic tradition of Frege
and Hilbert that dominated the methodology of formal logic for much of the 20th Cen-
tury. Stable reasoning is closer to what might be termed a problem-solving approach
to formal reasoning. In the axiomatic tradition, a mathematical or empirical domain is
formalised by introducing a language or vocabulary and a set of sentences (axioms) of
the language intending to capture once and for all the entirety of knowledge govern-
ing that domain. Mathematical theorems are inferred through logical deduction from
the axioms. Predictions or explanations from empirical theories are also deduced from
their axioms once the initial conditions of a system are specified.

By contrast, stable reasoning is problem-driven. One wishes to find a solution or
several possible solutions to a certain problem. One describes the problem domain
by specifying the entities and relations that govern the domain. This description need
not be complete nor need it capture the entirety of knowledge once and for all, but
merely offer hypotheses sufficient to produce adequate answers or solutions. Some de-

2This is the case for the basic system. However, a commonly found extension of this system includes a
second, so-called strong negation operator that can represent direct falsity, Pearce (2006).

3

scriptions may indeed be robust and reusable, others may be fragile and of temporary
validity/use. As in the classical, axiomatic case, answers will be produced once cer-
tain facts or initial conditions are specified. These answers or solutions are in general
model-based. They are produced not by means of logical deduction or inference from
axioms plus initial conditions, but rather by computing a model or state of affairs that
embodies the solution in some obvious way. The table in Figure 1 summarises the most
prominent differences between stable and classical reasoning.

To illustrate the difference between the two orientations, consider the following
well-known graph-theoretical problem.

Example 1 (Hamiltonian cycles) A Hamiltonian cycle of a graph G is a cyclic path
that traverses each node in G exactly once. The same graph may have different Hamil-
tonian cycles or none at all. 2

Suppose we want to obtain the Hamiltonian cycles of graph G in Figure 2. To this
aim we must decide:

(a) how to represent the graph;

(b) how to represent the cycles;

(c) the type of logical reasoning task to obtain the desired solution.

Regarding (a), the obvious solution in Predicate Calculus is just using a pair of pred-
icates, say Node(x) and Edge(x, y), to describe respectively the nodes and edges of
G. Still, even at this elementary level, a first difference between the classical approach
and stable reasoning already arises. In classical logic, if we just list the set of ground
atoms:

Node(0), Node(1), Node(2), Node(3),

Edge(0, 1), Edge(1, 2), Edge(1, 3), Edge(2, 0),

Edge(2, 3), Edge(3, 2), Edge(3, 0). (1)

this will leave free the possibility for other objects of becoming nodes or edges – we
would have models where, for instance, Edge(0, 2) could become true. In order to cap-
ture precisely the nodes and edges we should actually use instead the pair of formulas3:

Node(x)↔ x = 1 ∨ x = 2 ∨ x = 3 ∨ x = 4 (2)
Edge(x, y)↔ (x = 0 ∧ y = 1) ∨ (x = 1 ∧ y = 2)

∨ (x = 1 ∧ y = 3) ∨ (x = 2 ∧ y = 0)

∨ (x = 2 ∧ y = 3) ∨ (x = 3 ∧ y = 2) ∨ (x = 3 ∧ y = 0) (3)

In the stable reasoning approach, however, the set of facts (1) would suffice because
predicates are subject to the so-called Closed World Assumption (CWA). Informally
speaking, this means that anything not explicitly stated will be false by default. We
could, of course, still use the stronger version (2) ∧ (3) for stable reasoning, but the

3We assume that free variables, like x, y here, are implicitly universally quantified.

4

2

0

3

1

Figure 2: A simple graph with a pair of Hamiltonian cycles.

set of facts (1) is more flexible in the sense that new nodes or edges can be included
by the simple addition of new formulas, rather than manipulating the existing ones
(this feature is often referred as elaboration tolerance (McCarthy, 1998)). Predicates
like Node(x) or Edge(x, y) whose extensions are defined by enumerating their lists of
(true) atoms conform what is usually called the extensional database (a term inherited
from Database theory) as opposed to those described by additional conditional formu-
las (or rules in Logic Programming) which receive the name of intensional predicates.

Another important feature of CWA is that, if necessary, we can remove this as-
sumption in a selective way for any formula ϕ or, in particular, any atom P (x). To this
aim, it just suffices to add an axiom like:

P (x) ∨ ¬P (x) (4)

Note that although (4) has the form of a classical tautology (the so-called excluded
middle axiom), it is not a tautology for stable reasoning, since negation here has a
different meaning. As said before, the effect of (4) is that CWA for predicate P is
removed, so it behaves in a “classical” way. For instance, adding the axiom Node(x)∨
¬Node(x) would remove Node to be false by default.

Let us move on to consider problem (b), that is, how to represent Hamiltonian cy-
cles. As any of them visits all nodes in the graph, we obviously must refer to the set
of edges involved in the cycle to differentiate one from another. In classical logic,
we would typically represent sets of edges using some additional notation: assume,
for instance, that standard set terms are allowed. Then, we could use some predi-
cate, say HamCycle(s), to represent that the set s of edges constitutes a Hamiltonian
cycle for the graph, including a hypothetical set of axioms Γ(HAMG) that includes
the graph description (2) & (3) and the meaning of predicate HamCycle. Under the
axiomatic method, our problem (c) would then reduce to deciding for which sets s
of edges we can derive Γ(HAMG) ` HamCycle(s). For instance, in our exam-
ple, we should conclude that this holds for s = {(0, 1), (1, 3), (3, 2), (2, 0)} and for
s = {(0, 1), (1, 2), (2, 3), (3, 0)}. It is worth noticing that, as these two facts for pred-
icate HamCycle(s) are derived as theorems, they will be simultaneously true in all
models of Γ(HAMG). In the general case, the extension ofHamCycle would contain
the whole set of Hamiltonian cycles in any model of Γ(HAMG).

5

Under the stable reasoning approach, tasks (b) and (c) become model-oriented
rather than theorem-based. One of the main features of this methodology is that we
identify each solution of the original problem with (a distinguished part of) each model
of our logical representation. For instance, in our example, rather than collecting all
cycles in a single predicate HamCycle(s), our aim is to obtain a different model for
each possible Hamiltonian cycle of the original graph. Using this approach, there is
no need to deal with sets any more: we can just collect the edges in the current cy-
cle (that is, the cycle represented inside the current model) as the extension of some
predicate, call it In(x, y). Thus, if we again denote by Γ(HAMG) our logical repre-
sentation of the problem, we are interested in capturing the different models M such
that M |= Γ(HAMG) in such a way that each Hamiltonian cycle is directly obtained
by selecting relevant information in each model M . In our example, we should obtain
a pair of models M1 and M2 such that:

M1 |= In(0, 1) ∧ In(1, 3) ∧ In(3, 2) ∧ In(2, 0)

M2 |= In(0, 1) ∧ In(1, 2) ∧ In(2, 3) ∧ In(3, 0)

and no other atoms for In(x, y) hold in each model.
Let us now consider how to specify Γ(HAMG) under the stable reasoning ap-

proach. Typically, we would first consider models for all possible subsets of edges, and
then include additional formulas that rule out those that do not correspond to Hamilto-
nian cycles. In a first attempt, we could include:

Edge(x, y)→
(
In(x, y) ∨ ¬In(x, y)

)
(5)

In(x, y) ∧ In(x, z)→ y = z (6)
In(y, x) ∧ In(z, x)→ y = z (7)

together with a graph description, that is, an extensional database like (1).
As a first important remark, note that the consequent In(x, y) ∨ ¬In(x, y) in (5)

has the form of an excluded middle formula like (4). As explained before, this means
that the predicate In(x, y) will not be subject to CWA, provided that x, y is a pair of
nodes forming an edge. As a result, the effect of (5) is that we would have a model
per each possible subset of edges in the graph. Formula (6) (resp. (7)) specifies that we
never pick two different outgoing (resp. incoming) edges for a given node x. These
two formulas can also be represented by using⊥ in the consequent (formulas like these
receive the name of constraints):

In(x, y) ∧ In(x, z) ∧ y 6= z → ⊥
In(y, x) ∧ In(z, x) ∧ y 6= z → ⊥

This first attempt (5)-(7), however, is not enough to capture Hamiltonian cycles.
We can still get disconnected groups of edges like, for instance, {(0, 1), (2, 3), (3, 2)}
or even nodes that are not connected at all. To rule out these cases, we should fur-
ther specify that we have a path connecting any pair of nodes: since (6)-(7) already
guarantee linearity, the only option then is forming a cycle. Curiously, this property
(reachability in an arbitrary graph) is a well-known example of a problem that cannot

6

be represented in classical first order logic. So, in fact, if we tried to represent Hamil-
tonian cycles using the classical axiomatic method, Γ(HAMG) should be represented
in a stronger system such as second order logic. Under stable reasoning, however, we
can easily capture reachability with an auxiliary predicate Reach(x, y) defined with
the pair of formulas:

In(x, y)→ Reach(x, y) (8)
In(x, z) ∧Reach(z, y)→ Reach(x, y) (9)

Since Reach(x, y) is subject to CWA, these two formulas behave as an inductive def-
inition, of a kind that is frequently used in mathematics. In other words, Reach(x, y)
is true if: (1) we take the edge In(x, y); or (2) if we take an edge to some z and we can
reach y from that z, Reach(z, y). Otherwise, Reach(x, y) will be false, due to CWA.
A predicate like this, whose extension is determined by some rules like those above in
combination with CWA, is usually called an intensional predicate.

Now, to guarantee that “there is a path connecting any pair of nodes” we must be
exercise some care. If we just write a direct translation of the previous sentence:

Node(x) ∧Node(y)→ Reach(x, y)

this formula would not rule out undesired solutions but would rather become a third
option for defining Reach(x, y) facts. In particular, we would actually get that any
pair of nodes would always be connected, regardless of the edges we have in the graph.
Instead, we have to use the negated formula:

¬∃x, y(Node(x) ∧Node(y) ∧ ¬Reach(x, y))

which, though it is classically equivalent, has a quite different meaning under stable
reasoning, acting as the constraint “forbid pairs of disconnected nodes”. It is also
representable as the implication:

Node(x) ∧Node(y) ∧ ¬Reach(x, y)→ ⊥ (10)

Proposition 1 Let Γ(G) be the set of formulas (5)-(10) plus an extensional database
for graph G like (1). Then, M is a stable model of theory Γ(G) iff {(x, y) | M |=
In(x, y)} is a Hamiltonian cycle for G. 2

2 A logic from first principles
Stable reasoning has very simple logical underpinnings. Its base logic can be con-
structed from first principles in a few easy steps and with only a few fundamental
assumptions. The first idea is that formulas may be true or false, but that there are two
kinds of truth: certain truth and truth-by-default. We can picture this as shown on the
left in Figure 3

Suppose that the disks represent the collections of true formulas; while outside the
outer circle formulas are false. True formulas come in two kinds: those that are only
weakly true or more particularly true by default lie within the unshaded, outer part of

7

Certain truth

True-by-default

False

2

1

0

Figure 3: Graphical representation of truth types in stable reasoning.

∧∧∧ 0 1 2

0 0 0 0

1 0 1 1

2 0 1 2

∨∨∨ 0 1 2

0 0 1 2

1 1 1 2

2 2 2 2

→→→ 0 1 2

0 2 2 2

1 0 2 2

2 0 1 2

¬¬¬

0 2

1 0

2 0

Figure 4: Truth tables for here-and-there connectives.

the disk, those lying within the shaded, inner circle are certain, or true in the strong
sense. Truth in the weak or general sense covers both certain truth and truth by default,
so the outer circle contains all the formulas of the disk, both inner and outer parts.

We can assign numbers to these different semantic properties, say 0 for falsity and
2 for certain truth. We assign the value 1 to formulas that lie within the outer but not
the inner circle: they are only true in the weaker but not the stronger sense. The picture
is shown on the right in Figure 3

Let us say that our base logic comprises, in the propositional case, the usual set
of logical connectives {∧,∨,→,¬}, standing for conjunction, disjunction, implication
and negation. We may also make use of the falsum constant, ⊥. There is an infinite
set Prop of propositional atoms from which formulas are constructed in the usual way,
as in classical or intuitionistic logic. Let p, q, r, . . . stand for atomic propositions. As
prescribed, the semantics is given by the three truth-values, 2, 1 and 0.

In the picture on the left hand side of Figure 5, p is certain, q and s are true by
default and r and t are false. The values for complex formulas are assigned according
to the usual meaning of connectives. In the picture q ∧ p takes the value 1, since only
p is certain, while q is not. On the other hand the fact that p is certain is sufficient for
assigning p ∨ q and even p ∨ r the value 2. Since r is false, also p ∧ r and q ∧ r must
be false, while q ∨ r takes the value 1.

Following this reasoning we can build the complete truth tables for conjunction and
disjunction; they are similar to those of other well-known logics.

8

p

q, s

r, t

q → p, ¬r, q → s

q ∧ p, q ∧ s, p→ q

r, p→ r, q → r ¬p, ¬q

Figure 5: Atomic and compound formulas

Some care has to be taken with the values of formulas of form A → B. In the
picture we would expect both p→ r and q → r to be false since in both cases we have
a true antecedent and false consequent. Notice that although q is not certain, we cannot
put q → r in the inner circle since that would make it strongly true and yet false at the
same time. On the other hand, since r is false, evidently both r → q, r → p and r → t
are true, even in the strong sense. Since p is certain, it is also true in the general sense
and therefore p → q must be at least weakly true. But it is not certain, since q is not.
By contrast, since p is certain, q → p is also. Lastly, consider the case of two formulas
q, s that lie only in the outer circle. Since neither atom is certain, but neither is false,
the implications q → s and s→ q can safely be placed in the inner circle of certainty.

The complete truth matrix for implication is given in the figure. The case of nega-
tion is straightforward. Negating a false proposition such as r produces a certain propo-
sition ¬r; while negating either kind of true formula produces a false one: in the picture
both ¬p and ¬q will be false. Equivalently we can regard negation to be definable, by
¬p := p → ⊥, where ⊥ takes the constant value 0. Then the table for negation is
derivable from that for implication. As we can see, negation is not involutive, that is,
¬¬p is not equivalent to p. In fact, ¬¬p is 2 when p is different from 0, and so, it
captures part of the meaning of “p is true by default,” being weaker than the formula p,
which means “certain truth.”

Our base logic is by no means new. It was first introduced by Heyting (1930) in his
study of intuitionistic logic. Shortly after it reappeared in Gödel (1932) showing that
intuitionistic logic is not tabular (finite-valued). Heyting provided the truth matrices
while subsequently Łukasiewicz (1941) studied the logic in greater depth and gave the
first axiomatisation based on the axioms and rules of the intuitionistic calculus extended
by the addition of a weaker form of Peirce’s Law, viz:

(¬α→ β)→ (((β → α)→ β)→ β). (11)

Subsequently, the logic was studied by Smetanich (1960) and Umezawa (1959) who
gave an alternative axiom to that of Łukasiewicz:

α ∨ ¬β ∨ (α→ β)

9

The completeness of this system was then proved by Hosoi (1966).
Although Heyting made use of the logic as a technical device, it was clear from the

start that it was of interest not only from a purely formal point of view. Łukasiewicz
made a detailed comparison with his own 3-valued logic and Heyting already provided
a natural interpretation of the third truth-value, claiming that it applies to a correct
proposition that cannot be false but whose correctness cannot be proved. If we re-
phrase this in terms of truth, then the interpretation ‘true-by-default’ is a natural one
since it conveys the idea of a judgement that is accepted although not formally derivable
in the system at hand.4

Our logic is known under a variety of names, we prefer to call it the logic of here-
and-there, in symbols HT, whose etymology is easily explained by looking at an al-
ternative way to describe the semantics. It is well-known that intuitionistic logic is
complete for possible world models, that is triples of the form 〈W,≤, I〉, where W
is a non-empty set (of points, states or worlds), ≤ is a partial ordering on W , and I
is an interpretation function assigning a set of (verified) atoms to each w ∈ W , such
that I(x) ⊆ I(y) whenever x ≤ y. The logic HT is also complete for a class of
such models, but of an especially simple form: W comprises just two points, say h
(‘here’) and t (‘there’), with h ≤ t. It follows that we can represent a model simply as
an ordered pair 〈H,T 〉 of sets of atoms, where I(h) = H and I(t) = T . Evidently,
we always have H ⊆ T . These are then here-and-there models. Applying the usual
semantics to evaluate formulas at worlds one can easily verify the correspondence to
our earlier truth-tables. Note that in a here-and-there model 〈H,T 〉, H represents the
certain atoms having value 2, while T represents the non-false atoms (of value 1 or 2).
Those in T \H are true-by-default, ie take the value 1. The complement of T in Prop
is the set of atoms that are false in the model, ie those corresponding to the value 0 in
our truth tables. We adopt the usual convention and say that a formula ϕ is satisfied or
holds in a model 〈H,T 〉, in symbols 〈H,T 〉 |= ϕ, if it is strongly true or certain in the
model, i.e. is satisfied at the world h.

As a simple example, consider how to evaluate an implication p → q in a model
〈H,T 〉, for atomic p, q. By the possible worlds semantics, this formula is true at t if
q ∈ T or p 6∈ T . In terms of truth-values it means that p→ q takes a value of at least 1
if q ∈ T no matter what value is given to p. However in the case that p 6∈ T , then also
p 6∈ H . This means that p→ q is true also at h and so the value of p→ q is then 2.

Much is known about HT and its properties. It is one of 7 superintuitionistic (SI)
logics having the interpolation property, (Maksimova, 1977), and it is also the strongest
SI-logic properly contained in classical logic, all other SI-logics being properly con-
tained in it.

3 Basic stable reasoning
The core logic of stable reasoning is based on HT but is actually a non-monotonic
extension of it. It can be characterised in terms of a preferential entailment relation in

4Strictly speaking we should say that the base logic gives a monotonic approximation to reasoning by
default. There is an additional aspect to defaults that emerges in the nonmonotonic extension of the logic.

10

the sense of Shoham (1988) defined on here-and-there models. The preference relation
can be explained by considering some features of defaults.

When we build up a partial description of the world or of our problem domain we
specify a set of formulas that we suppose, at least hypothetically, to be true in the certain
sense. Call this our ‘theory’. When we then consider the three-valued HT-models of
this theory (assuming it is consistent), they in turn generally admit formulas that are
true only in the weak or default sense. We typically have models 〈H,T 〉 where H ⊂ T
and then some formulas will be true only in the default sense, ie all the propositions in
T \H . Equally, by consistency, we will also have models of the form 〈T, T 〉 where all
truths are certain. Our preference condition is to select just those models 〈T, T 〉 where
all truths are certain and our theory does not admit any model with uncertainty whose
true atoms are exactly T ; in other words where there is no model of our theory of the
form 〈H,T 〉, where H ⊂ T . In this sense our theory justifies the choice of T by not
accepting any model where T forms the set of truths in the general sense but some of
them, T \H , are only true in the weak sense.

So here is our definition in full. A model 〈H,T 〉 of a theory T is said to be an equi-
librium model of T , if (i) H = T and (ii) for any H such that H ⊂ T , 〈H,T 〉 6|= T .
The term equilibrium model derives from (Pearce, 1997), and the ensuing logic asso-
ciated with this is equilibrium logic. However there is complete agreement between
equilibrium models and the stable models of logic programs as defined by Gelfond and
Lifschitz (1988). That is to say, if the formulas of a theory have precisely the shape of
rules of logic programs, then a set of atoms T is a stable model of the theory if and only
if 〈T, T 〉 is an equilibrium model of it.5 For this reason, equilibrium logic can serve as
a foundation for stable reasoning.6 Though they are defined differently, we often use
the terms stable model, answer set and equilibrium model interchangeably.

Equilibrium Logic is the logic determined by the equilibrium models of a theory.
Similarly, equilibrium models allow one to define an equilibrium entailment relation
T |∼ϕmeaning that all equilibrium models of theory T are also HT models of formula
ϕ, or equivalently, that all stable models of T are classical models of ϕ. Unlike the HT
entailment relation, equilibrium entailment is non-monotonic: the addition of formulas
to T may have the effect that a previously obtained consequence ϕ is not entailed any
more. As an example, the theory {¬rain→ beach} has a single stable model {beach}
since there is no evidence for rain, but the extended theory {(¬rain→ beach), rain}
has the single stable model {rain} and beach is not entailed any longer. As a result
of this non-monotonic nature, the standard axiomatic method is not applicable to equi-
librium logic. For a more complete definition of equilibrium entailment and a detailed
study of the usual properties of entailment relations that it satisfies, see Pearce (2006).

5In logical notation the rules of a (disjunctive) logic program have the form

b1 ∧ . . . ∧ bm ∧ ¬bm+1 ∧ . . . ∧ ¬bn → a1 ∨ a2 ∨ . . . ∨ ak

where the ai, bj are atoms. If k = 1 everywhere the program is said to be normal.
6Since the late 1990s the stable model semantics has been systematically extended to embrace wider

classes of formulas, more recently including arbitrary propositional and even first-order theories. All the
widely accepted extensions have coincided with equilibrium logic.

11

4 Implementation of stable reasoning
Just as classical deduction is implemented in automated provers such as Prover9 or
SAT-solvers, so stable reasoning has been implemented in various systems, collec-
tively known as answer set solvers. These have obtained a fairly high degree of effi-
ciency and sophistication and can be used to model and solve real-world problems in
domains such as software verification, security and configuration management, model
checking, agent technologies, constraint satisfaction, reasoning for the semantic web,
software synthesis from specifications, knowledge representation, data and information
integration, planning and diagnosis. The inputs to answer set solvers are called answer
set programs, whereas the branch of computer science and programming dealing with
these is called answer set programming, or ASP for short. A closely related domain is
that of DATALOG and deductive database systems. Indeed data and information man-
agement is one of the principal application areas of ASP, and one that currently enjoys
some commercial success.

While they are successful in supporting real-world problem solving, ASP systems
do not implement deduction in a formal logic. They are not designed to deduce the-
orems or prove the correctness of logical inferences, even though the solutions they
compute can be precisely understood in terms of formal models of a logical system of
deduction. This correspondence to logic however was a more recent discovery and did
not directly guide the initial ASP implementations. While in traditional logic program-
ming, systems of logical inference came first and computer programming applications
came after, in ASP this order was reversed. The theory preceded the computer im-
plementations that in turn preceded the logic. However, nowadays the logic exerts a
growing influence on the development and comprehension of new systems, especially
extensions of the initial ASP family of languages. It is also fundamental to understand-
ing stable reasoning from a foundational point of view.

5 Practical examples
Let us now consider some additional examples of typical commonsense reasoning tasks
that can be easily represented under the stable reasoning approach. We also show
in some cases how these examples can be implemented using existing solvers. For
instance, Figure 6 shows a possible implementation of the Hamiltonian cycles problem
for graph in Figure 2, using the input language of the Answer Set Programming (ASP)
solver clingo7. The column on the right shows the correspondence to each formula
in Γ(HAMG). The translation of our example theory into ASP language follows some
standard syntactic conventions from Logic Programming and, in this case, is quite
straightforward. Variables begin with uppercase letters and predicates with lowercase
letters. Implications are called rules and their direction is reversed, so that α :- β
stands for β → α, α and β respectively are called the head and the body. When the
head is α = ⊥ it is just omitted. Negation ¬ is written not and all rules are ended by
a full stop. Finally, ‘|’ represents disjunction and commas represent conjunctions.

7Available at http://potassco.org. In fact, the example is still syntactically correct in the current
standard input language (ASP core 2.0) except for the use of negation in the head.

12

node(0). node(1). node(2). node(3).
edge(0,1). edge(1,2). edge(1,3).
edge(2,0). edge(2,3). edge(3,2). edge(3,0).

(1)

in(X,Y) | not in(X,Y) :- edge(X,Y). (5)

:- in(X,Y), in(X,Z), Y!=Z. (6)
:- in(Y,X), in(Z,X), Y!=Z. (7)

reach(X,Y) :- in(X,Y). (8)
reach(X,Y) :- in(X,Z), reach(Z,Y). (9)

:- not reach(X,Y), node(X), node(Y). (10)

Figure 6: Hamiltonian cycle representation Γ(HAMG) for the graph in Figure 2 writ-
ten for clingo.

A fundamental property of stable reasoning we have not exploited in the previous
example is the use of default negation for non-monotonic reasoning (NMR). To illus-
trate this concept, consider the following classical example in the NMR literature. We
want to capture the default “birds typically fly” and the exception “penguins are birds
but do not fly.” These two assertions can be respectively encoded as:

Bird(x) ∧ ¬CannotFly(x)→ Flies(x) (12)
Penguin(x)→ Bird(x) ∧ CannotFly(x) (13)

Suppose we have a theory Γ′ containing the two formulas above plus the ground atom
Bird(Tweety). As there is no evidence that Tweety is a penguin, ¬Penguin(Tweety)
is derived by CWA. This falsifies the antecedent of (13), and so no evidence can be
obtained from (13) on CannotFly(Tweety). In fact, no evidence on CannotFly(x)
can be obtained from (12) either. This is because implication in stable reasoning ac-
quires a kind of directionality. In particular, (12) should be read as a definitional rule
for Flies(x), saying that it will hold when x is a bird for which we have no evidence
concerning CannotFly(x). As a result, we conclude ¬CannotFly(Tweety) by CWA
and then, Flies(Tweety) from (12).

This simple example became a challenge for NMR approaches because a mistaken
predicate minimisation policy can easily lead to models where ¬Flies(Tweety) is de-
cided first and then CannotFly(Tweety) is derived by applying (12) as the classically
equivalent formula:

Bird(x) ∧ ¬Flies(x)→ CannotFly(x)

In stable reasoning, such an equivalence does not hold8. In fact, the formula above has
8HT satisfies contraposition: A → B entails ¬B → ¬A. However, by contraposition,

¬CannotFly(x) → Flies(x) entails ¬Flies(x) → ¬¬CannotFly(x) and, as we said, the consequent
of the latter is not equivalent to CannotFly(x).

13

a quite different reading from (12): it states that a bird x cannot fly if we cannot find
any evidence for Flies(x).

To complete the example, consider now the extended theory

Γ′′ = Γ′ ∪ {Penguin(Tweety)}.

Since now we have no evidence concerning CannotFly(Tweety) from (13), we lose
the justification for Flies(Tweety) we obtained before from (12). As a result, Flies(Tweety)
is not derived any more. This illustrates the non-monotonic nature of stable inference,
since the addition of a new formula, Penguin(Tweety), has led to a previous conclu-
sion Flies(Tweety) being retracted.

The representation of this example in ASP notation is shown below:

flies(X) :- bird(X), not cannotfly(X).
bird(X) :- penguin(X).
cannotfly(X) :- penguin(X).
bird(tweety).
penguin(tweety).

6 Stable reasoning, open systems and the analytic method
In this final section we look briefly at one of the directions in which stable reasoning
has developed into a programme for the logical reconstruction of human knowledge
in a practical setting. Then we return to some of the conditions suggested by Cellucci
(1998) that should be fulfilled by a logical paradigm to replace the axiomatic tradition
of mathematical logic. We consider briefly some of the ways in which stable reasoning
conforms to these requirements.

6.1 Gelfond’s programme
The rise of the axiomatic method and formal reasoning based on classical logic in the
20th Century was closely linked to two philosophical schools based in central Europe:
the Lwow-Warsaw School of Logic and Philosophy and the logical empiricist move-
ment of the Vienna Circle. Particularly the latter school endorsed a programme of ra-
tional reconstruction of scientific and other forms of knowledge as well as adopting the
idea of explicating philosophically important concepts typically by formalising them
within a logico-mathematical system. The limits of the logical empiricist programme
and the growing criticisms it faced from the 1960s onwards are well-known and well-
documented. Especially vulnerable was the ideal of reconstructing (ultimately all of)
scientific knowledge in formal languages governed by the classical laws of deduction.
A pivotal point of this criticism was the claim that logic and experience are not suffi-
cient to explain the rationality of science, to catalogue its methods and to reconstruct
the knowledge it generates.

Ironically, the downfall of the empiricist programme came about just at a moment
in time when logic was beginning to undergo a radical change and a major shift in its
boundaries. This change was led by Hintikka in the study of propositional attitudes of

14

knowledge and belief, by Montague in natural language processing, by McCarthy in
artificial intelligence and commonsense reasoning, by Simon in learning and scientific
discovery, and by a range of applications in computer science and programming.

Stable reasoning has spawned a successor to the logical empiricist programme of
rational reconstruction. It is a research programme that aims to reconstruct some of
the most basic forms of human knowledge and to exploit this knowledge for practical
problem solving. While logical empiricist efforts were largely theoretically oriented,
this programme deals with a mix of theory and practice. It combines scientific and
engineering knowledge of real systems with practical human skills and abilities and
commonsense reasoning. It deals with both static and dynamic domains. The scientist
most closely identified with this programme is Michael Gelfond, also a co-founder of
stable reasoning itself. His programme combines the physicalist language of engineer-
ing and physical systems with epistemic notions such as belief, agency and action. The
new programme of rational reconstruction is much less self-conscious than its prede-
cessor. The latter formed part of a manifesto with a clear philosophical, and sometimes
political, message. It was stated and re-stated many times. The new programme is
scarcely articulated and hardly known. Nevertheless its goals and methodology are
largely clear, even if they are sometimes buried in technical articles and lectures.9

Gelfond’s programme for representing and reasoning about knowledge has two
main objectives. First it aims to achieve an understanding of “basic commonsense
notions we use to think about the world: beliefs, knowledge, defaults, causality, inten-
tions, probability, etc., and to learn how one ought to reason about them.” Secondly
it aims “to understand how to build software components of agents – entities which
observe and act upon an environment and direct its activity towards achieving goals.”
These goals shape the criteria used to evaluate and select languages for Knowledge
Representation (KR). In particular Gelfond endorses four main adequacy criteria:

1. Clarity: the logical vocabulary should have a clear and intuitive meaning.

2. Elegance: the corresponding mathematics should be simple and elegant.

3. Expressiveness: the KR language should suggest systematic and elaboration tol-
erant representations of a broad class of phenomena of natural language, includ-
ing belief, knowledge, defaults, causality and others.

4. Relevance: a large number of interesting computational problems should be re-
ducible to reasoning about theories formulated in this language.

It is interesting to compare these criteria with the requirements that Carnap pro-
poses in the logical empiricist programme for the adequate explication of concepts (Car-
nap, 1950). Gelfond’s criterion 2 is close to Carnap’s requirement for the task of con-
cept explication that “the explicatum should be as simple as possible.” Criterion 4, on
the other hand, and to a somewhat lesser extent 3, are close to Carnap’s idea that an
explicatum is to be a fruitful concept, “that is, useful for the formulation of many uni-
versal statements.” Although Elaboration Tolerance is a more modern idea, one may

9But see specially (Gelfond, 2011) for an overview. The following quotes are taken from this paper.

15

suppose that it would also feature among the properties of fruitfulness. Carnap’s sug-
gestion that the “explicatum is to be similar to the explicandum” in many cases of usage
does not appear explicitly in Gelfond’s list. However since Gelfond’s aim is to recon-
struct commonsense knowledge and practical reasoning one can assume that Carnap’s
requirement is one he would also endorse and is somehow implicit in his programme.2

It is also revealing to consider some adequacy criteria for KR languages that Gel-
fond rejects. Among these are two that in the past were often considered sacrosanct
in the AI community of Knowledge Representation. One is the idea that any KR lan-
guage should be supra-classical ie extend first-order classical logic. The other is the
requirement of efficiency understood in a computational sense. We have seen already
that the underlying logic of stable reasoning is not classical, and nor does it become
so when additional features and functionalities are provided. On the other hand, the
expressiveness of the basic language – a positive feature – also results in it being less
efficient computationally than some other languages.3

6.2 Open conceptual systems
Let us return to the idea of open conceptual systems that we mentioned in the introduc-
tion. According to Carlo Cellucci there are many similarities between open conceptual
systems and the notion of open physical systems. Here is a summary of some of the
basic features of the former taken from (Cellucci, 1998) (pp. 313–315).

1. Open conceptual systems take account of the manner in which the solution of a
problem is to be arrived at.

2. Unlike in the axiomatic approach there is no unifying idea that serves as a foun-
dation once and for all.

3. The unifying impulse for problem solving is data driven rather than reductionist.

4. Open conceptual systems tackle the problem to be solved directly, from first
principles. There is no a priori set of concepts and principles that precede the
problem formulation.

5. The rules of the game are not given at the beginning and fixed once and for all,
but may be introduced and changed during the course of the game.

6. Open systems are dialogical, since partially given information may be extended
through interaction with other systems.

7. The rules of the system give only a partial and dynamically changing represen-
tation of knowledge.

2The quotations above are from (Carnap, 1950), Introduction.
3Generally speaking the complexity of stable reasoning lies at the second level of the polynomial hierar-

chy. Nevertheless answer set solvers are relatively efficient in being able to deal with quite large amounts of
data. Notice that, from a representational point of view, answer set programs are very efficient in being able
to encode complex problems in a concise manner.

16

Besides these characteristics, Cellucci emphasises the ampliative nature of logical
inference, as well as the need to deal with with global inconsistencies and incoher-
ences. There are many other features of open systems and the analytic method dis-
cussed in (Cellucci, 1998) and a detailed examination would take us beyond the scope
of this paper. Likewise, here we have described only some core features of stable rea-
soning and ASP. Many other features emerge in the practical development of systems
and their application to problem solving. We conclude with a shortlist of some of the
characteristics that may bear on Cellucci’s challenge to develop an alternative logical
paradigm.

• Stable reasoning in its basic form already deals with weak and strong exceptions
to defaults. However to deal with contradictions that arise indirectly as conse-
quences of default conclusions, an extension of ASP with consistency-restoring
rules (CR-Prolog) was developed and applied by Balduccini and Gelfond (2003).
This is essentially an abductive mechanism.

• Another feature of Gelfond’s programme has been the aim to reason about the de-
grees of belief of a rational agent. This has led to a system (P–log) that combines
logical and probabilistic reasoning based on ASP (Baral, Gelfond, & Rushton,
2009).

• Although in its basic form stable reasoning is highly declarative, when ASP is
used in practice the problem representation takes account of the way in which the
solver will successfully and economically reach a solution. Features such as car-
dinality and integrity constraints and, more generally, aggregates are employed
to direct the computational mechanism and possibly enhance efficiency (Gebser,
Kaminski, Kaufmann, & Schaub, 2012).

• Basic ASP already deals with some problems of temporal projection. However,
to deal with a wider range of problems for dynamically changing domains, a
temporal version of equilibrium logic and ASP has been developed and studied,
following (Cabalar & Pérez-Vega, 2007).

• A central property of open systems is the necessity to interact with other systems.
Scholars have developed different logical semantics based on ASP that facilitate
this interaction. In particular, logic program rules may contain concepts whose
meanings are partially determined by external data sources such as knowledge
bases or ontologies (Eiter, Ianni, Schindlauer, & Tompits, 2005; Rosati, 2006).
This gives rise to hybrid theories that mix different reasoning systems (eg mono-
tonic and non-monotonic). Equilibrium logic can be applied to give a simple
and uniform treatment of such theories (de Bruijn, Pearce, Polleres, & Valverde,
2010).

• To deal with problem solving in a dynamically evolving setting, it is important
to consider the problem of updating knowledge in light of new data and knowl-
edge discovery. This has led to the study of theory and program updates in the
framework of ASP (Slota & Leite, 2010).

17

Acknowledgements Work on this paper has been partially supported by the Spanish
MINECO projects FOREST (TIN2015-70266-C2), MERLOT (TIN 2013-42149-P),
the UPM project RP151046021, by Xunta de Galicia, Spain (projects GPC ED431B
2016/035 and 2016-2019 ED431G/01 for CITIC center) and European Regional De-
velopment Fund (ERDF). It is a great pleasure to dedicate this paper to our friend Luis
Fariñas del Cerro who has given us generous encouragement and support over a long
period. After devoting many years to the advancement of logic and its applications,
Luis has recently become also a major contributor to the programme of stable reason-
ing. We look forward to many more years of intense and fruitful cooperation.

References
Balduccini, M., & Gelfond, M. (2003). Logic programs with consistency-restoring

rules. In International symposium on logical formalization of commonsense rea-
soning, aaai 2003 spring symposium series (pp. 9–18).

Baral, C., Gelfond, M., & Rushton, J. N. (2009). Probabilistic reasoning with answer
sets. TPLP, 9(1), 57–144.

Cabalar, P., & Pérez-Vega, G. (2007). Temporal equilibrium logic: a first approach. In
Computer aided systems theory (pp. 241–248).

Carnap, R. (1950). The logical foundations of probability. University of Chicago
Press.

Cellucci, C. (1998). Le ragioni della logica. Roma-Bari: Laterza.
de Bruijn, J., Pearce, D., Polleres, A., & Valverde, A. (2010). A semantical framework

for hybrid knowledge bases. Knowledge Information Systems, 25(1), 81–104.
Eiter, T., Ianni, G., Schindlauer, R., & Tompits, H. (2005). A uniform integration of

higher-order reasoning and external evaluations in answer-set programming. In
Proceedings of the nineteenth international joint conference on artificial intelli-
gence (IJCAI-05) (pp. 90–96).

Gebser, M., Kaminski, R., Kaufmann, B., & Schaub, T. (2012). Answer set solving in
practice. Morgan & Claypool Publishers.

Gelfond, M. (2011). Personal perspective on the development of logic pro-
gramming based KR languages. (Unpublished draft, available online at
http://www.depts.ttu.edu/cs/research/krlab/papers.php)

Gödel, K. (1932). Zum intuitionistischen aussagenkalkül. Anzeiger der Akademie der
Wissenschaften Wien, mathematisch, naturwissenschaftliche Klasse, 69, 65–66.

Heyting, A. (1930). Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte
der Preussischen Akademie der Wissenschaften, Physikalisch-mathematische
Klasse, 42–56.

Hosoi, T. (1966). The Axiomatization of the Intermediate Propositional Systems S2

of Gödel. Journal of the Faculty of Science of the University of Tokyo, 13(2),
183–187.

Łukasiewicz, J. (1941). Die logik und das grundlagenproblem. Les Entreties de
Zürich sur les Fondaments et la Méthode des Sciences Mathématiques, 12(6-9),
82–100.

18

Maksimova, L. (1977). Craig’s interpolation theorem and amalgamable varieties. Dok-
lady Akademii Nauk SSSR, 237(6), 1281–1284.

McCarthy, J. (1998). Elaboration tolerance. In Proc. of the 4th symposium on logical
formalizations of commonsense reasoning (common sense 98) (pp. 198–217).
London, UK.

Pearce, D. (1997). A new logical characterisation of stable models and answer sets.
In Non monotonic extensions of logic programming. proc. NMELP’96. (LNAI
1216). Springer-Verlag.

Pearce, D. (2006). Equilibrium logic. Ann. Math. Artif. Intell., 47(1-2), 3–41.
Rosati, R. (2006). DL+log: Tight integration of description logics and disjunctive

datalog. In Proceedings of the 10th international conference on principles of
knowledge representation and reasoning (KR’06) (pp. 68–78).

Slota, M., & Leite, J. (2010). On semantic update operators for answer-set programs.
In Proceeddings of the 19th european conference on artificial intelligence (ECAI
2010) (pp. 957–962).

Smetanich, Y. S. (1960). On completeness of a propositional calculus with an ad-
ditional operation of one variable (in Russian). Trudy Moscovskogo Matemat-
iceskogo Obscestova, 9, 357–372.

Umezawa, T. (1959). On intermediate many-valued logics. Journal of the Mathemati-
cal Society of Japan, 11(2).

19

