
Splitting Epistemic Logic Programs

Pedro Cabalar
University of Corunna

Corunna, Spain
cabalar@udc.es

Jorge Fandinno
University of Toulouse
IRIT, CNRS, France

jorge.fandinno@irit.fr

Luis Fariñas del Cerro
University of Toulouse
IRIT, CNRS, France

farinas@irit.fr

Abstract
Epistemic logic programs constitute an extension of the
stable models semantics to deal with new constructs
called subjective literals. Informally speaking, a subjec-
tive literal allows checking whether some regular literal
is true in all stable models or in some stable model.
As it can be imagined, the associated semantics has
proved to be non-trivial, as the truth of the subjective
literal may interfere with the set of stable models it is
supposed to query. As a consequence, no clear agree-
ment has been reached and different semantic propos-
als have been made in the literature. Unfortunately,
comparison among these proposals has been limited to
a study of their effect on individual examples, rather
than identifying general properties to be checked. In
this paper, we propose an extension of the well-known
splitting property for logic programs to the epistemic
case. To this aim, we formally define when an arbitrary
semantics satisfies the epistemic splitting property and
examine some of the consequences that can be derived
from that, including its relation to conformant planning
and to epistemic constraints. Interestingly, we prove
(through counterexamples) that most of the existing
proposals fail to fulfill the epistemic splitting property,
except the original semantics proposed by Gelfond in
1991.

Introduction
The language of epistemic specifications, proposed
by Gelfond (1991), constituted an extension of disjunc-
tive logic programming that introduced modal opera-
tors to quantify over the set of stable models (Gelfond
and Lifschitz, 1988) of a program. These new constructs
were later incorporated as an extension of the Answer
Set Programming (ASP) paradigm in different solvers
and implementations – see (Leclerc and Kahl, 2018b)
for a recent survey. The new constructs, subjective lit-
erals, have the form K l and M l and allow respectively
checking whether regular literal l is true in every stable
model (cautious consequence) or in some stable model
(brave consequence) of the program. In many cases,
these subjective literals can be seen as simple queries,
but what makes them really interesting is their use in
Copyright c© 2018, Association for the Advancement of Ar-
tificial Intelligence (www.aaai.org). All rights reserved.

rule bodies, what may obviously affect the set of stable
models they are meant to quantify. This feature makes
them suitable for modelling introspection but, at the
same time, easily involves cyclic specifications whose
intuitive behaviour is not always easy to define. For in-
stance, the semantics of an epistemic logic program may
yield alternative sets of stable models, each set being
called a world view. Deciding the intuitive world views
of a cyclic specification has motivated a wide debate in
the literature. In fact, in (Gelfond, 1991) original se-
mantics or in its extension (Truszczyński, 2011), some
cyclic examples manifested self-supportedness, so Gel-
fond (2011) himself and, later on, other authors (Kahl,
2014; Kahl et al., 2015; Fariñas del Cerro, Herzig, and
Su, 2015; Shen and Eiter, 2017; Son et al., 2017) pro-
posed different variants trying to avoid unintended re-
sults, without reaching a clear agreement. Unfortu-
nately, comparison among these variants was limited
to studying their effect on a set of “test” examples.
This methodology has proven to fall short in such an
uncertain context: confidence in any proposal is always
subject to the appearance of new counterintuitive exam-
ples. A much stronger method would be defining instead
formal properties to be established, as this would cover
complete families of examples and, hopefully, could help
to reach an agreement on some language fragments.
For instance, one would expect that, at least, the exist-
ing approaches agreed on their interpretation of acyclic
specifications. Regretfully, as we will show later, this is
not the case.

In this paper we propose a candidate property, we call
epistemic splitting, that not only defines an intuitive be-
haviour for stratified epistemic specifications but also
goes further, extending the splitting theorem (Lifschitz
and Turner, 1994), well-known for standard logic pro-
grams, to the epistemic case. Informally speaking, we
say that an epistemic logic program can be split if a
part of the program (the top) only refers to the atoms
of the other part (the bottom) through subjective liter-
als. A given semantics satisfies epistemic splitting if,
given any splitted program, it is possible to get its
world views by first obtaining the world views of the
bottom and then using the subjective literals in the
top as a “query” on the bottom part previously ob-

tained. If epistemic splitting holds, the semantics im-
mediately satisfies other properties. For instance, if the
use of epistemic operators is stratified, the program has
a unique world view at most. Similarly, epistemic con-
straints (those only consisting of subjective literals) can
be guaranteed to be monotonic: they only rule out can-
didate world views. As we will see, however, only (Gel-
fond, 1991) satisfies epistemic splitting among the pre-
viously cited approaches. So, somehow, the recent at-
tempts to fix the behaviour of cycles has neglected the
attention on the effects produced on acyclic specifica-
tions. In fact, a different property of epistemic splitting
was already proved by (Watson, 2000) as a method to
compute world views for (Gelfond, 1991). However, this
definition is based on a “safety” condition that needs to
be checked for all possible world views and is specific
for (Gelfond, 1991) semantics, so it is harder to justify
as a general property required for other approaches.

The rest of the paper is organized as follows. First, we
motivate the main idea through a well-known example.
After that, we recall basic definitions of (non-epistemic)
answer set programming and splitting, introduce the
language of epistemic specifications and define (Gel-
fond, 1991) semantics. In the next section, we proceed
to define the property of epistemic splitting and study
some of its consequences. Then, we formally prove that
(Gelfond, 1991) satisfies this property while we provide
counterexamples for the other approaches, concluding
the paper after that.

Motivation
To illustrate the intuition behind our proposal, let us
consider the well-known standard example introduced
in (Gelfond, 1991).
Example 1. A given college uses the following set of
rules to decide whether a student X is eligible for a
scholarship:

eligible(X) ← high(X) (1)
eligible(X) ← minority(X), fair(X) (2)
∼eligible(X) ← ∼fair(X),∼high(X) (3)

Here, ‘∼’ stands for strong negation and high(X) and
fair(X) refer to the grades level of student X. We want
to encode the additional college criterion:

“The students whose eligibility is not determined
by the college rules should be interviewed by the
scholarship committee.”

as another rule in the program. �

The problem here is that, for deciding whether
eligible(X) “can be determined,” we need to check if
it holds in all the answer sets of the program, that is,
if it is one of the cautious consequences of the latter.
For instance, if the only available information for some
student mike is the disjunction

fair(mike) ∨ high(mike) (4)

we get that program {(1)− (4)} has two stable mod-
els, {fair(mike)} and {high(mike), eligible(mike)} so
eligible(mike) cannot be determined and an interview
should follow. Of course, if we just want to query cau-
tious and brave consequences of the program, we can do
it inside ASP. For instance, the addition of constraint:

⊥ ← eligible(mike)

allows us deciding if eligible(mike) is a cautious conse-
quence by just checking that the resulting program has
no answer sets. The difficulty comes from the need to
derive new information from a cautious consequence.
This is where subjective literals come into play. Rule

interview(X)← not K eligible(X),
not K ∼eligible(X) (5)

allows us to prove that interview(X) holds when neither
eligible(X) nor ∼eligible(X) are cautious consequences
of (1)-(4). The novel feature here is that (5) is also part
of the program, and so, it affects the answer sets queried
by K too, which would actually be:

{fair(mike), interview(mike)} (6)
{high(mike), eligible(mike), interview(mike)} (7)

So, there is a kind of cyclic reasoning: operators K and
M are used to query a set of stable models that, in their
turn, may depend on the application of that query. In
the general case, this cyclic reasoning is solved by re-
sorting to multiple world views, but in our particular
example, however, this does not seem to be needed. One
would expect that separating the queried part (1)-(4)
and the rule that makes the query (5) should be cor-
rect, since the first four rules do not depend on (5) and
the latter exclusively consults them without interacting
with their results. This same reasoning could be ap-
plied if we added one more level such as, for instance,
by including the rule:

appointment(X)← K interview(X) (8)

The two answer sets of program {(1)− (5)} contain
interview(mike) and so appointment(mike) can be
added to both answer sets incrementally. This method
of analysing a program by division into independent
parts shows a strong resemblance to the splitting theo-
rem (Lifschitz and Turner, 1994), well-known in stan-
dard ASP. Splitting is applicable when the program can
be divided into two parts, the bottom and the top, in
such a way that the bottom never refers to head atoms
in the top. When this happens, we can first compute
the answer sets of the bottom and then, for each one,
simplify the top accordingly, getting new answer sets
that complete the information. We could think about
different ways of extending this method for the case
of epistemic logic programs, depending on how restric-
tive we want to be on the programs where it will be
applicable. However, we will choose a very conservative
case, looking for a wider agreement on the proposed be-
haviour. The condition we will impose is that our top

2

program can only refer to atoms in the bottom through
epistemic operators. In this way, the top is seen as a
set of rules that derive facts from epistemic queries on
the bottom. Thus, each world view W of the bottom
will be used to replace the subjective literals in the top
by their truth value with respect to W . For the sake
of completeness, we recall next the basic definitions of
ASP and splitting, to proceed with a formalization of
epistemic splitting afterwards.

Background of ASP and splitting
Given a set of atoms At, a regular literal1 is either an
atom or constant, a ∈ At ∪ {>,⊥}, or its default nega-
tion, not a. A rule r is an implication of the form:

a1 ∨ · · · ∨ an ← L1, . . . , Lm (9)
with n ≥ 0 and m ≥ 0, where each ai ∈ At is an atom
and each Lj a regular literal. The left hand disjunc-
tion of (9) is called the rule head and abbreviated as
Head(r). When n = 0, it corresponds to ⊥ and r is
called a constraint. The right hand side of (9) is called
the rule body and abbreviated as Body(r). When m = 0,
the body corresponds to > and r is called a fact (in this
case, the body and the arrow symbol are usually omit-
ted). A program Π is a set of rules. We write Atoms(F)
to represent the set of atoms occurring in any syntactic
construct F (a literal, head, body, rule or program). A
propositional interpretation I is a set of atoms. We as-
sume that strong negation ‘∼a’ is just another atom in
At and that the constraint:

⊥ ← a,∼a
is implicitly included in the program. We allow the use
of variables, but understood as abbreviations of their
possible ground instances. Given any syntactic con-
struct F , we write I |= F to stand for “I satisfies F”
in classical propositional logic, where the commas cor-
respond to conjunctions, ‘not’ corresponds (under this
interpretation) to classical negation and ‘←’ is just a
reversed material implication. An interpretation I is a
(classical) model of a program Π if it satisfies all its
rules. The reduct of a program Π with respect to some
propositional interpretation I, in symbols ΠI , is ob-
tained by replacing in Π every negative literal not a
by > if I |= not a or by ⊥ otherwise. A propositional
interpretation I is a stable model of a program Π iff it
is a ⊆-minimal model of ΠI . By SM[Π], we denote the
set of all stable models of Π.

The following is a well-known property in ASP.
Property 1 (Supraclassicality). Any stable model of a
program Π is also a classical model of Π.

We recall next the splitting theorem for ASP, begin-
ning with the following definition.
Definition 1 (Splitting set). A set of atoms U ⊆ At is
a splitting set of a program Π if, for each rule r ∈ Π,
one of the following conditions hold

1For a simpler description of program transformations,
we allow truth constants with their usual meaning.

i) Atoms(r) ⊆ U ,
ii) Atoms(Head(r)) ∩ U = ∅
When this happens, we identify two disjoint subpro-
grams, the bottom and the top, respectively defined as
bU (Π) def= { r ∈ Π

∣∣ Atoms(r) ⊆ U }
tU (Π) def= Π \ bU (Π) �

As an example, consider program Π1:
a ← not b (10)
b ← not a (11)

c ∨ d ← not a (12)
d ← a, not b (13)

It is easy to see that U = {a, b} is a splitting set that di-
vides the program into two parts: the bottom bU (Π1) =
{(10), (11)} and the top tU (Π1) = {(12), (13)}.

The keypoint of splitting is computing stable mod-
els of bU (Π) alone and using each one, I, to simplify
tU (Π) accordingly. Given a splitting set U for Π and an
interpretation I ⊆ U , we define the program eU (Π, I)
as a transformation of the top program, tU (Π), where
we replace each atom a ∈ U from the splitting set by:
> if a ∈ I or ⊥ otherwise. A pair 〈Ib, It〉 is said to
be a solution of Π with respect to U iff Ib is a stable
model of bU (Π) and It is a stable model of eU (Π, Ib).
For instance, for Π1, the bottom has two answer sets
{a} and {b}, so we get the respective simplifications
eU (Π1, {a}):

c ∨ d← not > d← >, not ⊥
and eU (Π1, {b}):

c ∨ d← not ⊥ d← ⊥, not >
The former has stable model {d} so 〈{a}, {d}〉 is one
solution. The latter has stable models {c} and {d} that
yield other two solutions 〈{b}, {c}〉 and 〈{b}, {d}〉.
Theorem 1 (From Lifschitz and Turner 1994). Let U
be a splitting set of program Π. A propositional inter-
pretation I ⊆ At is a stable model of Π iff there is a
solution 〈Ib, It〉 of Π w.r.t U such that I = Ib ∪ It. �

Given the three solutions we obtained before, the
splitting theorem guarantees that {a} ∪ {d}, {b} ∪ {c}
and {b}∪{d} are the three stable models of our example
program Π1.

One interesting observation is that any constraint
r with Atoms(r) ⊆ U is now included in the bottom
bU (Π) but also satisfies condition ii) in Def. 1 (it has
no head atoms at all) and could be moved to the top
tU (Π) instead. Having this in mind, let us provide now
a relaxed definition of bottom and top programs in the
following way. We say that the pair 〈b̂U (Π), t̂U (Π)〉 is an
arbitrary splitting of program Π with respect to split-
ting set U if: b̂U (Π) ∩ t̂U (Π) = ∅, b̂U (Π) ∪ t̂U (Π) = Π,
all rules in BU satisfy Def. 1.i) and all rules in T satisfy
Def. 1.ii). With this definition, constraints on atoms in
U can be arbitrarily placed in b̂U (Π) or in t̂U (Π).
Corollary 1. Theorem 1 still holds if we define bU (Π)
and tU (Π) to be any arbitrary splitting 〈b̂U (Π), t̂U (Π)〉
of program Π with respect to splitting set U . �

3

Epistemic specifications
We extend now the syntax of ASP to the language of
epistemic specifications. Given a set of atoms At, we call
subjective literal to any expression of the form K l, M l,
not K l or not M l, for any regular literal l. We keep the
same syntax for rules as in (9) excepting that body lit-
erals Lj can also be subjective literals now. Given rule
r we define the sets Body(r)reg and Bodysub(r) respec-
tively containing the regular and the subjective literals
in Body(r). Rules or programs are regular if they do
not contain subjective literals. We say that a rule is a
subjective constraint if it is a constraint, Head(r) = ⊥,
and its body exclusively consists of subjective literals,
that is Body(r) = Bodysub(r).

We can define the concept of model of a program, in
a similar way as we did for classical models in regular
ASP. A modal interpretation M = 〈W, I〉 is pair where
I is a propositional interpretation and W ⊆ 2At is a
non-empty set of propositional interpretations. A modal
interpretation M = 〈W, I〉 satisfies a literal L, written
〈W, I〉 |= L, if
1. 〈W, I〉 |= >,
2. 〈W, I〉 6|= ⊥,
3. 〈W, I〉 |= a if a ∈ I, for any atom a ∈ At,
4. 〈W, I〉 |= K l if 〈W, I ′〉 |= l for all I ′ ∈W ,
5. 〈W, I〉 |= M l if 〈W, I ′〉 |= l for some I ′ ∈W , and
6. 〈W, I〉 |= not L if 〈W, I〉 6|= L.
Since for a subjective literal L, 〈W, I〉 |= L does not de-
pend on I, we sometimes write W |= L. For a rule r of
the form (9), we write 〈W, I〉 |= r iff either 〈W, I〉 |= ai

for some 1 ≤ i ≤ n or 〈W, I〉 6|= Lj for some 1 ≤ j ≤ m.
We say that 〈W, I〉 is a model of a program Π, writ-
ten 〈W, I〉 |= Π, if it satisfies all its rules. Among the
possible models of an epistemic logic program, all se-
mantic approaches agree on selecting some preferred
models called world views, each one being characterized
by the W component. These world views satisfy a simi-
lar property to that of supraclassicality (Property 1) in
non-epistemic ASP. In this case, however, rather than
talking about classical models, we resort to modal logic
S5, so all world views of a program are also S5 models
of the program. This property can be formally stated
as follows:
Property 2 (Supra-S5). A semantics satisfies supra-
S5 when for every world view W of an epistemic pro-
gram Π and for every I ∈W , 〈W, I〉 |= Π. �

To the best of our knowledge, all existing semantics
satisfy supra-S5. Another property that is shared by all
semantics is that, when Π is a regular ASP program (it
has no modal epistemic operators) then it has a unique
world view containing all the stable models of Π. We
will formalize this property in the following way.
Property 3 (Supra-ASP). A semantics satisfies supra-
ASP if for any regular program Π either Π has a unique
world view W = SM[Π] , ∅ or SM[Π] = ∅ and Π has
no world view at all. �

Originally, some semantics like (Gelfond, 1991) or
(Truszczyński, 2011), allowed empty world viewsW = ∅
when the program has no stable models, rather than
leaving the program without world views. Since this
feature is not really essential, we exclusively refer to
non-empty world views in this paper.

We define next a useful transformation extending the
idea of reduct to epistemic specifications, and general-
ized for a given signature.
Definition 2 (Subjective reduct). The subjective
reduct of a program Π with respect to a set of proposi-
tional interpretations W and a signature U ⊆ At, also
written ΠW

U , is obtained by replacing each subjective lit-
eral L with Atoms(L) ⊆ U by: > if W |= L or by ⊥
otherwise. When U = At we just write ΠW . �

We use the same notation ΠW as for the standard
reduct, but ambiguity is removed by the type of W (a
set of interpretations now). This subjective reduct can
be used to define (Gelfond, 1991) (G91) semantics in
the following way.
Definition 3 (G91-world view). A non-empty set of
interpretations W is a G91-world view of an epistemic
program Π if W = SM[ΠW]. �

We will not provide the formal definitions of the
rest of semantics compared in this paper, since none
of them satisfies our goal property of epistemic split-
ting. In those cases, it will suffice with providing coun-
terexamples and the reader can check their behaviour
by resorting to the corresponding original definition.

Epistemic splitting
We proceed now to introduce our definition of the epis-
temic splitting property. To do so, we begin extending
the idea of splitting set.
Definition 4 (Epistemic splitting set). A set of atoms
U ⊆ At is said to be an epistemic splitting set of a pro-
gram Π if for any rule r in Π one of the following con-
ditions hold
i) Atoms(r) ⊆ U ,

ii) (Atoms(Bodyreg(r) ∪Head(r))) ∩ U = ∅
As before, we define an arbitrary splitting of Π as a
pair 〈BU (Π), TU (Π)〉 satisfying BU (Π) ∩ TU (Π) = ∅,
BU (Π) ∪ TU (Π) = Π, all rules in BU (Π) satisfy i) and
all rules in TU (Π) satisfy ii). �

With respect to Definition 1, we have replaced the con-
dition for the top program, Atoms(Head(r)) ∩ U = ∅,
by the new condition ii), which in other words means
that the top program may only refer to atoms U in the
bottom through epistemic operators. Note that this in-
troduces a new kind of “dependence,” so that, as hap-
pens with head atoms, regular literals in the body also
depend on atoms in subjective literals. For instance, if
U = {p, q}, the program

p ∨ q s← p,K q

4

would not be splittable due to the second rule, since
s < U and we would also need the regular literal p < U .
The reason for this restriction is to avoid imposing (to
a potential semantics) a fixed way of evaluating p with
respect to the world view [{p}, {q}] for the bottom.

Another observation is that we have kept the defi-
nition of BU (Π) and TU (Π) non-deterministic, in the
sense that some rules can be arbitrarily included in one
set or the other. In our case, these rules correspond to
subjective constraints on atoms in U , since these are
the only cases that may satisfy conditions i) and ii) si-
multaneously.

If we retake our example program Π2 = {(1)− (5)},
we can see that U = {high(mike), fair(mike),
eligible(mike),minority(mike)} is an epistemic split-
ting set that divides the program into the bottom
BU (Π2) = {(1)− (4)} and the top TU (Π2) = {(5)}. As
in regular splitting, the idea is computing first the
world views of the bottom program BU (Π) and for
each one, W , simplifying the corresponding subjective
literals in the top program. Given an epistemic split-
ting set U for a program Π and set of interpreta-
tions W , we define EU (Π,W) def= TU (Π)W

U , that is, we
make the subjective reduct of the top with respect to
W and signature U . A pair 〈Wb,Wt〉 is said to be a
solution of Π with respect to an epistemic splitting
set U if Wb is a world view of BU (Π) and Wt is a
world view of EU (Π,Wb). Notice that this definition
is semantic-dependent in the sense that each alterna-
tive semantics for epistemic specifications will define
its own solutions for a given U and Π, since it de-
fines the selected world views for a program in a dif-
ferent way. Back to our example, notice that BU (Π2) is
a regular program without epistemic operators. Thus,
any semantics satisfying supra-ASP will provide Wb =
[{fair(mike)}, {high(mike), eligible(mike)}] as unique
world view for the bottom. The corresponding simplifi-
cation of the top would be EU (Πs,Wb) containing (after
grounding) the single rule:

interview(mike)← not ⊥, not ⊥
Again, this program is regular and its unique world view
would be Wt = [{interview(mike)}]. Now, in the gen-
eral case, to reconstruct the world views for the global
program we define the operation:

Wb tWt = { Ib ∪ It

∣∣ Ib ∈Wb and It ∈Wt }
(remember that both the bottom and the top may pro-
duce multiple world views, depending on the program
and the semantics we choose). In our example, WbtWt

would exactly contain the two stable models (6), (7) we
saw in the introduction.
Property 4 (Epistemic splitting). A semantics satis-
fies epistemic splitting if for any epistemic splitting set
U of any program Π: W is a world view of Π iff there
is a solution 〈Wb,Wt〉 of Π with respect to U such that
W = Wb tWt. �

In the example, this means that the world view we
obtained in two steps is indeed the unique world view

of the whole program, under any semantics satisfying
epistemic splitting. Uniqueness of world view was ob-
tained in this case because both the bottom program
BU (Π2) and the top, after simplification, EU (Π2,Wb)
were regular programs and we assumed supra-ASP. In
fact, as we see next, we can still get a unique world
view (at most) when there are no cyclic dependences
among subjective literals. This mimics the well-known
result for stratified negation in logic programming (van
Gelder, 1988; Apt, Blair, and Walker, 1988). Let us de-
fine a modal dependence relation among atoms in a
program Π so that dep(a, b) is true iff there is a rule
r ∈ Π such that a ∈ Atoms(Head(r) ∪ Bodyreg(r)) and
b ∈ Atoms(Bodysub(r)).
Definition 5. We say that an epistemic program Π is
modally stratified if we can assign an integer mapping
λ : At→ N to each atom such that λ(a) > λ(b) for any
pair of atoms a, b satisfying dep(a, b). �

Take, for instance, the extended program Π3 =
{(1) − (5), (8)}. We can assign atoms high(mike),
fair(mike), minority(mike) and eligible(mike) layer 0.
Then interview(mike) could be assigned layer 1 and, fi-
nally, appointment(mike) can be located at layer 2. So,
Π3 is modally stratified.
Theorem 2. Let Π be a finite, modally stratified pro-
gram. Then, any semantics satisfying supra-ASP and
epistemic splitting assigns, at most, a unique world view
to Π. �

The proof of the theorem just relies on multiple ap-
plications of splitting to each layer backwards and the
fact that each simplification EU (Π,Wb) will be a reg-
ular program. This is very easy to see in the extended
example Π3. We can split the program using as U all
atoms but appointment(mike) to get a bottom Π2 and
a top {(8)}. Program Π2 can be splitted in its turn
as we saw before, producing the unique world view
{(6), (7)}. Then EU (Π3, {(6), (7)}) contains the single
rule appointment(mike)← > that is a regular program
whose unique world view is [{appointment(mike)}] and,
finally, the combination of both world views yields again
a unique world view [(6) ∪ {appointment(mike)}, (7) ∪
{appointment(mike)}].

Another consequence of epistemic splitting is that
subjective constraints will have a monotonic behaviour.
Note first that, for a subjective constraint r, we can
abbreviate 〈W, I〉 |= r as W |= r since the I com-
ponent is irrelevant. Additionally, W |= r means that
Body(r) = Bodysub(r) is falsified, since Head(r) = ⊥.
Property 5 (subjective constraint monotonicity). A
semantics satisfies subjective constraint monotonicity
if, for any epistemic program Π and any subjective con-
straint r, W is a world view of Π ∪ {r} iff both W is a
world view of Π and W |= r. �

Theorem 3. Epistemic splitting implies subjective con-
straint monotonicity. �

Proof. Suppose we use a semantics satisfying epistemic

5

splitting. For any program Π and any epistemic con-
straint r, we can always take the whole set of atoms
U = Atoms(Π ∪ {r}) as epistemic splitting set for
Π′ = Π ∪ {r} and take BU (Π′) = Π and TU (Π′) = {r}.
For any world view W of BU (Π′) two things may hap-
pen. A first possibility is W |= r, and so the body of
r has some false subjective literal in W , so EU (Π′,W)
would be equivalent to ⊥ ← ⊥. Then, the unique world
view for the top would be Wt = [∅] and W tWt = W .
A second case is W 6|= r, so all literals in the body are
satisfied and EU (Π′,W) would be equivalent to ⊥ ← >
which has no world views. To sum up, we get exactly
those world views W of Π that satisfy r. �

To conclude the exploration of consequences of epis-
temic splitting, let us consider a possible application to
conformant planning. To this aim, consider the follow-
ing simple example.
Example 2. To turn on the light in a room, we can
toggle one of two lamps l1 or l2. In the initial state,
lamp l1 is plugged but we ignore the state of l2. Our
goal is finding a plan that guarantees we get light in the
room in one step.

A possible logic program that encodes this scenario
for a single transition2 could be Π4:

plugged(l1)
plugged(l2) ∨ ∼plugged(l2)

light ← toggle(L), plugged(L)
⊥ ← toggle(l1), toggle(l2)

for L ∈ {l1, l2}. As we can see, toggle(l1) would consti-
tute a conformant plan, since we obtain light regard-
less of the initial state, while this does not happen with
plan toggle(l2). In order to check whether a given se-
quence of actions A0, . . . , An is a valid conformant plan
one would expect that, if we added those facts to the
program, a subjective constraint should be sufficient to
check that the goal holds in all the possible outcomes.
In our example, we would just use:

⊥ ← not K light (14)

and check that the program Π4 ∪ {toggle(L)} ∪ {(14)}
has some world view, varying L ∈ {l1, l2}. Subjective
constraint monotonicity guarantees that the addition
of this “straighforward” formalisation has the expected
meaning.

This method would only allow testing if the se-
quence of actions constitutes a conformant plan, but
does not allow generating those actions. A desirable fea-
ture would be the possibility of applying the well-known
ASP methodology of separating the program into three
sections: generate, define and test. In our case, the “de-
fine” and the “test” sections would respectively be Π4
and (14), but we still miss a “generate” part, capable of

2For simplicity, we omit time arguments or inertia, as
they are not essential for the discussion.

considering different alternative conformant plans. The
problem in this case is that we cannot use a simple
choice:

toggle(L) ∨ ∼toggle(L)

because this would allow a same action to be executed in
some of the stable models and not executed in others, all
inside a same world view. Let us assume that our epis-
temic semantics has some way to non-deterministically
generate a world view in which either K a or K not a
holds using a given set of rules3 Choice(a). Then, take
the program Π5 consisting of rules

Choice(toggle(L)) (15)

with L ∈ {l1, l2} plus Π4 and (14). If our semantics sat-
isfies epistemic splitting, it is safe to obtain the world
views in three steps: generate first the alternative world
views for toggle(l1) and toggle(l2) using (15), apply Π4
and rule out those world views not satisfying the goal
light in all situations using (14). To fulfill the precondi-
tions for applying splitting, we would actually need to
replace regular literal toggle(L) by K toggle(L) in all
the bodies of Π4, but this is safe in the current context.
Now, we take the bottom program to obtain 4 possible
world views W0 = [{toggle(l1)}], W1 = [{toggle(l2)}],
W2 = [{toggle(l1), toggle(l2)}] and W3 = [∅]. When we
combine them with the top Π4 we obtain W ′

0 consisting
of two stable models:

{toggle(l1), plugged(l2), light, . . . }
{toggle(l1),∼plugged(l2), light, . . . }

and W ′
1 consisting of other two stable models:

{toggle(l2), plugged(l2), light, . . . }
{toggle(l2),∼plugged(l2), . . . }

where the latter does not contain light. Finally, con-
straint (14) would rule out W ′

1.
To sum up, epistemic splitting provides a natural way

of formulating conformant planning problems by a sep-
aration into three sections: a generation part, the usual
encoding of the actions scenario and a test part con-
sisting of a subjective constraint to guarantee that the
goal is always reached.

Splitting in some existing semantics
In this section we study the property of epistemic split-
ting for the approaches mentioned in the introduction.
We will begin by proving that G91 actually satisfies
this property. To this aim, we start with some defi-
nitions and auxiliary results. Given a set of proposi-
tional interpretations W ⊆ 2At and a set of atoms U ,
by W|U

def= { I ∩ U
∣∣ I ∈ U }, we denote the restriction

of W to U . Given a set of atoms U , by U , we denote its
complement At \ U .

3For instance, in Gelfond (1991), this could be just the
rule a← not K not a. Other semantics may have alternative
ways of expressing this intended behaviour.

6

Observation 1. Let W be a set of propositional inter-
pretations and U ⊆ At be a set of atoms. Then, for any
subjective literal L with Atoms(L) = {a}:
i) if a ∈ U , then W |= L iff W|U |= L,

ii) if a < U , then W |= L iff W|U |= L,
Proposition 1. Let Π be a program that accepts an
epistemic splitting set U ⊆ At and let W be a set of
propositional interpretations. Let Wb = W|U and Wt =
W|U . Then, we get

i) BU (Π)W = BU (Π)Wb ,
ii) TU (Π)W = EU (Π,Wb)Wt , and

iii) ΠW = BU (Π)Wb ∪ EU (Π,Wb)Wt .

Proof. First, since every rule r ∈ BU (Π) satisfies
Atoms(Bodysub(r)) ⊆ U , from Observation 1, it follows
that BU (Π)W = BU (Π)Wb . Furthemore, for any pro-
gram Γ, it is easy to check that ΓW = (ΓWb

U)Wt ,
that is, applying the reduct w.r.t W is the same than
applying it w.r.t. to its projection in U and after-
wards to the remaining part. Thus, we get TU (Π)W =
(TU (Π)Wb

U)Wt = EU (Π,Wb)Wt . Finally, we have that
ΠW = (BU (Π) ∪ TU (Π))W = BU (Π)W ∪ TU (Π)W and,
thus, the result holds. �

Theorem 4 (Main theorem). Semantics G91 satisfies
epistemic splitting.

Proof. Let W be some set of propositional interpreta-
tions and let Wb = W|U and Wt = W|U . By definition,
W is a world view of Π if and only if W = SM[ΠW].
Furthermore, since U is a modal splitting set of Π, it
is easy to check that U is also a regular splitting set of
the regular programa ΠW . Hence, from Corollary 1, we
get that W is a world view of Π iff W = SM[ΠW] ={
Ib∪It

∣∣ Ib ∈ SM[b̂U (ΠW)] and It ∈ SM[êU (ΠW, Ib)]
}

for some arbitrary splitting 〈b̂U (ΠW), t̂U (ΠW)〉. Note
that all rules belonging to BU (Π) have all atoms
from U . Hence, we take b̂U (ΠW) def= BU (Π)W =
BU (Π)Wb (Proposition 1). Similarly, we also take
t̂U (ΠW) def= TU (Π)W = EU (Π,Wb)Wt . Then, we get

êU (ΠW, Ib) = êU (t̂U (ΠW), Ib) = êU (EU (Π,Wb)Wt, Ib)

Notice also that no atom occurring in EU (Π,Wb)Wt be-
longs to U , which implies that êU (EU (Π,Wb)Wt, Ib) =
EU (Π,Wb)Wt . Replacing above, we have that W is a
world view of Π iff W is equal to

{Ib ∪ It | Ib ∈ SM[BU (Π)Wb], It ∈ SM[EU (Π,Wb)Wt]}

iff
W = {Ib ∪ It | Ib ∈W ′

b and It ∈W ′
t}

with W ′
b = SM[BU (Π)Wb] and W ′

t = SM[EU (Π,Wb)Wt]
iff W = W ′

b tW ′
t . Hence, it only remains to be shown

that both Wb = W ′
b and Wt = W ′

t hold. Note that
I ∈ Wb = W|U iff I = I ′ ∩ U for some I ′ ∈ W iff

I = (Ib ∪ It) ∩ U for some Ib ∈ W ′
b and It ∈ W ′

t iff
I = (Ib ∩ U) ∪ (It ∩ U) for some Ib ∈ W ′

b and It ∈ W ′
t

iff I = Ib for some Ib ∈ W ′
b. The fact Wt = W ′

t follows
in an analogous way. �

A similar proof can be developed to show that
(Truszczyński, 2011), that generalises4 (Gelfond, 1991)
from subjective literals to subjective formulas, also sat-
isfies epistemic splitting.

To illustrate the behaviour of other semantics with
respect to splitting, we will use several examples. Let
us take the program Π6 consisting of {(10), (11)} and
the rule:

c ∨ d ← not K a (16)
The set U = {a, b} splits the program into the bot-

tom, (10)-(11) and the top (16). The bottom has a
unique world view Wb = [{a}, {b}] so K a does not hold
and the top is simplified as EU (Π6,Wb) containing the
unique rule:

c ∨ d← not ⊥ (17)
This program has a unique world view
Wt = [{c}, {d}] that, combined with Wb yields
[{a, c}, {b, c}, {a, d}, {b, d}] as the unique solution for
Π6, for any semantics satisfying epistemic splitting
(and so, also for G91). Let us elaborate the example a
little bit further. Suppose we add now the constraint:

⊥ ← c (18)
The top must also include this rule and has now a
unique stable model Wt = [{d}], so the world view for
the complete program would be [{a, d}, {b, d}]. Finally,
let us forbid the inclusion of atom d too:

⊥ ← d (19)
so we consider Π7 = {(10), (11), (16), (18), (19)}.
This last constraint leaves the simplified top program
EU (Π6,Wb) = {(17), (18), (19)} without stable models,
so epistemic splitting would yield that program Π7 has
no world view at all. This is the result we obtain, in-
deed, in (Gelfond, 1991, 2011)5 and in (Truszczyński,
2011). Surprisingly, recent approaches like (Kahl et al.,
2015; Fariñas del Cerro, Herzig, and Su, 2015; Shen and
Eiter, 2017; Son et al., 2017) yield world view [{a}], vi-
olating the epistemic splitting property. For instance,
in the case of (Kahl et al., 2015), the reduct of Π7 with
respect to [{a}] is the program

a ← not b
b ← not a

c ∨ d ← not a
⊥ ← c

⊥ ← d
4In fact, Truszczyński (2011) defines several semantics

but, among them, we refer here to the epistemic stable
model semantics.

5These two semantics actually produce empty world
views, but as we said before, we disregard them, as they
just point out that the program has no solution.

7

which has a unique stable model {a}.
As a second example, take the program Π8 consisting

of the same bottom program {(10), (11)} and the rule:
c ← K a (20)

As expected, all approaches agree that Π8 has a unique
world view Wb = [{a}, {b}] because K a is not satisfied
and rule (20) is not applicable. Under epistemic split-
ting, we get that EU (Π8,Wb) is the rule:

c← ⊥ (21)
whose unique world view is [∅], so that Wb t [∅] = Wb.
But let us further elaborate the example taking Π′

8 con-
taining Π8 plus:

⊥ ← not c (22)
Under epistemic splitting, the new top EU (Π′

8,Wb) con-
tains now (22) and (21) which have no stable mod-
els. As a result, no world view can be combined with
Wb and we obtain that Π′

8 has no world views at all.
This is the result we obtain under (Gelfond, 1991;
Truszczyński, 2011), which agree that the program is
inconsistent. However, Gelfond (2011) joins (Kahl et
al., 2015; Fariñas del Cerro, Herzig, and Su, 2015; Shen
and Eiter, 2017; Son et al., 2017) in the group of ap-
proaches that provide the world view [{a, c}]. That is,
in all these approaches, adding a constraint intended to
remove all world views that do not satisfy c, may sur-
prisingly lead to justify c. Note that, according to (Gel-
fond, 1991; Truszczyński, 2011), the reduct of Π′

8 with
respect to [{a, c}] is

a ← not b (23)
b ← not a (24)
c ← > (25)
⊥ ← not c (26)

which has two stable models, {a, c} and {b, c}, so [{a, c}]
is not a world view. In contrast, the reduct with respect
to (Gelfond, 2011) and (Kahl et al., 2015) is

a ← not b (27)
b ← not a (28)
c ← a (29)
⊥ ← not c (30)

which has a unique stable model {a, c}, so [{a, c}] is a
world view.

Conclusions
We have introduced a formal property for semantics of
epistemic specifications. This property that we call epis-
temic splitting has a strong resemblance to the splitting
theorem well-known for regular ASP programs. Epis-
temic splitting can be applied when we can divide an
epistemic logic program into a bottom part for a subset
U of atoms and a top part, that only refers to atoms in
U through subjective literals (those using modal epis-
temic operators). When this happens, the property of

splitting states that we should be able to compute the
world views of the program in two steps: first, comput-
ing the world views of the bottom and, second, using
each bottom world view W to replace subjective liter-
als for atoms in U in the top by their truth value with
respect to W .

We have studied several consequences of epistemic
splitting: for instance, if the program is stratified with
respect to subjective literals then it will have a unique
world view, at most. Another consequence is that con-
straints only consisting of subjective literals will have a
monotonic behaviour, ruling out world views that sat-
isfy the constraint body.6 We have also explored how
epistemic splitting may facilitate the simple application
of the generate-define-test methodology, well-known in
ASP, to the formalisation of conformant planning.

Our study of the main semantics in the literature has
shown that only the original semantics (Gelfond, 1991)
(G91), and its generalisation (Truszczyński, 2011), sat-
isfy epistemic splitting while the rest of approaches we
considered no, as we showed with counterexamples. As
said in the introduction, a different kind of epistemic
splitting had also been proved for G91 in (Watson,
2000), reinforcing the idea that this semantics can be
interpreted in a modular way. Notice that the sets of
programs that can be split under these two definitions
is incomparable. We do not mean with this, however,
that G91 is always intuitive. As it is well-known, G91
suffers from self-supportedness: for instance, the pro-
gram consisting of the single rule p ← K p yields two
world views [∅] and [{p}] but the latter justifies p by
the mere assumption of K p without further evidence,
something that seems counterintuitive. What we claim
instead is that G91 has a reasonable behaviour when
subjective literals are stratified. Unfortunately, later at-
tempts to solve self-supportedness on cyclic epistemic
specifications have somehow spoiled that feature.

References
Apt, K. R.; Blair, H. A.; and Walker, A. 1988. Towards

a theory of declarative knowledge. In Foundations of
Deductive Databases and Logic Programming. Mor-
gan Kaufmann. 89–148.

Fariñas del Cerro, L.; Herzig, A.; and Su, E. I.
2015. Epistemic equilibrium logic. In Proc. of the
Intl. Joint Conference on Artificial Intelligence (IJ-
CAI’15), 2964–2970. AAAI Press.

Gelfond, M., and Lifschitz, V. 1988. The stable model
semantics for logic programming. In Proc. of the 5th
Intl. Conference on Logic Programming (ICLP’88),
1070–1080.

Gelfond, M. 1991. Strong introspection. In Dean, T. L.,
and McKeown, K., eds., Proceedings of the AAAI

6The lack of monotonicity suffered by epistemic con-
straints in some semantics has been recently discussed
by Leclerc and Kahl (2018a).

8

Conference, volume 1, 386–391. AAAI Press/The
MIT Press.

Gelfond, M. 2011. New semantics for epistemic speci-
fications. In LPNMR, volume 6645 of Lecture Notes
in Computer Science, 260–265. Springer.

Kahl, P.; Watson, R.; Balai, E.; Gelfond, M.; and
Zhang, Y. 2015. The language of epistemic specifica-
tions (refined) including a prototype solver. Journal
of Logic and Computation.

Kahl, P. T. 2014. Refining the semantics for epistemic
logic programming. Ph.D. Dissertation.

Leclerc, A. P., and Kahl, P. T. 2018a. Epistemic logic
programs with world view constraints. In Techni-
cal communication, 34th International Conference on
Logic Programming (ICLP’2018).

Leclerc, A. P., and Kahl, P. T. 2018b. A survey of ad-
vances in epistemic logic program solvers. In Proc. of
the 11th Intl. Workshop on Answer Set Programming
and other Computer Paradigms (ASPOCP’18).

Lifschitz, V., and Turner, H. 1994. Splitting a logic
program. In Proc. of the Intl. Conference on Logic
Programming (ICLP’94), 23–37. MIT Press.

Shen, Y., and Eiter, T. 2017. Evaluating epistemic
negation in answer set programming (extended ab-
stract). In Proc. of the Intl. Joint Conference on
Artificial Intelligence (IJCAI’17), 5060–5064.

Son, T. C.; Le, T.; Kahl, P. T.; and Leclerc, A. P. 2017.
On computing world views of epistemic logic pro-
grams. In Proc. of the Intl. Joint Conference on Ar-
tificial Intelligence (IJCAI’15), 1269–1275. ijcai.org.

Truszczyński, M. 2011. Revisiting epistemic speci-
fications. In Logic Programming, Knowledge Rep-
resentation, and Nonmonotonic Reasoning, volume
6565 of Lecture Notes in Computer Science, 315–333.
Springer.

van Gelder, A. 1988. Negation as failure using tight
derivations for general logic programs. In Foun-
dations of Deductive Databases and Logic Program-
ming. Morgan Kaufmann. 149–176.

Watson, R. 2000. A splitting set theorem for epis-
temic specifications. CoRR: Proceedings of the 8th
International Workshop on Non-Monotonic Reason-
ing, NMR 2000 cs.AI/0003038.

9

