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Abstract. This work makes an overview on an hybrid formalism that
combines the syntax of Linear-time Temporal Logic (LTL) with a non-
monotonic selection of models based on Equilibrium Logic. The resulting
approach, called Temporal Equilibrium Logic, extends the concept of a
stable model for any arbitrary modal temporal theory, constituting a
suitable formal framework for the specification and verification of dy-
namic scenarios in Answer Set Programming (ASP). We will recall the
basic definitions of this logic and explain their effects on some simple ex-
amples. After that, we will proceed to summarize the advances made so
far, both in the fundamental realm and in the construction of reasoning
tools. Finally, we will explain some open topics, many of them currently
under study, and foresee potential challenges for future research.

1 Introduction

The birth of Non-Monotonic Reasoning (NMR) in the 1980’s was intimately re-
lated to temporal reasoning in action domains. The solution to the frame prob-
lem [1] (the unfeasibility of explicitly specifying all the non-effects of an action)
played a central role in research on NMR formalisms capable of representing
defaults. In particular, the area of reasoning about actions and change was ini-
tially focused on properly capturing the inertia law, a dynamic default which
can be phrased as “fluent values remain unchanged along time, unless there is
evidence on the contrary.” NMR was also essential to deal with other typical
representational problems in action theories, such as the ramification and the
qualification problems.

The combination of temporal reasoning and NMR in action theories was
typically done inside the realm of first order logic. Classical action languages
such as Situation Calculus [1] or Event Calculus [2] have combined some NMR
technique, usually predicate circumscription [3], with a first-order formalisation
of time using temporal predicates and objects (situations or events, respectively).
In this way, we get very rich and expressive formalisms without limitations on
the quantification of temporal terms or the construction of arbitrary expressions
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involving them, although we inherit the undecidability of first order logic in the
general case.

Another way of dealing with temporal reasoning in NMR approaches has
been the use of modal temporal logic, a combination perhaps less popular1, but
not unfrequent in the literature [5,6,7]. But probably, the simplest treatment of
time we find in action theories is the use of an integer index to denote situations,
as done for instance in [8] for reasoning about actions using Logic Programming
(LP), and in the family of action languages [9] inspired on that methodology.

With the consolidation of Answer Set Programming (ASP) [10,11] as a suc-
cessful paradigm for practical NMR, many examples and benchmarks formalis-
ing dynamic scenarios became available. ASP inherited the treatment of time as
an integer index from LP-based action languages but, in practice, it further re-
stricted all reasoning tasks to finite narratives, something required for grounding
time-related variables. To illustrate this orientation, consider an extremely sim-
ple ASP program where a fluent p represents that a switch is on and q represents
that it is off. Moreover, suppose we have freedom to arbitrarily fix p true at any
moment and that that either p or q holds initially. A typical ASP representation
of this problem could look like this:

p(0) ∨ q(0) (1)

p(I+1)← p(I),not q(I+1), sit(I) (2)

q(I+1)← q(I),not p(I+1), sit(I) (3)

p(I) ∨ not p(I)← sit(I) (4)

where (1) describes the initial state, (2) and (3) are the inertia rules for p and
q, and (4) acts as a choice rule2 allowing the introduction of p at any situation.
Predicate sit would have some finite domain 0 . . . n for some constant n ≥ 0. A
planning problem can be solved incrementally [12], using an iterative deepening
strategy similar to SAT-based planning [13]. If we want to reach a state satisfying
p ∧ ¬q, we would include two constraints for the last situation:

⊥ ← not p(n) ⊥ ← q(n)

and go increasing n until a solution is found. However, this strategy falls short for
many temporal reasoning problems that involve dealing with infinite time such
as proving the non-existence of a plan or checking the satisfaction of temporal
properties of a given dynamic system. For instance, questions such as “is there a
reachable state in which both p and q are false?” or “can we show that whenever

1 John McCarthy, the founder of logical knowledge representation and commonsense
reasoning, showed in several occasions an explicit disapproval of modal logics. See
for instance his position paper with the self-explanatory title “Modality, si! Modal
logic, no!” [4].

2 Generally speaking, a disjunction of the form ϕ ∨ not ϕ in ASP is not a tautology.
When included in a rule head it is usually written as { ϕ } and acts as a non-
deterministic choice possibly allowing the derivation of ϕ.



p is true it will remain so forever?” can be answered by an analytical inspection
of our simple program, but cannot be solved in an automated way.

In principle, one may think that this kind of problems dealing with infi-
nite time are typically best suited for modal temporal logics, whose expressive
power, computation methods (usually decidable) and associated complexity have
been extensively well-studied. Unfortunately, as happens with SAT in the non-
temporal case, temporal logics are not designed for Knowledge Representation
(KR). For instance, the best known temporal logics are monotonic, so that the
frame and ramification problems constantly manifest in their applications, even
for very simple scenarios.

In this work, we make a general overview on Temporal Equilibrium Logic [14],
to the best of our knowledge, the first non-monotonic approach that fully covers
the syntax of some standard modal temporal logic, providing a logic program-
ming semantics that properly extends stable models [15], the foundational basis
of ASP. TEL shares the syntax of Linear-time Temporal Logic (LTL) [16,17]
which is perhaps the simplest, most used and best known temporal logic in The-
oretical Computer Science. The main difference of TEL with respect to LTL
lies in its non-monotonic entailment relation (obtained by a models selection
criterion) and in its semantic interpretation of implication and negation, closer
to intuitionistic logic. These two properties are actually inherited from the fact
that TEL is a temporal extension of Equilibrium Logic [18], a non-monotonic
formalism that generalises stable models to the case of arbitrary propositional
formulas. This semantic choice is a valuable feature because, on the one hand,
it provides a powerful connection to a successful practical KR paradigm like
ASP, and on the other hand, unlike the original definition of stable models, the
semantics of Equilibrium Logic does not depend on syntactic transformations
but, on the contrary, is just a simple minimisation criterion for an intermediate
logic (the logic of Here-and-There [19]). This purely logical definition provides
an easier and more homogeneous way to extend the formalism, using standard
techniques from other hybrid logical approaches.

As an example, the ASP program (1)-(4) would be represented in TEL as:

p ∨ q (5)

�(p ∧ ¬© q →©p) (6)

�(q ∧ ¬© p→©q) (7)

�(p ∨ ¬p) (8)

where, as usual in LTL, ‘�’ stands for “always” and ‘©’ stands for “next.”
Checking whether p and q can be eventually false would correspond to look for a
plan satisfying the constraint ¬♦(¬p ∧ ¬q)→ ⊥ with ‘♦’ meaning “eventually.”
Similarly, to test whether p remains true after becoming true we would add the
constraint �(p → �p) → ⊥ and check that, indeed, no temporal stable model
exists.

The rest of the paper is organised as follows. In Section 2 we recall the
basic definitions of TEL and explain their effects on some simple examples. In
Section 3 we summarize some fundamental properties whereas in Section 4 we



explain some aspects related to computation. Finally, Section 5 concludes the
paper and explains some open topics. For a more detailed survey, see [20].

2 Syntax and Semantics

The syntax is defined as in propositional LTL. A temporal formula ϕ can be
expressed following the grammar shown below:

ϕ ::= ⊥ | p | α ∧ β | α ∨ β | α→ β | ©α | α U β | α R β

where p is an atom of some finite signature At, and α and β are temporal
formulas in their turn. The formula α U β stands for “α until β” whereas α R β
is read as “α release β” and is the dual of “until.” Derived operators such as

� (“always”) and ♦ (“at some future time”) are defined as �ϕ
def
= ⊥ R ϕ

and ♦ϕ
def
= > U ϕ. Other usual propositional operators are defined as follows:

¬ϕ def
= ϕ→ ⊥, > def

= ¬⊥ and ϕ↔ ψ
def
= (ϕ→ ψ) ∧ (ψ → ϕ).

Given a finite propositional signature At, an LTL-interpretation T is an
infinite sequence of sets of atoms, T0, T1, . . . with Ti ⊆ At for all i ≥ 0. Given
two LTL-interpretations H,T we define H ≤ T as: Hi ⊆ Ti for all i ≥ 0.

The next step is defining a semantics for the temporal extension of the inter-
mediate logic of Here-and-There, we will call Temporal Here-and-There3 (THT).
A THT-interpretation M for At is a pair of LTL-interpretations 〈H,T〉 satisfying
H ≤ T. A THT-interpretation is said to be total when H = T.

Definition 1 (THT satisfaction). Given an interpretation M = 〈H,T〉, we
recursively define when M satisfies a temporal formula ϕ at some state i ∈ N as:

– M, i |= p iff p ∈ Hi with p an atom
– ∧,∨,⊥ as usual
– M, i |= ϕ→ ψ iff for all w ∈ {H,T}, 〈w,T〉, i 6|= ϕ or 〈w,T〉, i |= ψ
– M, i |=© ϕ iff M, i+1 |= ϕ
– M, i |= ϕ U ψ iff ∃k ≥ i such that M, k |= ψ and ∀j ∈ {i, . . . , k-1},M, j |= ϕ
– M, i |= ϕRψ iff ∀k ≥ i such that M, k 6|= ψ then ∃j ∈ {i, . . . , k-1},M, j |= ϕ.

ut

We say that 〈H,T〉 is a model of a theory Γ , written 〈H,T〉 |= Γ , iff 〈H,T〉, 0 |=
α for all formulas α ∈ Γ .

Proposition 1 (from [20]). The following properties are satisfied:

(i) 〈T,T〉, i |= ϕ in THT iff T, i |= ϕ in LTL.
(ii) 〈H,T〉, i |= ϕ implies 〈T,T〉, i |= ϕ (that is, T, i |= ϕ).

In other words, (i) means that, when restricting to total interpretations, THT
collapses to LTL, whereas (ii) means that the T component of a THT model is
also an LTL-model.
3 The axiomatisation of THT is currently under study [21].



Definition 2 (Temporal Equilibrium/Stable Model). An interpretation
M is a temporal equilibrium model of a theory Γ if it is a total model of Γ ,
that is, M = 〈T,T〉 |= Γ , and there is no H < T such that 〈H,T〉 |= Γ . An
LTL-interpretation T is a temporal stable model (TS-model) of a theory Γ iff
〈T,T〉 is a temporal equilibrium model of Γ . ut

By Proposition 1 (i) it is easy to see that any TS-model of a temporal theory
Γ is also an LTL-model of Γ . As happens in LTL, the set of TS-models of a
theory Γ can be captured by a Büchi automaton [22], a kind of finite automaton
that accepts words of infinite length. In this case, the alphabet of the automa-
ton would be the set of states (classical propositional interpretations) and the
acceptance condition is that a word (a sequence of states) is accepted iff it cor-
responds to a run of the automaton that visits some acceptance state an infinite
number of times. As an example, Figure 1 shows the TS-models for the theory
(5)-(8) which coincide with sequences of states of the forms {q}∗{p}ω or {q}ω.
Notice how p and q are never true simultaneously, whereas once p becomes true,
it remains true forever.

S0start

S1

S2 {p}

{p}

{q}

{p}

{q}

Fig. 1. Temporal stable models of theory (5)-(8).

Let us discuss next some simpler examples of the behaviour of this semantics.
As a first example, consider the formula

�(¬p→©p) (9)

Its intuitive meaning corresponds to the logic program consisting of rules of the
form: p(s(X)) ← not p(X) where time has been reified as an extra parameter
X = 0, s(0), s(s(0)), . . . . Notice that the interpretation of ¬ is that of default
negation not in logic programming. In this way, (9) is saying that, at any
situation, if there is no evidence on p, then p will become true in the next state.
In the initial state, we have no evidence on p, so this will imply ©p. As a result
©© p will have no applicable rule and thus will be false by default, and so on.
It is easy to see that the unique temporal stable model of (9) is captured by the
formula ¬p ∧�(¬p↔©p) and is shown in the automaton of Figure 2(a).
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{p}

∅

(a) TS-models of (9)

S0start S1
{p}

∅ ∅

(b) TS-models of ♦p

Fig. 2. A pair of Büchi automata showing TS-models.

As a second example, take the formula ♦p. This formula informally corre-
sponds to an infinite disjunction p ∨ ©p ∨ ©© p ∨ . . . . Again, as happens in
disjunctive logic programming, in TEL we have a truth minimality condition
that will make true the formula with as little information as possible. As a re-
sult, it is easy to see that the temporal stable models of ♦p are captured by the
formula ¬p U(p∧©�¬p) whose models are those where p holds true at exactly
one position – see automaton in Figure 2(b).

It is worth noting that an LTL satisfiable formula may have no temporal
stable model. As a simple example (well-known from non-temporal ASP) the
logic program rule ¬p → p, whose only (classical) model is {p}, has no stable
models. When dealing with logic programs, it is well-known that non-existence of
stable models is always due to a kind of cyclic dependence on default negation like
this. In the temporal case, however, non-existence of temporal stable models may
also be due to a lack of a finite justification for satisfying the criterion of minimal

knowledge. As an example, consider the formula α
def
= �(¬©p→ p)∧�(©p→ p).

This formula has no temporal equilibrium models. To see why, note that α is
LTL-equivalent (and THT-equivalent) to �(¬©p∨©p→ p) that, in its turn, is
LTL-equivalent to �p. Thus, the only LTL-model T of α has the form Ti = {p}
for any i ≥ 0. However, it is easy to see that the interpretation 〈H,T〉 with
Hi = ∅ for all i ≥ 0 is also a THT model, whereas H < T.

Another example of TEL-unsatisfiable formula is �♦p, typically used in LTL
to assert that property p occurs infinitely often. This formula has no temporal
stable models: all models must contain infinite occurrences of p and there is no
way to establish a minimal H among them. Thus, formula �♦p is LTL satisfiable
but it has no temporal stable model. This example does not mean a lack of
expressiveness4 of TEL: we can still check or force atoms to occur infinitely
often by including formulas like �♦p in the antecedent of implications or in the
scope of negation. As an example, take the formula:

¬�♦q → ♦(q U p) (10)

An informal reading of (10) is: if we cannot prove that q occurs infinitely often
(¬�♦q) then make q until p (q U p) at some arbitrary future point. As we
minimise truth, we may then assume q false at all states, and then ♦(q U p)

4 In fact, Theorem 1 in the next section shows that LTL can be encoded into TEL by
adding a simple axiom schema.



collapses to ♦(⊥ U p) = ♦(♦p) = ♦p. As a result, its TS-models also correspond
to the Büchi automaton depicted in Figure 2(b) we obtained for ♦p.

3 Fundamental properties

We first begin providing some translation results relating TEL and LTL.

Proposition 2 (from [23]). The LTL models of a formula ϕ for signature At
coincide with (the THT) and the TEL models of the theory ϕ plus an axiom
�(p ∨ ¬p) for each atom p in the signature At. ut

The translation from THT to LTL is not so straightforward. It requires
adding an auxiliary atom p′ by each atom p in the signature, so that the for-
mer captures the truth at component H in a THT model 〈H,T〉 while the
latter represents truth at T. Given a propositional signature At, let us denote
At∗ = At ∪ {p′ | p ∈ At}. For any temporal formula ϕ we define its translation
ϕ∗ as follows:

1. ⊥∗ def
= ⊥

2. p∗
def
= p′ for any p ∈ Σ

3. (⊗ϕ)∗
def
= ⊗ϕ∗, for any unary operator ⊗ ∈ {�,♦,©}

4. (ϕ⊕ ψ)∗
def
= ϕ∗ ⊕ ψ∗ for any binary operator ⊕ ∈ {∧,∨,U ,R}

5. (ϕ→ ψ)∗
def
= (ϕ→ ψ) ∧ (ϕ∗ → ψ∗)

We associate to any THT interpretation M = 〈H,T〉 the LTL interpretation
Mt = I in LTL defined as the sequence of sets of atoms Ii = {p′ | p ∈ Hi} ∪ Ti,
for any i ≥ 0.

Theorem 1 (from [23]). Let ϕ′ be the formula ϕ∗ ∧
∧

p∈At �(p′ → p). Then
the set of LTL models for the formula ϕ′ corresponds to the set of THT models
for the temporal formula ϕ. ut

Theories like (5)-(8) have a strong resemblance to logic programs. For in-
stance, a rule preceded by � like (9) can be seen as an infinite set of rules of the
form ¬©ip→©i+1p where we could understand expressions like ‘©ip’ as an in-
finite propositional signature. In [24] it was recently proved that, in fact, we can
use this understanding of modal operators as formulas in Infinitary Equilibrium
Logic (see [25] for further detail) in the general case.

Definition 3. The translation of ϕ into infinitary HT (HT∞) up to level k ≥ 0,
written 〈ϕ〉k, is recursively defined as follows:

〈⊥〉k
def
= ∅∨

〈p〉k
def
= ©k p, with p ∈ At.

〈©ϕ〉k
def
= 〈ϕ〉k+1

〈ϕ ∧ ψ〉k
def
= {〈ϕ〉k, 〈ψ〉k}∧

〈ϕ ∨ ψ〉k
def
= {〈ϕ〉k, 〈ψ〉k}∨

〈ϕ→ ψ〉k
def
= 〈ϕ〉k → 〈ψ〉k

〈ϕ U ψ〉k
def
= {{〈ψ〉i, 〈ϕ〉j | k ≤ j < i}∧ | k ≤ i}∨

〈ϕ R ψ〉k
def
= {{〈ψ〉i, 〈ϕ〉j | k ≤ j < i}∨ | k ≤ i}∧



It is easy to see that the derived operators � and ♦ are then translated as
follows: 〈♦ϕ〉k = {〈ϕ〉i | k ≤ i}∨ and 〈�ϕ〉k = {〈ϕ〉i | k ≤ i}∧. For instance, the
translations for our examples 〈♦p〉0 and 〈(10)〉0 respectively correspond to:

{¬©i p→©i+1p | i ≥ 0}∧

{{{©kq | j ≤ k}∨ | i ≤ j}∧ → {{©kp,©hq | j ≤ h < k}∧ | i ≤ j ≤ k}∨ | i ≥ 0}∧

Theorem 2 (from [24]). Let ϕ be a temporal formula formula, M = 〈H,T〉 a
THT interpretation and M∞ = 〈H∞, T∞〉 its corresponding HT interpretation
where ©ip are considered as propositional atoms. For all i ∈ N, it holds that:

(i) M, i |= ϕ if and only if M∞ |= 〈ϕ〉i.
(ii) M is a temporal equilibrium model of ϕ if and only if M∞ is an (infinitary)

equilibrium model of 〈ϕ〉0. ut

In [24] it was also proved that Kamp’s translation from LTL to First Order
Logic is sound for translating TEL into Quantified Equilibrium Logic [26] too.
This means that there always exists a way of resorting to first-order ASP and
reifying time as an argument, as we did before with p(i) or p(i + 1), so that
modal operators are replaced by standard quantifiers.

Definition 4 (Kamp’s translation). Kamp’s translation for a temporal for-
mula ϕ and a timepoint t ∈ N, denoted by [ϕ]t, is recursively defined as follows:

[⊥]t
def
= ⊥

[p]t
def
= p(t), with p ∈ At.

[¬α]t
def
= ¬[α]t

[α ∧ β]t
def
= [α]t ∧ [β]t

[α ∨ β]t
def
= [α]t ∨ [β]t

[α→ β]t
def
= [α]t → [β]t

[©α]t
def
= [α]t+1

[α U β]t
def
= ∃x ≥ t. ([β]x ∧ ∀y ∈ [t, x). [α]y)

[α R β]t
def
= ∀x ≥ t. ([β]x ∨ ∃y ∈ [t, x). [α]y)

where [α]t+1 is an abbreviation of ∃y ≥ t. ¬∃z ∈ [t, y). (t < z ∧ [α]y) . ut

Note how, per each atom p ∈ At in the temporal formula ϕ, we get a monadic
predicate p(x) in the translation. The effect of this translation on the derived
operators ♦ and � yields the quite natural expressions [�α]t ≡ ∀x ≥ t. [α]t and
[♦α]t ≡ ∃x ≥ t. [α]t. For instance, the translations of our running examples (9)
and (10) for t = 0 respectively correspond to:

∀x ≥ 0. (¬p(x)→ p(x+ 1)) (11)

∀x ≥ 0.

(
∀y ≥ x. ∃z ≥ y. q(z)→ ∃y ≥ x. ∃z ≥ y.

(
p(z) ∧ ∀t ≥ y. zq(t)

))
(12)

Theorem 3 (from [24]). Let ϕ be a THT formula built on a set of atoms At,
M = 〈H,T〉 a THT-interpretation on At and M = 〈H, T 〉 its corresponding
Quantified HT-interpretation. It holds that M, i |= ϕ in THT iff M |= [ϕ]i in
Quantified Here-and-There. Moreover, T is a TS-model of ϕ iff T is a stable
model of [ϕ]0 in Quantified Equilibrium Logic. ut



Another group of properties is related to comparison among temporal theo-
ries and subclasses of theories. For instance, in NMR, the regular equivalence,
understood as a mere coincidence of selected models, is too weak to consider that
one theory Γ1 can be safely replaced by a second one Γ2 since the addition of a
context Γ may make them behave in a different way due to non-monotonicity.
Formally, we say that Γ1 and Γ2 are strongly equivalent when, for any arbi-
trary theory Γ , both Γ1 ∪ Γ and Γ2 ∪ Γ have the same selected models (in
this case, stable models). [27] proved that checking equivalence in the logic of
Here-and-There is a necessary and sufficient condition for strong equivalence in
Equilibrium Logic, that is, Γ1 and Γ2 are strongly equivalent iff Γ1 ≡HT Γ2.
It must be noticed that one direction of this result, the sufficient condition, is
actually trivial. As HT is monotonic, Γ1 ≡HT Γ2 implies Γ1 ∪ Γ ≡HT Γ2 ∪ Γ
and so, their selected models will also coincide. The real significant result is the
opposite direction, namely, that HT-equivalence is also a necessary condition for
strong equivalence, as it shows that HT is strong enough as a monotonic basis
for Equilibrium Logic. In [28] it was shown that something similar happens in
the temporal case, namely:

Theorem 4 (from [28]). Two temporal formulas α and β are strongly equiva-
lent in TEL iff they are THT-equivalent. ut

Another interesting result related to equivalence is the existence of normal
forms for THT and TEL. In the case of Equilibrium Logic, it has been already
proved [29] that any arbitrary propositional theory is strongly equivalent to a
logic program (allowing disjunction and negation in the head). Similarly, in the
case of (monotonic) LTL, an implicational clause-like normal form introduced
in [30] was used for designing a temporal resolution method.

Following [31], TEL can be similarly reduced (under strong equivalence) to
a normal form, called temporal logic programs (TLP), consisting of a set of
implications (embraced by a necessity operator) quite close to logic program
rules. The obtained normal form considerably reduces the possible uses of modal
operators and, as we will see later, has became useful for a practical computation
of TEL models. The definitions are as follows. Given a signature At, we define
a temporal literal as any expression in the set {p,©p,¬p,¬© p | p ∈ At}.

Definition 5 (Temporal rule). A temporal rule is either:

1. an initial rule of the form B1 ∧ · · · ∧ Bn → C1 ∨ · · · ∨ Cm where all the Bi

and Cj are temporal literals, n ≥ 0 and m ≥ 0.
2. a dynamic rule of the form �r, where r is an initial rule.
3. a fulfillment rule like �(�p→ q) or like �(p→ ♦q) with p, q atoms. ut

In the three cases, we respectively call rule body and rule head to the antecedent
and consequent of the (unique) rule implication. In initial (resp. dynamic) rules,
we may have an empty head m = 0 corresponding to ⊥ – if so, we talk about an
initial (resp. dynamic) constraint. A temporal logic program5 (TLP for short) is

5 In fact, as shown in [31], this normal form can be even more restrictive: initial rules
can be replaced by atoms, and we can avoid the use of literals of the form ¬©p.



a finite set of temporal rules. The reduction into TLP normal form introduces
an auxiliary atom per each subformula in the original theory and applies the
inductive definitions of temporal operators used for LTL in [30]. We will not
enter into further details (see [31]) but the obtained reduction into TLP is mod-
ular, polynomial and strongly faithful (that is, it preserves strong equivalence,
if auxiliary atoms are ignored).

4 Computation

Computation of TS-models is a complex task. THT-satisfiability has been classi-
fied [23] as Pspace-complete, that is, the same complexity as LTL-satisfiability,
whereas TEL-satisfiability rises to ExpSpace-completeness, as recently proved
in [32]. In this way, we face a similar situation as in the non-temporal case
where HT-satisfiability is NP-complete like SAT, whereas existence of equilib-
rium model (for arbitrary theories) is ΣP

2 -complete (like disjunctive ASP).
There exists a pair of tools, STeLP [33] and ABSTEM [28], that allow computing

temporal stable models (represented as Büchi automata). These tools can be used
to check verification properties that are usual in LTL, like the typical safety,
liveness and fairness conditions, but in the context of temporal ASP. Moreover,
they can also be applied for planning problems that involve an indeterminate or
even infinite number of steps, such as the non-existence of a plan.

The first tool, STeLP, accepts a strict subset of the TLP normal form called
splittable temporal formulas (STF) which will be of one of the following types:

B ∧N → H (13)

B ∧©B′ ∧N ∧©N ′ →©H ′ (14)

�(B ∧©B′ ∧N ∧©N ′ →©H ′) (15)

where B and B′ are conjunctions of atomic formulas, N and N ′ are conjunctions
of ¬p, being p an atomic formula and H and H ′ are disjunctions of atomic
formulas.

The name splittable refers to the fact that these programs can be splitted
using [34] thanks to the property that rule heads never refer to a time point
previous to those referred in the body. As we can see above, the main property
of a splittable temporal rule is that, informally speaking, past never depends on
the future, that is, we never get references to © in the rule bodies unless all
atoms in the head are also in the scope of ©. As shown in [35], when the input
temporal program is splittable, it is possible to extend the technique of loop
formulas [36] to temporal theories so that it is always possible to capture the
TS-models of a theory Γ as the LTL-models of another theory Γ ′ obtained from
Γ together with its loop formulas. Although splittable theories do not cover the
full expressiveness of TEL, most action domains represented in ASP are indeed
splittable. To cover an ASP-like syntax, STeLP further allows the use of variables:
a preliminary grounding method was presented in [37], proving its correctness.



The tool ABSTEM, on the contrary, accepts any arbitrary temporal theory as
an input, although it does not accept variables. It relies on an automata-based
transformation described in [23] and it not only allows computing the TS-models
of a temporal theory, but also accepts pairs of theories to decide different types
of equivalence: LTL-equivalence, TEL-equivalence (i.e. coincidence in the set
of TS-models) and strong equivalence (i.e., THT-equivalence). Moreover, when
strong equivalence fails, ABSTEM obtains a context, that is, an additional formula
that added to the compared theories makes them behave differently.

5 Conclusions and future work

In this survey we have summarised the basic results on Temporal Equilibrium
Logic obtained so far, showing that it can be used as a powerful tool for com-
bining temporal reasoning tasks with Answer Set Programming. Still, there are
many open topics that deserve to be studied. For instance, in the theoretical
setting, we still miss a complete axiomatisation of THT. Another open ques-
tion is that, although we know that Kamp’s translation from LTL into First
Order Logic also works for translating TEL into Quantified Equilibrium Logic,
we ignore whether the other direction of Kamp’s theorem also holds in this case.
Namely, we ignore whether any theory in Monadic Quantified Equilibrium Logic
for a linear order relation < can be represented in TEL. A possibly related ques-
tion is whether the set of TS-models of a temporal theory can be captured as
the set of LTL-models of another theory. This holds in the case of splittable
temporal logic programs, but is open in the general case6.

An interesting research line is the extension of TEL with past operators, since
they seem more natural for rule bodies that describe the transitions of a dynamic
system. Besides, following similar steps as those done in TEL, other hybrid
approaches can be explored. For instance, [39] has considered the combination
of Dynamic LTL with Equilibrium Logic. Similarly, other temporal approaches
can be treated in an analogous way, such as CTL, CTL∗, Dynamic Logic or
µ-calculus. Other open topics are related to potential applications including
translation of different action languages, policy languages with preferences [40]
or planning with (temporal) control rules.
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