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Abstract

We investigate the relation between non-trivial spatial concepts such as holes
and string loops from a qualitative spatial reasoning perspective. In particular, we
concentrate on a family of puzzles dealing with this kind of objects and explain
how a loop formed in a string shows a similar behaviour to a hole in an object, at
least regarding the qualitative constraints it imposes on the solution of the puzzle.
Unlike regular holes, however, we describe how string loops can be dynamically
created and destroyed depending on the actions on the string. Furthermore, under
a Knowledge Representation point of view, we provide a formalisation that allows
the different puzzle states to be described in terms of string crossings and loops,
together with the actions that can be executed for a state transition and the complex
effects they cause on the state representation. This implies the consideration of a
formal representation of the side effects of actions that create or destroy string
loops and the soundness of this representation with respect to the more general
representation of string states in knot theory.

1 Introduction
The field of knowledge representation (KR) [29] in Artificial Intelligence aims at the
explicit formalisation of domain knowledge in order to facilitate efficient reasoning.
Within KR, the nature of spatio-temporal reasoning is essential, since almost all the
other well-established KR and reasoning topics eventually show a spatio-temporal
component, especially when they are put into practice in some application domain.
As an example, think of the problem of putting on trousers and belt. One must pass
one’s legs through the trousers sleeves, button up (which means passing the button
through the buttonhole), fasten the zipper, pass the belt through the belt loops in the
trousers, and finally fasten the belt (which means passing the belt’s tip through the belt
buckle and the buckle bolt through a hole in the belt). All these operations involve ac-
tions on complex geometric figures (e.g. the pants, the zipper) and physical objects that
involve different kinds of constraints, not only geometric and measure-related (such as
choosing the right hole in the belt, depending on your waist size) but also about other
features such as rigidity (the belt buckle) versus flexibility (the clothes and the belt). A
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child learns how to dress partly by imitation and partly by her parents’ explanations.
A computer, in its turn, can nowadays create a very realistic 3D scene showing a child
dressing up, using for that purpose a rich geometric model of the objects, but its “un-
derstanding” of the actions and movements performed, the constraints involved or the
eventual goal is limited, if not non-existent in most cases1. This is also the case with
other everyday spatial “puzzles”, such as tying a shoe lace or netting, or with more
specialised tasks, such as suturing or structured cabling. Moreover, if just rendering
is a highly demanding computational task, an automated tool that could solve basic
reasoning tasks involving flexible and rigid natural objects, such as simulation or plan-
ning, directly on a mathematical 3D model, simultaneously dealing with geometric and
physical constraints while involving flexible objects, is unfeasible in practice.

Commonsense reasoning rarely deals with numeric temporal models or full geo-
metric descriptions of space, but with qualitative descriptions instead. As a result,
most work in spatio-temporal reasoning has focused on Qualitative Spatial Reasoning
(QSR) [27] [7] [14], a field that attempts the formalisation of spatial knowledge based
on primitive relations defined over elementary spatial entities (combinations of spa-
tial representation with temporal relations are also research issues in the field [12]).
Our previous research has focused on the investigation of spatial puzzles and games
(some of them well-known and publicly available) as the ones shown in Figure 1. The
reason for focusing on puzzles is that they constitute a good test bed, as they offer a
small number of objects requiring a minimum background knowledge about unrelated
features, while they keep enough complexity to constitute a challenging problem of
KR. Thus, puzzles involving physical objects are our Drosophila2, i.e. our base line
from which we develop AI research. In particular, we have concentrated our efforts in
formalising problems that involve flexible objects and holes, as they are very common
in different scenarios like our commonsense example for putting on a pair of trousers.
Most of these puzzles consist in releasing a rigid ring from an entanglement of strings
and other rings or holed objects, and they are known to contain the basic features of
solving elementary mathematics problems [13].

(a) Fisherman’s Folly (b) Rope Ladder (c) Tricky Dick

Figure 1: Some puzzles for releasing a ring entangled with strings and holed objects.

Our methodology, applied through a series of papers [2, 20, 21, 22, 3, 23, 25, 24],

1The introduction of physical constraints in solid modeling constitutes, in fact, a challenging research
area. See, for instance, the biannual ACM Symposium on Solid and Physical Modeling.

2Following Alexander Kronrod’s metaphor about chess in AI, used in [26] and [15].
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has consisted in a bottom-up strategy, starting from a very restrictive set of constraints
and gradually relaxing them to cover puzzles with more challenging features. For
instance, initial efforts [2, 20, 21] were put into solving the so-called Fisherman’s Folly
puzzle shown in Figure 1(a) using a list-based representation of string crossings. In [22]
we also studied the spatial entities involved in the puzzle. All this work eventually
led to an extensive paper [3] containing a complete logical formalisation in terms of
Situation Calculus [17] and Equilibrium Logic [18] (an NMR approach generalising
the stable model semantics for logic programs [9]). The formalisation in [3] allowed
the representation of other puzzles such as the so-called Rope Ladder in Figure 1(b),
and the Tricky Dick puzzle (Figure 1(c)3).

In this past work, however, several important limitations were overlooked in order
to focus on a family of puzzles with common features. Among them, we had dis-
regarded the representation of knots, the formation of string loops, and omitted the
intermediate steps where a holed object was crossing another hole. The present paper
concentrates on the definition of “loops”, we outline and identify the main representa-
tional problems derived from the explicit consideration of string loops in the domains
containing flexible objects (exemplified by the puzzles considered previously), and pro-
pose a possible formal solution that allows automated reasoning with strings, loops and
holes in an analogous way.

2 Previous Formalisations
Previous work [2, 3, 22] has concentrated on the formalisation and automated solution
of a number of spatial puzzles, the most basic of them was the so called Fisherman’s
Folly puzzle (shown in Figure 2). The goal of this puzzle is to release a ring from an
entanglement of objects (maintaining the object’s physical integrity). The elements of
the Fisherman’s Folly puzzle are a holed post (Post) fixed to a wooden base (Base), a
string (Str), a ring (Ring), a pair of spheres (Sphere1, Sphere2) and a pair of disks
(Disk1, Disk2). The spheres can be moved along the string, whereas the disks are
fixed at each string tip. The string passes through the post’s hole in a way that one
sphere and one disk remain on each side of the post. It is worth pointing out that the
spheres are larger than the post’s hole, therefore the string cannot be separated from
the post without cutting either the post, or the string, or destroying one of the spheres.
The disks and the ring, in contrast, can pass through the post’s hole.

In the initial state (shown in Figure 2(a)) the ring sits on the base, encircling the
bottom of the post, and is supported on the post’s base. The goal of this puzzle is to
find a sequence of (non-destructive) transformations that, when applied on the domain
objects, frees the ring from the other objects, regardless of their final configuration.
Figure 2(b) shows one possible goal state. It is worth noting that this puzzle has four
holes: the post hole, the ring hole and the two sphere holes. In the formalisation pre-
sented below, “holes” will be identified with their host objects, inspired by the general
use of these terms in natural language (e.g. we usually say that “the post passes through

3Figure 1(c) was adapted from http://www.mrpuzzle.com.au/
tricky-dick-wood-and-rope-puzzle.html
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(a) Initial (b) Goal: the ring must be free

Figure 2: A spatial puzzle: the Fisherman’s Folly.

the ring”, rather than “the post passes through the ring’s hole”). An ontology of holes
was proposed in [5, 6], and applied to the domains considered in this paper in [21].

The simple solution for the Fisherman’s Folly puzzle presented in [2] relies on
distinguishing the three sorts of objects: holes (which includes the post hole, the ring
hole and the holes through the spheres), long objects (that includes the string and the
post), and regular objects (including all the remainder objects). For each hole h, its
faces are distinguished: h− and h+; and for each long object l its tips lb and le are
defined (where b and e respectively stand for “begin” and “end”).

A puzzle state can be schematised by diagrams such as the one in Figure 3, which
shows the initial state of Fisherman’s Folly (cf. Figure 2(a)). Arrows correspond to
segments of long objects, defined between pairs of hole crossings, or between a hole
crossing and a tip. These arrows point in the direction from tip lb to tip le of a same long
object l. Ellipses represent holes and boxes are linked regular objects. The positive face
of a hole is determined by a right-hand screw rule from the small arrow in the ellipse
(similar to a spin direction). The orientation of the holes are assigned such that all the
holes in the initial state of a puzzle have the same orientation (i.e., for instance, all the
holes have a counterclockwise orientation at the initial state).

For a simpler visual recognition of hole faces, we have emphasised the ellipses as
if they were solid surfaces and the string crossings as little “cuts” on them so that the
“visible side” corresponds to the positive hole face. Notice how a hole could also be
seen as a long object closed on itself joining its two tips.

Central to this simple solution is the definition of a list data structure named chain(X).
This data structure represents the sequence of all hole crossings on a long object X ,
when traversingX from its beginning tip (Xb) to its ending one (Xe). For instance, the
state shown in Figure 3 is represented by the following two chains: chain(Post) =
[Ring+] and chain(Str) = [Sphere1+, PostH+, Sphere2+]. The former represents
that the long object Post crosses the ring hole and the latter states that the string crosses
first the hole on the sphere 1, then the post hole and, finally, the hole on the sphere 2,
respectively. Note that, for brevity, only the outgoing hole faces are shown, following
the string direction from begin to end.

Actions in this work will be arguments of the function si = do(α, s) that denotes
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Sphere1 Sphere2

PostH

Disk2Disk1

Base

Ring

Figure 3: Schematic representation of the initial state [3].

the resulting state of applying an action term α to a previous state s. The constant S0

denotes the initial situation.
An action pass was formally defined in our previous work [3] to represent the

movements of puzzle objects. The effects of pass either add or delete a hole crossing
from the chain on which it is applied. Figure 4 shows the case of passing an ending
tip (End) of a long object towards the p face of a hole (movement passing end right
(PER)), and back (movement passing end left (PEL)), where the symbol hi represents
any hole crossing in the chain. Passing a beginning tip (Begin) is shown in Figure 5,
represented by the movements passing begin right (PBR) and passing begin left (PBL).
Figures 6 and 7 show the cases related to the action of passing a hole h toward the p
face of another hole: pass hole right (PHR1 and PHR2) and pass hole left (PHL1 and
PHL2).

pp’

End

End

Situation

s

do(pass(End ,p),s)

Movement (PER)

p’p

End

Movement (PEL)

End

[ ...,hi]

[ ..., hi, p ]

[ ..., hi, p ]

[...,hi ]

p’

p’p

p

Figure 4: Movements for passing the ending tip pass(End, p) [3].

Using these definitions, a solution to the Fisherman’s Folly puzzle can be repre-
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p’p

Situation

s

do(pass(Begin, p), s)

Movement (PBL)

Begin
pp’

Movement (PBR)

Begin

Begin

[hi,...]
[p, hi,...]

[p, hi,...] [hi,...]

p

p

p’

p’

Figure 5: Movements for passing the beginning tip pass(Begin, p) [3].

sented by the sequence of chains shown on Figure 8, whereby each state is identified
by its sequence number plus the pair of lists chain(Post) and chain(Str) in this or-
der. Note that state s5 has actually reached the goal since, at this point, the ring hole
Ring does not occur in any list, i.e., it is not crossed by any long object4.

The question that naturally follows is whether the representation and reasoning
system defined in [3] can be extended to support a puzzle whose solution depends on
the manipulation of loops, such as the easy-does-it puzzle, shown in Figure 9(a)5. An
essential part of the easy-does-it solution is “passing a loop trough a ring” (e.g. the
state change from the initial state of Easy-does-it, Figure 9(b), to the state shown in
Figure 9(c), this action is passing the loop6 l(Str2, R3+, [1, 2]) through R1 towards
its positive side). Therefore, this domain calls for the explicit representation of string
loops.

The easy-does-it puzzle (Figure 9) is going to be used as an example throughout
this paper. Thus, we introduce the chain description of the initial state (S0) depicted in
Fig. 9(b) as follows:

chain(P, S0) = [P−b , R2
+, R1+, P+

e ]. (1)
chain(Str2, S0) = [ Str2−b , R3

+, R3−, Str2+e ]. (2)

chain(Str1, S0) = [ Str1−b , l(Str2, R3
+, [1, 2])+, Str1+e ]. (3)

A first observation is that each chain(X,S) (for any state S) includes now the
beginning and ending tips of the long object X; moreover, they are respectively signed

4 This is assuming that when Sphere2 is passed through the ring it takes the string with it rather than
leaving some of it looping through the ring. This assumption will be relaxed further in this paper, when we
introduce a “pull” action.

5Figure 9(a) was adapted from http://www.puzzlesolver.com/puzzle.php?id=78
6The arguments related to the loop notation shall become clear further in this paper.
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Situation

s

do(pass(h,p),s)

Movement (PHR1)

p’
p

p’
p

p
p’

Movement (PHL1)

[..., h, ...]

[..., h, ...]

[...,p’, h, p,...]

[...,p, h, p’,...]

h’  h

h’  h

h’  h

h’  h

p
p’

Figure 6: Movements (PHR1), (PHL1) for action pass(h, p) [3].

asX+
b andX−e (this notation is explained in the next section). As a second observation,

notice that the string Str2 forms a loop in its interaction with ring R3. This loop
consists of (the segment between) the two crossings 〈R3+, R3−〉 occurring in Formula
(2) and becomes a new hole denoted as l(Str2, R3+, [1, 2]). This new hole is crossed,
in its turn, by string Str1 as shown in its chain, described in Formula (3). In the next
section we explain the meaning of this notation in details.

3 String Loops
As a first approach to the string-loop problem, in this paper we describe the puzzle
domains by means of strings only. Restrictions due to other types of objects (e.g.
rigid objects) will be considered as imposed domain constraints. Note that the puzzles
cited in the previous sections could be constructed using strings only, with some added
constraints (e.g. the string-only version of Fisherman’s Folly would be the direct con-
struction of the diagram in Figure 3, with added domain constraints expressing which
objects do not pass to which holes).

In this work, strings are assumed to be infinitely extensible, ruling out the need to
deal with metric information at this point.

We use the term hole crossing to refer to the point where a string crosses a hole
and the term string crossing (or string intersection) to refer to the point of intersection
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Situation

s

do(pass(h,p),s)

Movement (PHR2) Movement (PHL2)
p’  p

p’  p

p   p’

p   p’

[..., h, p, ...] 

h’  h h’  h
[..., p’, h,...] 

[..., h, p’, ...] [..., p, h,...] 
h’  h h’  h

Figure 7: Movements (PHR2), (PHL2) for action pass(h, p) [3].

between two strings (or between two distinct points of a single string). Whenever it
is clear from the context, the more general term crossing is going to be used in either
case.

Loops in the string form holes that are represented with two faces ‘+’ and ‘-’ fol-
lowing our previous representation of holes in rigid objects [2, 3, 22], as introduced
above. The only distinction here is that loops can appear and disappear when they are
pulled through a hole.

This paper makes the following assumptions on the diagrammatic depiction of puz-
zles (some of them inherited from knot diagrams in knot theory [11]):

• all the rings in an initial state have the same orientation;

• all hole crossings are explicitly shown in the diagrams;

• all intersections are point intersections (i.e. they do not happen on a continuous
section of the string);

• there are only single intersections (i.e. at each intersection point in the diagram,
at most two lines meet);

• the tips of a string are not part of intersections.
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state chain(Post) chain(Str)
S0 [Ring+] [Sphere1+, PostH+, Sphere2+]
s1 = do(pass({Str+, Disk2},

PostH−), S0) [Ring+] [Sphere1+, PostH+, Sphere2+, PostH−]
s2 = do(pass({PostH, Post+},

Ring−), s1) [ ] [Sphere1+, Ring−, PostH+, Ring+,
Sphere2+, Ring−, PostH−, Ring+]

s3 = do(pass({Sphere2},
Ring−), s2) [ ] [Sphere1+, Ring−, PostH+, Sphere2+,

PostH−, Ring+]
s4 = do(pass({Ring},

PostH+), s3) [ ] [Sphere1+, PostH+, Ring−, Sphere2+,
Ring+, PostH−]

s5 = do(pass({Sphere2},
Ring+), s4) [ ] [Sphere1+, PostH+, Sphere2+, PostH−]

Figure 8: A formal solution for the Fisherman’s puzzle [2].

(a) Easy does it

B

S

R1

R2

R3

Str2

Str1

P

l(Str2,R3 ,[1,2])+

l(Str2,Str2  ,[0,3])b
-

s

(b) Diagram - S0

B

S

R1

R2

R3

Str2

Str1

P

(c) Diagram - S1

Figure 9: The easy-does-it puzzle.

3.1 Defining loops on chains
String loops (or simply “loops”) in this work are considered to be created only by
crossing the same string twice through a hole. In other words, this only deals with
loops that are either created by picking a segment of a string through a hole, or that
are the results of linking the two tips of a string. This is supported by the formal
representation of loops below. We leave for a future work the representation of loops
defined by crossing a string on itself, or by passing a tip of a string through the same
hole twice in the same direction, as shown in Figure 10, where R1 is a ring and S1 is a
string. These definitions call for a broader theory about knots [4, 19].

Given a string S, in this work we define a loop in S as any pair of crossings, in
opposite directions, with respect to the same hole. We say that a loop l = [i, j] on the
hole h is on the positive (‘+’) side of h if and only if i has sign ‘+’ and j has sign ‘-’.
Loops on the ‘-’ side of h are exactly the opposite: i has sign ‘-’ and j has sign ‘+’.

We are going to use the term endpoints to represent hole crossings defining loops.
Let S be a state. A loop on a string St formed on a hole H is represented by means

of the function constructor l (called l-term) with the following shape:

• l(St,Hsign, [N1, N2]).
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S1

R1

Figure 10: Passing a tip of a string through the same hole twice on the same direction.

The informal meaning of this notation is the following:

a loop on string St formed by all segments between the endpoint position
in the chainN1 (that passes towards hole faceHsign) and the endpointN2

(that comes back towards the opposite face H−sign).

Endpoints in a chain(St, S) (e.g. [N1, N2]) are represented by natural numbers start-
ing from 0 (for each chain). An l-term will only occur in a chain when another string is
crossing the corresponding loop. For instance, as we saw in Formula (3) (resp. Figure
9(b)), Str1 crosses the loop l(Str2, R3+, [1, 2]) towards its positive face. However,
for representing a state, it is convenient to recognise all the existing loops, even though
they are not crossed by any string, since the actions we will perform may make them
relevant at a given moment. As an example, Str2 in Fig. 9(b) actually has a second,
larger loop depicted in dark grey, that comprises all segments in Str2. This second
loop (represented as l(Str2, Str2−b , [0, 3])) is interesting because it contains the previ-
ous loop, as shown in Formula 4 below:

chain(Str2, S) = [

l(Str2,Str2−b ,[0,3])︷ ︸︸ ︷
Str2−b︸ ︷︷ ︸

=B

, R3+, R3−︸ ︷︷ ︸
l(Str2,R3+,[1,2])

, Str2+e︸ ︷︷ ︸
=B

]. (4)

Another interesting feature of this loop is that, rather than being a consequence of cross-
ing another hole, it is formed because the two tips of Str2 are linked together to the
puzzle baseB, as we have emphasised in Formula 4 with the equalities Str2−b = B and
Str2+e = B. As we can see, a string can also form a loop when its two tips are directly
or indirectly linked. To cope with this situation in an homogeneous way, we may think
that the tips Strb and Stre in a long object Str actually define a pair of virtual holes
that constitute the initial and final crossings in chain(Str, S). We take the criterion that
Strb is always crossed towards its negative face, and Stre towards its positive one. For
instance, the leftmost diagram in Figure 11 represents string Str free, where the cor-
responding chain would be chain(Str, S) = [Str−b , Str

+
e ]. If we approach both tips
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until we join them (or they get joined to the same object) we reach the situation in the
rightmost diagram where holes Strb and Stre become the same, i.e., Strb = Stre and
we use Strb to denote both. In this case, the string has chain(Str, S) = [Str−b , Str

+
b ]

and ends up forming a single loop l(Str, Str−b , [0, 1]). Therefore, in our Easy-does-it
example, if we follow this convention, the larger loop of Str2 in Figure 9(b) can be
denoted as l(Str2, Str2−b , [0, 3]).

If a closed string R is persistent, i.e., it cannot be made open by any domain action,
it will receive the name “Ring” and we will abbreviate its loop l(R,R−b , [0, 1]) simply
as the string name R by a slight abuse of notation. Rings are denoted by the capital
letter R, assigned with an index i (i ∈ N).

For brevity, the literals sign andN2 will be sometimes omitted in l(S,Hsign, [N1, N2])
whenever they are clear from the context. Similarly, if the tips of a string Xb, Xe are
linked to the same object B, we will sometimes use that object name as initial and final
crossings in the chain.

Str

=

Str Str

StreStrb

Strb StrbStre Stre

Figure 11: When both tips are joined, the whole string forms a loop.

These simple definitions of chains and loops can handle cases where a single string
makes loops through various holes (Fig. 12(a)), or various strings that define loops
and pass through loops made by other strings (Figs. 12(b) and 12(c)). The chains (and
related loops) representing Figures 12(a), 12(b) and 12(c) are shown in Formulae 5, 6
and 7, respectively.
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(a) Statei

2R1

S2

R2

S1

1 2

1

(b) Statej

S1

R2

R1

S3

S2

1

2 3 4

5

(c) Statek

Figure 12: String loops.

chain(S1, Statei) = [S1−b , R1
−,

l(S1,R2−,[2,3])︷ ︸︸ ︷
R2−, R2+ , R1+︸ ︷︷ ︸

l(S1,R1−,[1,4])

, S1+e ]. (5)


chain(S1, Statej) = [S1−b , R1

−, l(S2, R2−, [1, 2])−, R1+︸ ︷︷ ︸
l(S1,R1−,[1,2])

, S1+e ],

chain(S2, Statej) = [S2−b , R2
−, l(S1, R1−, [1, 2])−, R2+︸ ︷︷ ︸

l(S2,R2−,[1,2])

, S2+e ].
(6)



chain(S1, Statek) = [S1−b , R1
−, ︸ ︷︷ ︸

l(S1,R2−,[2,3])

R2−,

l(S1,R2+,[3,4])︷ ︸︸ ︷
R2+, R2− , R1+

︸ ︷︷ ︸
l(S1,R1−,[1,5])

S1+e ],

chain(S2, Statek) = [S2−b , l(S1, R2
+, [3, 4])−, S2+e ],

chain(S3, Statek) = [S3−b , l(S1, R2
−, [2, 3])−, S3+e ].

(7)

The idea described above, for calculating loops when repetitions of crossings are
detected, has to be extended to handle cases where the loops are crossed by strings
(such as in the case shown in Figure 12(c)). This issue is solved by defining a hierarchy
of loops, as presented in the next section.
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3.2 A hierarchy of loops
In order to introduce the hierarchy of loops, we first consider a hole h and m crossings
(endpoints) through it from a single string (as shown in Figure 13) defining a sequence
of loops, where each endpoint is marked with a natural number. For brevity, in this
section, we identify each loop solely by its endpoints.

h
8 9

−

...

+

1 2 3 4 5 6 7 m

Figure 13: Various loops from one string through a single ring.

Using the definition from the previous section, in Figure 13 the pairs of endpoints:

{[1, 2], [2, 3], . . . , [i, i+ 1]}

define loops, where the loops whose starting points are odd numbers are on the neg-
ative side, and those with even starting points are on the positive side of h. Note
that there are also implicit loops in Figure 13, such as those defined by the pairs
[1, 4], [1, 6], . . . , [1,m] (on the negative side of h), the pairs [2, 5], . . . , [2,m − 1] (on
the positive side of h), and so on.

We use Allen’s interval algebra [1] to qualify the possible relations between pairs
of loops on a single string, where the loops’ endpoints are represented within the end-
points of intervals. Briefly, Allen’s interval algebra [1] is defined by a set of 13 jointly-
exhaustive and pairwise-disjoint base relations representing the possible relations be-
tween pairs of intervals. Given two intervals, x and y, the Allen interval relations are
described in Figure 14.

Applying Allen’s relations to the loops on Figure 13, we can say, for instance, that
the loop [1, 2] starts the loop [1, 4]; that [2, 3] occurs during [1, 4] and that [3, 4] finishes
[1, 4].

Let l1 = [i, j] and l2 = [k,w] be two loops on h defined on two distinct endpoints
(i.e., either i 6= k or j 6= w), we say that l1 is an inner loop of l2 (l1 ≤ l2) iff
l1[starts, during, finishes] l2, read as “l1 either starts or is during or finishes l2”.
If this is the case, we say that l2 is an outer loop with respect to l1 (l2 ≥ l1). We call
elementary loop a loop that has no associated inner loops (for instance, [1, 2] and [2, 3]
are elementary loops), as defined below.

Definition 1. l is an elementary loop if and only if there is no l′ (l′ 6= l) such that
l′ ≤ l.

The relation inner (≤) (resp. outer (≥)) forms a partial order on loops. We can say
that inner loops and their related outer loops, that fall on the same side of a hole, form
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Figure 14: Allen’s Interval Relations (adapted from [14]).

a hierarchy where crossings that occur on inner loops are inherited by their immediate
outer loops. E.g., if there is a string S crossing a loop li on one side of h, and this loop
is undone by an action (e.g. by pulling the loop through the hole that defines it), then
this crossing will be assigned to the next outer loop with respect to li.

For instance, Figure 15(a) shows a string S1 initially crossing the loop [4, 5] and
Figure 15(b) represents the effect of pulling this loop through the hole. Although loop
[4, 5] is destroyed in this action, and string S1 now forms itself a loop through h, S1
is still crossing the loop [2, 7] (note that if [3, 6] is pulled, S1 will not be “free” as an
effect, but will still be crossing [2, 7]). This is also the case with crossings on adjacent
(inner) loops to the loop destroyed (as shown in Figure 16). Figure 16 shows the case
of a string S1 previously crossing the loop [1, 2] (Fig. 16(a)), this crossing is inherited
by the outer loop [1, 4] when [2, 3] is pulled (cf. Fig. 16(b)). The effects of actions on
loops will be formalised in Section 4 below.

It is worth noting that, when loops defined on the first or last endpoints of a se-
quence (e.g. on endpoints 1 or m in Fig. 13) are undone, there is no outer loop on
the same ring that inherits their crossings. Thus, if there is no other loop (formed on
a distinct ring) that inherits this crossing, the string is free. The case of loops formed
from multiple rings is considered in Section 3.3.

Figure 17 depicts the loop hierarchy, where the dotted columns represent the inter-
val endpoints defined by the loops.

3.3 Generalising the loop hierarchy
The inheritance of crossings through loops on a single string, but defined on distinct
holes, has to be explicitly handled only when actions are applied to the first or last
endpoints on a loop sequence on a particular hole. These are the cases where the string
crossings on loops defined on one hole may be inherited by a loop defined on another
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h8 91 2 3 4 5 6 7 ...

S1

.

(a)

h1 2 3 8 96 7 ...

S1

(b)

Figure 15: String loops.

h1 2 3 4 5 ...
S1

.

(a)

h1 4 5 ...

S1

(b)

Figure 16: String loops.

hole. For instance, Figure 18 shows two rings R1 and R2 and a string S passing,
first, towards R1− (crossing at a), then crossing many times through R2 (endpoints
1 to m) and finally passing towards R1+ (at endpoint b). Thus, the string S forms a
loop through R1 ([a, b]) and, in between the endpoints of this loop, S also has loops
defined on the endpoints 1 to m (on R2). The loops starting at endpoints 2 to m − 2
are handled as explained in the previous section. However, when loops defined on 1
and m are undone, their eventual crossings with other strings are inherited by the loop
[a, b].

More formally, the inheritance of crossings on a single hole can be extended to the
case of multiple holes in the following way: an outer loop l on a chain inherits the
crossings of any inner loops defined over any holes in the same chain, that have the
same sign of l. For instance, in Figure 19(a) eventual crossings on the loop [2, 3] are
inherited by the loop [1, 4], but the same does not happen with the analogous loops on
Figure 19(b), since in this case [1, 4] has a distinct sign from [2, 3]. This is also shown
on the chain descriptions of Fig. 19(a) (Formula 5) and Fig. 19(b) (Formula 8). Note
that loop [2, 3] in Figure 19(b) falls in the same plane as loop [1, 4]. If it were the case
that [2, 3] resided on a distinct plane from [1, 4] (i.e. if [1, 4] was contained on the same
plane as this paper and [2, 3] was sticking out of the paper) a crossing on [2, 3] could
also cross [1, 4] (or not). Thus, the 2D diagram would have to be drawn in a distinct
way, making explicit all loop crossings (according to the guidelines for drawing string
diagrams mentioned in Section 3).
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91 2 3 4 5 6 7 8

Figure 17: Hierarchy of loops for one string through a single ring.

b R1

R22 3 4 5 6 7 8 91 m... m−1

S

a

Figure 18: Loop hierarchy on multiple holes.

chain(S1, Statej) = [S1−b , R1
−,

l(S1,R2+,[2,3])︷ ︸︸ ︷
R2+, R2− , R1+︸ ︷︷ ︸
l(S,R1−,[1,4])

, S1+e ]. (8)

4 Actions on loops
This section defines actions on elementary loops. For this purpose, we introduce a
formal definition for segments, as first proposed in [3].

As mentioned above, the set of hole crossings is the essential information used
on the chain representation. Formally, a crossing is the overlapping region between
a hole and a long object. A segment can be defined as a maximal continuous portion
of a long object not overlapping with any hole, such that there cannot be a segment
of the string x connecting more than two hole crossings. Each segment of a string x
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3R2

R1

.

.

.

S1

1 4

2

(a) Statei

1

R2

R1

S1

2 3

4

(b) Statej

Figure 19: Inheritance of crossings from distinct rings.

at a given state will be denoted as x : i where i ∈ N is a segment label that uniquely
identifies the segment. As we did with crossings in chain(x, S) (for any state S), we
also start numbering segments with 0. In this way, if we have n + 1 crossings (e.g.,
chain(x, S) = [C0, . . . , Cn]) then we have n segments, (x : 0),. . . ,(x : n− 1), being
each one (x :j) delimited by crossings Cj and Cj+1.

Let us start by considering the idea of loop creation. Rather than passing an object
to a hole side, we consider an action pick(x : i, p) meaning that we pick some arbitrary
segment i on a string x (that is not one of the string tips) pulling from it towards the
hole side p. Figure 20 shows the result of this movement.

Situation

s

do(pick(x:i,p),s)

x:i

p’
p

p’
p

x:i+1

x:i x:i+2

Figure 20: Creating a loop by picking a segment i inside string x.

In principle, the pick action can always be executed regardless of the origin and
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target of segment x : i. Notice that this action will always create a new loop. Thus,
for instance, if in the resulting situation, depicted in Figure 20 (bottom), the action
pick(x : i+1, p′) is performed (that is, the segment i+1 in x is picked toward the hole
side p′) the initial situation s is not obtained as a result, but the one shown in Figure 21
(third column) instead.

p’
p

x:i

p’
p

p’
p

s s1=do(pick(x:i,p),s) s2=do(pick(x:i+1,p’),s1)

x:i+1

x:i x:i+2

x:i+1 x:i+3

x:i+2
x:i x:i+4

Figure 21: Picking back a point in a loop creates more loops.

The difficult case of a pick action happens when a segment of a loop (that happens
to be crossed by many strings) is picked, creating inner loops (cf. Figure 22). The
question is to which inner loops these crossings are assigned to as an effect of this
action. In this work we assume that the crossings are assigned to the leftmost inner
loop (as shown in Fig. 22, left) since, in most of the puzzle domains, assigning a
specific inner loop to a string crossing is irrelevant to the solution. However, a more
specific version of pick can be defined to identify the crossing with the exact inner loop
that it should be assigned. Defining this enhanced pick action is outside the scope of
this paper.

p’
p

p’
p

s1=do(pick(x:i,p),s) s2=do(pick(x:i+1,p’),s1)

l ls

ld

lf

Figure 22: Picking back a point in a loop creates more loops.

The second movement related to loops considered in this work is the action of
removing a loop, that we call pull(l), where l is a loop. This action is the exact inverse
of the pick action defined above, whereby pull(l) eliminates loop l completely, passing
it back through the hole that defines it (as shown in Figure 23).
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Situation

s

do(pull(x:i+1),s)

p
p’

p
p’

x:i+1

x:i x:i+2

x:i

Figure 23: Removing the loop l.

More formally, let R be a hole and C0 the state of a chain for a string S, where
S passes through various holes, where each crossing is denoted by hθi (for i ∈ N and
θ ∈ {+,−}):

C0 = [hi1, h
j
2, . . . , h

α
x , h

β
y , . . . , h

m
n ].

Let’s call w the string segment that falls in between the crossings hαx , h
β
y in the

chain C0, then C1 = do(pick(s : w,Rε), C0) results in the creation of two opposite
crossings (a loop) Rε and Rλ (ε 6= λ) in the state C1:

C1 = [hi1, h
j
2, . . . , h

α
x ,R

ε,Rλ, hβy , . . . , h
m
n ].

The action pull is the reverse of pick, i.e. it removes a loop by passing all of
it through the original hole. Thus, C2 = do(pull([Rε, Rλ], C1) is equivalent to the
original state:

C2 = [hi1, h
j
2, . . . , h

α
x , h

β
y , . . . , h

m
n ].

If there were string crossings passing through the loop l = [hαx , h
β
y ], then each of

them, as an effect, would be picked towards the side of the whole where l was pulled
towards.

An important side effect of pulling a loop is that adjacent loops will also disappear
and this will make outer loops inherit their crossings7. As an example, consider the
transition from Fig. 16(a) to Fig. 16(b) where we have pulled the loop formed by the
pair of endpoints [2, 3]. As a result, loops [1, 2] and [3, 4] must also disappear because
endpoints 2 and 3 will be removed. However, these two loops were inner loops of [1, 4]

7Appendix A contains a Prolog prototype that computes the effects of actions. In the case of action pull,
predicate replace loops takes account for this side effect.
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which still remains after the pull action. This means that the dotted string crossing
[1, 2] will be still crossing [1, 4] after pulling [2, 3].

The actions pick and pull, along with the action pass described in Section 2 above
allow for the formal solution of the easy-does-it puzzle, as shown in the next section.

5 Working Example: Easy-does-it puzzle
This section presents a sequence of changes in the Easy-does-it puzzle’s states that is
one possible solution to the puzzle.

As described in Section 2, the initial state shown in Figure 9(b) corresponds to the
chains in Formulae 1-3. We analyse next, step by step the puzzle solution. We refer to
“steps” here (instead of actions) since sometimes, one physical step may imply several
state transitions, as we will see next.

First step The first step of the solution (from state S0 (Fig. 9(b)) to S1 (Fig. 24(a)))
involves picking the segment Str2:1 toward R1+ on the state S0, i.e., do(pick(Str2 :
1, R1+), S0). This results in the state shown in Figure 24(a), with the following chain
description.

chain(P, S1) = [P−b︸︷︷︸
=B

, R2+, R1+, P+
e︸︷︷︸

=S

];

chain(Str1, S1) = [Str1−b︸ ︷︷ ︸
=R2

, l(Str2, R3+, [1, 4])+, Str1+e︸ ︷︷ ︸
=R1

];

chain(Str2, S1) = [Str2−b︸ ︷︷ ︸
=B

,

l(Str2,R3+,[1,4])︷ ︸︸ ︷
R3+, R1+, R1−︸ ︷︷ ︸

l(Str2,R1+,[2,3])

, R3−, Str2−b︸ ︷︷ ︸
=B

].

B

S

R1

R2

R3

Str2

Str1

P

(a) State S1.

B

S

R1

R2

R3

Str2

Str1

P

(b) State S2.

Figure 24: First and second transitions.

This process creates another loop in Str2 that can be seen as the pair 〈R1+, R1−〉
in chain(Str2, S1), and is denoted by l(Str2, R1+, [2, 3]). On the other hand, what
was the loop l(Str2, R3+, [1, 2]) in S0 has become l(Str2, R3+, [1, 4]) and is delim-
ited now by R3, segment Str2:1, R1 and segment Str2:3.
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Second step The second action is to pass the sphere S, and so the linked post tip Pe,
towards l(Str2, R1+, [2, 3])+, resulting in the state S2 (Fig. 24(b)):

S2 = do(pass(P+
e , l(Str2, R1

+, [2, 3])+, S1)

chain(P, S2) = [P−b , R2
+, R1+, l(Str2, R1+, [2, 3])+, P+

e ];

chain(Str1, S2) = [Str1−b , l(Str2, R3
+, [1, 4])+, Str1+e ];

chain(Str2, S2) = [Str2−b , R3
+, R1+, R1−, R3−, Str2+b ].

Third step Then, the loop l(Str2, R1+, [2, 3]) should be undone, by pulling it back
towards R1− (downwards, in the diagram). In the physical puzzle, this movement
would lead to the state S3 depicted in Fig. 26(a). However, the step from S2 to S3

is not the result of a simple action on strings, since it also implies “sliding” Str2
down the post, which is not affected because it is a rigid object. Since, at our current
representation level, we cannot represent rigidity, we must assume that the post is also a
flexible string8. Under this assumption, the step from S2 to S3 is actually decomposed
into the two transitions we describe next.

1. First, segment Str2:2 is pulled downwards R1−, that is, formally:

S′2 = do(pull(Str2:2, R1−), S2)

As a result, we obtain Fig. 25 where the post is twisted forming two new loops:
one below R1 (now crossed by Str2), and another single loop above R1. The
chains we obtain in S′2 correspond to:

chain(P, S′2) = [P−b , R2
+,

l(P,R1+,[2,3])︷ ︸︸ ︷
R1+, R1−, l(Str2, R3+, [1, 2])+, R1+︸ ︷︷ ︸

l(P,R1−,[3,5])

, P+
e ];

chain(Str1, S′2) = [Str1−b , l(Str2, R3
+, [1, 2])+, Str1+e ];

chain(Str2, S′2) = [Str2−b , R3
+, l(P,R1−, [3, 5])+, R3−, Str2+b ].

2. Second, we pull down the single loop in the post, l(P,R1+, [2, 3]), that was left
alone above R1. Formally, this means pulling segment P :2 towards R1−:

S3 = do(pull(P :2, R1−), S2)

and we get the state S3 in Fig. 26(a) described by the following chains:

chain(P, S3) = [P−b , R2
+, l(Str2, R3+, [1, 2])+, R1+, P+

e ];

chain(Str1, S3) = [Str1−b , l(Str2, R3
+, [1, 2])+, Str1+e ];

chain(Str2, S3) = [Str2−b , R3
+, R3−, Str2+b ].

8In fact, the puzzle solution is not affected by using a string instead of a post. On the contrary, using a
rigid post actually simplifies the puzzle, as it limits the possible actions on the strings, something that prunes
the search space when physically exploring the puzzle.
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An important observation is that destroying the upper loop l(P,R1+, [2, 3]) we
had in the post at S′2 also destroys the adjacent loop l(P,R1−, [3, 5]) and, as a
consequence, string Str2 is no longer crossing any loop at the resulting state S3.

B

R1

R2

R3

Str2

Str1

P

S

P

Figure 25: S′2: intermediate transition between S2 and S3 (assuming a flexible post).

B

S

R1

R2

R3

Str2

Str1

P

(a) State S3.

B

S

R1

R2

R3

Str2

Str1

P

(b) State S4.

Figure 26: Third and fourth transitions.

Fourth step This step is the combination of two movements: passing both the ring
R1 and the tip Str1+e (linked to the ring) downwards the loop in Str2. This is an
action applied on a bundle of objects that must all be manipulated altogether [3].
Thus, we can perform the two actions do(pass(R1, l(Str2, R3+, [1, 2])−, S3) and
do(pass(Str1+e , l(Str2, R3

+, [1, 2])−, S3) in any order to get the resulting state S4

depicted in Fig. 26(b) described by the chains:

chain(P, S4) = [P−b , R2
+, R1+, l(Str2, R3+, [1, 2])+, P+

e ];

chain(Str1, S4) = [Str1−b , Str1
+
e ];

chain(Str2, S4) = [Str2−b , R3
+, R3−, Str2+b ].
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S

R1

R2

R3

Str2

Str1

P

(a) State S5.

B

S

R1

R2

R3

Str2

Str1

P

(b) State S6.

Figure 27: Fifth and sixth transitions.

Fifth step The next action is to move the loop in Str2 upwards above the sphere,
formally represented as do(pass(P+

e , l(Str2, R3
+, [1, 2])−), S4), to obtain the state

S5 (Fig. 27(a)) with the chains:

chain(P, S5) = [P−b , R2
+, R1+, P+

e ];

chain(Str1, S5) = [Str1−b , Str1
+
e ];

chain(Str2, S5) = [Str2−b , R3
+, R3−, Str2+b ].

Sixth transition Finally, the loop in Str2, formed byR3, can be removed by a simple
pull: S6 = do(pull(l(Str2, R3+, [1, 2]), R3−), S5), resulting in the following chain
description, as represented in Figure 27(b):

chain(P, S6) = [P−b , R2
+, R1+, P+

e ];

chain(Str1, S6) = [Str1−b , Str1
+
e ];

chain(Str2, S6) = [Str2−b , Str2
+
b ].

Note that the main ring R3 is not present in any of the last chain descriptions, so
it is not crossed any more. Therefore, R3 is free from the set of entangled objects,
solving the puzzle

6 A PROLOG simulator using the loop hierarchy
We have implemented a PROLOG prototype that allows simulation (temporal projec-
tion) for the strings domain in Section 4. The prototype is built to check the effects
of the actions pick and pull on crossings and loops that can be formed or destroyed
depending on the loop hierarchy. There are other features, however, that are not con-
sidered: all long objects are flexible and we do not consider constraints about which
objects can pass through which holes. Besides, we do not handle the information about
linked objects: this means that loops formed by linking two tips of a string to some
object are not detected, but must be explicitly stated in the initial state. Similarly, mul-
tiple actions due to moving an object linked to another are not detected either and must
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be stated explicitly. We will include these features in a more complete tool still under
development. Therefore, the prototype aims at verifying whether the formal definitions
for the actions to create and destroy loops result in a coherent set of changes.

An important problem we have had to fix for building the prototype is related to
reference numbers used in loops. In the example transitions of Section 5, the numbers
A,B used inside loop references l(S,Hx, [A,B]) correspond to the relative positions
in chain(String, State) of the initial and final crossings forming the loop. We chose
this representation because it is much simpler to check with respect to the diagrams.
However, using relative positions has a serious drawback: since all actions create or
destroy crossings in a chain, the relative position of a crossing may easily change. To
put a simple example, note how the initial loop l(Str2, R3+, [1, 2]) in the descrip-
tion of state S0 of Easy-does-it (3) becomes l(Str2, R3+, [1,4]) at S1 because two
new crossings have been inserted in the middle, and the previous crossing number
2 in chain(Str2, S0) becomes now crossing number 4. This leads to a problem of
elaboration tolerance since a part of the string not affected by some change must be
explicitly renumbered. For instance, assume we have a string X with n + 2 cross-
ings C1, . . . , Cn, Cn+1, Cn+2 where the two last crossings form a loop on ring R with
Cn+1 = R− and Cn+2 = R+. Assume also that a second string Y is crossing that
loop:

chain(X,S0) = [S−b , C1, . . . , Cn, R
−, R+︸ ︷︷ ︸
loop

, S+
e ]

chain(Y, S0) = [X−b , l(X,R
−, [n+1, n+2])+, X+

e ]

If we simply pass the tip S−b through a new hole H , the relative positions of all cross-
ings will be increased in one and this implies renumbering all the potentially affected
loops:

chain(X,S1) = [S−b , H
−︸︷︷︸

new

, C1, . . . , Cn, R
−, R+, S+

e ]

chain(Y, S1) = [X−b , l(X,R
−, [n+2, n+3︸ ︷︷ ︸

renumbered

])+, X+
e ]

Since a pull action may create and destroy a great number of loops, segments and
crossings, it is practically impossible to keep in mind all the renumbering operations
without potentially make a mistake in the program.

The solution to this problem is assigning a unique identifier from some set of labels
Lb to each crossing in chain(X,S) that does not vary when we insert or remove cross-
ings from the chain. Since any segment can be subdivided as many times as needed,
the set Lb should be an infinite, dense set. For convenience, we have taken the rational
numbers Lb = Q for that purpose, since they additionally provide a complete linear
ordering that can be used to represent the relative position of a segment with respect to
the chain(X,S). For each crossing C in chain(X,S) we associate its identifier i ∈ Q
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with the notation9 C : i. A simple solution to insert a crossing between two points A,B
is taking the midpoint (A+B)/2 as new identifier. In this way, if we add the following
crossing identifiers to our previous example:

chain(X,S0) = [S−b :0, C1 :1, . . . , Cn :n,R
− :n+1, R+ :n+2︸ ︷︷ ︸

loop

, S+
e :n+3]

chain(Y, S0) = [X−b :0, l(X,R−, [n+1, n+2])+ :1, X+
e :2]

then the result of passing X’s tip just amounts to a minimum change in X while Y is
unaffected:

chain(X,S1) = [S−b :0, H− :1/2︸ ︷︷ ︸
new crossing

, C1 :1, . . . , Cn :n,R
− :n+1, R+ :n+2, S+

e :n+3]

chain(Y, S1) = chain(Y, S0)

Although absolute identifiers are internally used by the prototype, we have kept
the use of relative values for the action descriptions. In this way, if we must specify a
segment number to be pulled, or a loop to be crossed, we use the relative positions in the
chain: we differentiate between loop(S,A,B) to specify relative positions (used in the
representation of actions) and l(S,Hx, A,B) to specify absolute identifiers (internally
used to compute the resulting state).

Appendix A shows the prototype source code. The execution of all steps in the
Easy-does-it has been encoded as predicate main whose output is included below (for
better readability, the second argument of chain/2 was edited by hand so that it repre-
sents the same states described in Section 5):

?- main.
chain(str1,s0)=[-s1b:0,+l(s2,+r3,1,2):1,+s1e:2]
chain(str2,s0)=[-s2b:0,+r3:1,-r3:2,+s2b:3]
chain(post,s0)=[-pb:0,+r2:1,+r1:2,+pe:3]
l(s2,-s2b,0,3)
l(s2,+r3,1,2)

Do pick(s2,1,+r1)

chain(str1,s1)=[-s1b:0,+l(s2,+r3,1,2):1,+s1e:2]
chain(str2,s1)=[-s2b:0,+r3:1,+r1:5 rdiv 4,

-r1:7 rdiv 4,-r3:2,+s2b:3]
chain(post,s1)=[-pb:0,+r2:1,+r1:2,+pe:3]
l(s2,-s2b,0,3)
l(s2,+r3,1,2)
l(s2,+r1,5 rdiv 4,7 rdiv 4)

Do pass_tip(post,end,+loop(s2,2,3))

chain(str1,s2)=[-s1b:0,+l(s2,+r3,1,2):1,+s1e:2]
chain(str2,s2)=[-s2b:0,+r3:1,+r1:5 rdiv 4,

-r1:7 rdiv 4,-r3:2,+s2b:3]
chain(post,s2)=[-pb:0,+r2:1,+r1:2,

9Although it is the same notation used for segments, note that there is no ambiguity, since in C : i the left
argument is a crossing rather than a string.
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+l(s2,+r1,5 rdiv 4,7 rdiv 4):5 rdiv 2,+pe:3]
l(s2,-s2b,0,3)
l(s2,+r3,1,2)
l(s2,+r1,5 rdiv 4,7 rdiv 4)

Do pull(s2,2)

chain(str1,s2’)=[-s1b:0,+l(s2,+r3,1,2):1,+s1e:2]
chain(str2,s2’)=[-s2b:0,+r3:1,

-l(post,-r1,9 rdiv 4,11 rdiv 4):3 rdiv 2,-r3:2,+s2b:3]
chain(post,s2’)=[-pb:0,+r2:1,+r1:2,-r1:9 rdiv 4,

+l(s2,+r3,1,2):5 rdiv 2,+r1:11 rdiv 4,+pe:3]
l(s2,-s2b,0,3)
l(s2,+r3,1,2)
l(post,+r1,2,9 rdiv 4)
l(post,-r1,9 rdiv 4,11 rdiv 4)

Do pull(post,2)

chain(str1,s3)=[-s1b:0,+l(s2,+r3,1,2):1,+s1e:2]
chain(str2,s3)=[-s2b:0,+r3:1,-r3:2,+s2b:3]
chain(post,s3)=[-pb:0,+r2:1,+l(s2,+r3,1,2):5 rdiv 2,

+r1:11 rdiv 4,+pe:3]
l(s2,-s2b,0,3)
l(s2,+r3,1,2)

Do pass_tip(s1,end,-loop(s2,1,2))

chain(str1,s4’)=[-s1b:0,+s1e:2]
chain(str2,s4’)=[-s2b:0,+r3:1,-r3:2,+s2b:3]
chain(post,s4’)=[-pb:0,+r2:1,+l(s2,+r3,1,2):5 rdiv 2,

+r1:11 rdiv 4,+pe:3]
l(s2,-s2b,0,3)
l(s2,+r3,1,2)

Do pass_hole(r1,-loop(s2,1,2))

chain(str1,s4)=[-s1b:0,+s1e:2]
chain(str2,s4)=[-s2b:0,+r3:1,-r3:2,+s2b:3]
chain(post,s4)=[-pb:0,+r2:1,+r1:5 rdiv 2,

+l(s2,+r3,1,2):11 rdiv 4,+pe:3]
l(s2,-s2b,0,3)
l(s2,+r3,1,2)

Do pass_tip(post,end,-loop(s2,1,2))

chain(str1,s5)=[-s1b:0,+s1e:2]
chain(str2,s5)=[-s2b:0,+r3:1,-r3:2,+s2b:3]
chain(post,s5)=[-pb:0,+r2:1,+r1:5 rdiv 2,+pe:3]
l(s2,-s2b,0,3)
l(s2,+r3,1,2)

Do pull(s2,1)

chain(str1,s6)=[-s1b:0,+s1e:2]
chain(str2,s6)=[-s2b:0,+s2b:3]
chain(post,s6)=[-pb:0,+r2:1,+r1:5 rdiv 2,+pe:3]
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l(s2,-s2b,0,3)

true

7 A Model for Chains within Knot Theory
In this section we justify the representation described above by proving that for any
chain description there is a translation in terms of a sequence of string crossings (i.e.,
intersections of lines in the diagrams representing the domain). We also show that for
any action executed on the chain representation there is a corresponding sequence of
movements on the string intersections that results in the same state. In order to do that,
we need to introduce a number of definitions from the subfield of topology that studies
mathematical knots: Knot Theory [11].

In the remainder of this paper we use the term string intersection (or only intersec-
tion) to refer to string crossings, in order to differentiate it from hole crossings.

This section introduces a notation for string intersections based on the work pre-
sented in [28], that proposes a representation of the various shapes a string assumes
by collecting the points where the string crosses itself, scanning it from one of its ter-
minals to the other. This representation, called p-data, is based on a 2D projection
(knot diagram [11]) of a 3D knot. Inspired by the p-data representation, this section
introduces a representation for string intersections that takes into account cases where
a string intersects another string, besides itself.

The string-intersection representation used in this work is constructed as follows.
The direction in which the string is swept needs to be defined, in this work it goes
from its beginning to its ending tips. From one terminal of the string to the other, each
point where the string crosses another string (or itself) is included in a list. At each of
these points the direction of the intersection is annotated (represented by the sign of
a cross product, as defined below), the other string involved in the intersection is also
annotated, along with information about the relative vertical position of an intersection.
The vertical position of the intersection is determined by verifying the position of each
string at each intersection found, following the direction in which the string is being
traversed. We say that an intersection is upper (U ) if at the intersection point the string
that is being traversed is on top; analogously, a lower (L) intersection is that where at
the intersection point the string that is being traversed is below the other.

Figure 28(a) shows examples of upper and lower intersections related to a string
s1 with respect to strings s2 and s3. The intersection marked with 1 is an upper in-
tersection of s1 with respect to s2, and is denoted as Us2 (if s1 is traversed) and the
intersection marked with 2 is a lower intersection of s1 with respect to s3, and is de-
noted as Ls3.

The direction of the intersection (or its sign) can be obtained from the sign of the
cross product between the direction of the string that is on top (the upper string) and
the direction of the string that is below (the lower string) at the intersection. More
formally: (~lupper ×~llower), where ~lupper and ~llower are, respectively, the directions of
the upper and lower strings at the intersection point (cf. Figure 28(b)).

Therefore, an elementary loop created by two hole crossings of a string St through a
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s2

s3

(a)

−+s1 s2 s1 s2
(b)

Figure 28: String-intersection representation.

ring R (shown in Figure 29(a)), whose chain description is chain(St, S) = [R+, R−],
has the following string-intersection (SI) description:

SI(St) = [L+
R, U

+
R , U

−
R , L

−
R].

In terms of string intersections, the way the diagram is drawn changes the descrip-
tion. There are only four ways to draw an elementary loop through a ring, shown
in Figure 29 (other depictions are achieved by rotating the ones shown in the pic-
ture). Note that a hole crossing R+ is written as the pair 〈L+

R, U
+
R 〉, for rings oriented

in anti-clockwise direction, and 〈U+
R , L

+
R〉, for rings oriented in clockwise direction

(analogously for R−).

R

S

(a) SI(S) =
[
L+
R, U+

R , U−R , L−R
]

S

R

(b) SI(S) =
[
U−R , L−R , L+

R, U+
R

]

R

S

(c) SI(S) =
[
L−R , U−R , U+

R , L+
R

]

S

R

(d) SI(S) =
[
U+
R , L+

R, L−R , U−R
]

Figure 29: Distinct ways of drawing elementary loops and their related string-crossing
representations.

In this work we use the three basic actions on strings introduced in Knot Theory,
called Reidemeister moves [19, 11]. Figure 30 shows the three Reidemeister moves for
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non-oriented strings: type I (Fig. 30(a)), type II (Fig. 30(b)) and type III (Fig. 30(c)).
These actions can be described as follows: type I adds or deletes a simple twist in the
string; Type II allows the inclusion (or exclusion) of two crossings in the string; Type
III slides a strand of the string from one side of a crossing to the other. Reidemeister
moves types II and III for oriented strings are respectively shown in Figures 31 and 32
[30] (type I is not shown since it is not used in this work).

(a) Type I (b) Type II (c) Type III

Figure 30: The Reidemeister moves.

s2

− +
s1

s2

s1

(a) Type IIa

s2

+ −

s1

s2

s1

(b) Type IIb

Figure 31: Reidemeister move type II.

Reidemeister move type II (Fig. 31), for a string s1 can be represented in terms of
string intersections as:

[Xi
α, X

j
α]↔ [ ],

where X ∈ {L,U}, α is a string (or a section of a single string), and i and j (i 6= j)
are the signs of the crossings. E.g. the string intersection representation for the case
shown in Figure 31(a) can be written as [U−S2, U

+
S2]↔ [ ]

Similarly, Reidemeister move type III, for oriented strings (shown in Figure 32),
can be represented in terms of string intersections as:

[Xi
α, Y

j
β ]↔ [Y jβ , X

i
α],

where X,Y ∈ {L,U}, α and β are the strings (or distinct sections of a single string)
involved in the crossings, and i and j are the signs of the crossings, as exemplified in
Figure 34 for three strings s1, s2 and s3.

Besides Reidemeister moves, as our domain has open-ended strings, we have to
consider also the cross move introduced in [28], that adds or removes an intersection
by passing the open end of a string on top of another string (or on a section of the same
string). Figure 33 represents the cross move.

With the formalism described above, it is now possible to show that for any pass,
pick and pull action on the original chain description, there is an equivalent finite se-
quence of Reidemeister moves on the related string-intersection translation. The con-
cept of equivalence here means that the states resulting from pass, pick and pull, when
translated to string intersections, are the same as the ones achieved by a sequence of
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(a) Type IIIa (b) Type IIIb

Figure 32: Reidemeister move type III (adapted from [30]).

Reidemeister moves. Thus, we say that the chain representation (and its related actions)
is sound with respect to Reidemeister moves in knot theory.

In order to prove soundness of the hole crossing representation, and its related ac-
tions pass, pick and pull, with respect to string intersections and Reidemeister moves
we need to prove first that every loop in a loop hierarchy can be reduced to an elemen-
tary loop, i.e. a loop that does not have any related inner loops (Lemma 1); and, after
that, we need to prove that the translation from the chain representation to the string
intersection representation is unique (Lemma 2). Soundness is proved in Theorem 1.

Lemma 1. Every loop, that is not a ring, can be reduced to an elementary loop by a
sequence of pull actions.

Proof. This follows by induction on the number of inner loops related to an outer loop,
observing that (in this work) loops are assumed to be only created by pick actions.

Lemma 2 (Uniqueness of translation). Any hole crossing in a chain description can
be translated into one and only one sequence of string crossings.
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Figure 33: Cross move [28].

s1

s2
s3

s3
s1

s2+

-

-

+ -

-

-

SI(s1) = [U−s3, U
−
s2] ↔ SI(s1) = [U−s2, U

−
s3]

SI(s2) = [L+
s3, L

−
s1] ↔ SI(s2) = [L−s1, L

+
s3]

SI(s3) = [U+
s2, L

−
s1] ↔ SI(s3) = [L−s1, U

+
s2]

Figure 34: Reidemeister move type III

Proof. For the purpose of reductio ad absurdum, let’s assume that there is a represen-
tation for an elementary loop that is not one of the four shown in Figure 29. In this
case, either the indexes, the superscripts or the crossings would be distinct from the
ones shown in the figure. In each of these cases the representation is not a loop.

Theorem 1 (Soundness). Let c be any chain and pc be a translation of c in terms of
string intersections. Let also a be a pass, pick or pull action on c that changes c into a
successor c1 (where pc1 is the translation of c1 in terms of string intersections). Then,
there is a finite sequence of Reidemeister moves that, when applied on pc, results in a
state p′c such that p′c = pc1.

Proof. We first show that any elementary, pass, pull and pick action can be described
by a sequence of Reidemeister moves on the related string-crossing representation.
From lemma 1 this result can be applied to any pull and pick actions.

The pass action can be directly translated by a sequence of two cross moves. Simi-
larly, the pick action, and the most basic form of pull (in cases where there is no string
crossing the loops involved in this action), can be described by the Reidemeister move
type II (applied twice, one on the front and another on the back sides of the hole), as
shown in Figure 35.

We now consider the cases where there are strings crossing the loops involved in
the pull action. We show the sequence of Reidemeister moves for a pull action for the
case where there is only one string crossing a loop. The case of n (n ∈ N) strings
crossing a loop follows by induction on n.

Consider the loop represented in Figure 36(a), that is formed by string S1 and ring
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Pull

type II type II

Pick

Figure 35: The basic cases of pick and pull can be described as Reidemeister type II
moves.

R (for brevity, only one side of the ring is shown in this figure, the derivation for the
other side is analogous). This loop is crossed by another string S2. The scenario shown
in Figure 36(a) has the following chain descriptions:

chain(S1) = [R+, R−], chain(S2) = [l(S1, R+, [C,D])+]. (9)

A pull action on the loop l(S1, R+, [C,D]) on this state deletes the loop and applies
a pick action on the strings that where crossing l(S1, R+, [C,D]) (in this case on the
string S2), leading to the state shown in Figure 36(c), that has the following chain
description:

chain(S1) = [l(S2, R−, [G,H])−], chain(S2) = [R−, R+]. (10)

Translating Formulae 9 to the string-crossing notation, we obtain the Formulae 11
below.

SI(S1) = [L+
R, L

+
S2, U

+
S2, L

−
R], SI(S2) = [U+

S1, L
+
S1]. (11)

The task now is to find a finite sequence of Reidemeister moves on Formulae 11 that
leads to a state description equivalent to that represented by Formulae 10. By applying
Reidemeister move type III on the string-crossings A and B, and Reidemeister move
type II on the string S2 (at the point of the crossingsA andB), the state shown in Figure
36(b) is achieved, whose description is shown in Formulae 12. Reidemeister move type
II introduced two new loops on string S2, representing the pick action related to pulling
a loop where there is a crossing.

SI(S1) = [L+
S2, L

+
R, L

−
R, U

+
S2]. SI(S2) = [L−R, U

+
S1, L

+
R, L

−
R, L

+
S1, L

+
R]. (12)

Then, Reidemeister move II is applied on the state shown in Figure 36(b), first
deleting the loop [E,F ] (on string S2, defined by the pair 〈L+

R, L
−
R〉: 1st and 3rd
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elements of the list SI(S2) in Formulae 12), and then deleting the loop [C,D] (on
string S1, defined by the pair 〈L−R, L

+
R〉: 4th and 6th elements of the list SI(S1) in

Formulae 12). This results in the state shown in Figure 36(c), whose string-intersection
description is represented in Formulae 13 below.

SI(S1) = [L−S2, U
−
S2] SI(S2) = [L−R, U

−
S1, L

−
S1, L

+
R] (13)

which is equivalent to the direct description of Formulae 10 in terms of string intersec-
tions, excluding the intersections that are not related to holes.

S2

BA

DCR

S1

(a)

S2

A

E F
C

B

G HD
R

S1

(b)

S2

G H
R

S1

(c)

Figure 36: pull.

As the translation is unique (cf. Lemma 2), this shows that actions on the chain
representation are sound with respect to Reidemeister moves on Knot Theory.

8 Discussion and Conclusion
This paper is part of our long-term project whose aim is to formalise, and provide
automated solutions, for spatial puzzles of increasing complexity [2, 20, 21, 22, 3, 23,
25, 24]. In the present work we considered a puzzle in which the manipulation of loops
formed by strings is an essential part of the solution, an issue that was open in our
previous investigations [25].

Loops on strings are defined in this work as pairs of crossings made by a single
string on the same hole but in distinct directions. The consideration of loops brought to
light two interesting points related to the ontology of objects. First of all, string loops
can be used as holes, conversely (but not explored in this paper) a hole made from a
flexible object, if it is cut at one point, behaves as a string. The similar use of holes
and string loops was formalised by introducing a function l to represent the loop as a
hole, when it is used as such. Therefore, the function l connects the basic definition of
loops (as pairs of crossings on a chain) to our previous representation of hole and hole
crossings. Second, when a loop, that is part of a set of loops, is crossed by a string (or
any longer object) the actions applied to this loop may have side effects on the objects
that are currently crossing it. This issue was solved in the present paper by assuming a
hierarchy of loops, in which the crossings related to a loop are inherited by other loops
in the hierarchy. Both, the analogous use of holes and loops and the loop hierarchy are
key aspects on reasoning about flexible objects that (to the best of our knowledge) were
first discussed in this paper.
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Another contribution of this paper was the translation from the chain representation
of string puzzles to a representation based on string crossings (or intersections). This
enabled us to prove that the solutions provided by manipulating a puzzle domain repre-
sented as chains have a model in the more general framework of knot theory. Although
this does not show that the solutions are sound with respect to the physical manipula-
tions of the objects involved in the domain, this proves that our solution is correct with
respect to the diagrammatic representation of knots in knot theory. Proving soundness
with respect to the physical world turns out to be a very elusive task [16, 8].

The proof of soundness presented in this paper is based on showing that for every
action on a chain, there is a translation in terms of Reidemeister moves. Conversely,
a proof of completeness in this domain would have to show that for every sequence of
Reidemeister moves on a puzzle description, there is a translation in terms of actions
on the equivalent chain. This, however, cannot be proved since Reidemeister moves are
applied on string intersections and, thus, have a greater freedom to operate changes on
the puzzle domain than actions on chains (that are restricted to passing objects through
holes, or creating/destroying loops).

The formal solution given in this paper was also checked by means of an imple-
mented prototype of a simulator that was used to verify that the actions formalised had
the intended effects on the domain considered in this work. The search for an algo-
rithm for actually solving puzzles automatically falls within the AI planning field of
research. In [3] we proposed a simple iterative deepening blind search planner that was
capable of finding solutions to the Fisherman’s Folly puzzle automatically, but timed
out for more complex instances of similar puzzles. As we discussed in [24], the design
of an efficient planner for this kind of problems is a challenging research topic since
the domain is potentially unbounded (new loops and crossings can be created all the
time). This is not usual in standard planning and will probably make it more difficult
to find a good heuristic function to prune the search space.

Although knot theory was an important part of this paper, we left the possibility of
tying knots in our domain for future research. Although essential for solving most real
world problems (such as tying a shoelace, operating a sailboat or executing sutures),
the assumption of knots greatly increases the complexity of automated problem solving
with strings. We believe that the solution resides on a proper use of heuristics to drive
the process of knot tying, but a way of integrating heuristics in the domains considered
in this paper is still under investigation.

Future work will also consider the computational complexity of our approach. We
believe that this is related to the complexity of the unknotting problem in knot theory,
which falls within the class of NP problems [10]. Another related question for further
investigation is whether there is a formal account of a complexity hierarchy for the
classes of puzzles this paper considered. We have an informal classification of them
in terms of the kinds of actions required to solve the different puzzles: for instance,
some of the puzzles do not require loops (Fisherman’s Folly and others), others require
loops but not knots (Easy-does-it and others), and other puzzles do require some knot
manipulation (which is our immediate next step). But a formal classification, or a
complexity assessment, of such spatial puzzles are still open issues.
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Appendix A. Prolog prototype
:- dynamic newxing/1.

main :-
initial(easydoesit,T),
complete_state(T,T0),
write_state(T0),nl,
execute(T0,[

pick(s2,1,+r1),
pass_tip(post,end,+loop(s2,2,3)),
pull(s2,2),
pull(post,2),
pass_tip(s1,end,-loop(s2,1,2)),
pass_hole(r1,-loop(s2,1,2)),
pass_tip(post,end,-loop(s2,1,2)),
pull(s2,1)

],_T1),
true.

initial(easydoesit,[
chain(s1)=[-s1b,+l(s2,+r3,1,2),+s1e],
chain(s2)=[-s2b,+r3,-r3,+s2b],
chain(post)=[-pb,+r2,+r1,+pe]

]).

complete_state(T,TN):-
change_fluents(all_add_xing_ids,_,T,T1),
update_loops(T1,TN).

% change_fluents(Pred,Data,T,TN)
% Changes all fluent values in state T using predicate Pred with data Data
% to produce new state T1. If Pred fails, fluent values are left unchanged
change_fluents(_,_,[],[]):-!.
change_fluents(Pred,Data,[F=V|T],[F=V1|TN]) :-

Call =.. [Pred,F=V,Data,V1], Call,!, change_fluents(Pred,Data,T,TN).
change_fluents(Pred,Data,[Fact|T],[Fact|TN]) :- change_fluents(Pred,Data,T,TN).
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% Apply add_xing_ids on all strings
all_add_xing_ids(chain(_)=Zs,_,Ws) :- !, add_xing_ids(Zs,Ws).

% Generate a xing identifier (its position number) for each crossing
add_xing_ids(Xs,Ys) :- add_xing_ids(0,Xs,Ys).
add_xing_ids(_,[],[]) :- !.
add_xing_ids(N,[X|Xs],[X:N|Ys]) :- N1 is N+1, add_xing_ids(N1,Xs,Ys).

% Add the current list of loops to the state T, yielding TN
update_loops(T,TN):-

findall(Fact,(member(Fact,T), \+ (Fact = l(_,_,_,_))), T1),
findall(l(S,X,A,B),(member(chain(S)=Zs,T1), get_loop(Zs,l(X,A,B))),T2),
append(T1,T2,TN).

% get_loop(Zs,L)
% It gets each possible loop L from an initial list of (identified)
% crossings Zs. Each loop is like l(X,A,B) where X:A is the initial
% crossing and Y:B is the (opposite) final crossing
% ?- ex(1,Xs), get_loop(Xs,L).

get_loop([X:A|Zs],l(X,A,B)) :- find_opposite(X,Zs,B).
get_loop([_|Zs],L) :- get_loop(Zs,L).

find_opposite(X,[Y:B|_],B) :- opposite(X,Y).
find_opposite(X,[_|Zs],B) :- find_opposite(X,Zs,B).

% Executes a list of actions As on an initial state T0 to reach state TN
execute(T0,[],T0) :- !.
execute(T0,[A|As],TN) :-

writeall([’Do ’,A,’\n\n’]),
do(T0,A,T1),
write_state(T1),nl,
execute(T1,As,TN).

% do(T0,A,TN) - Execute a single action A on T0 to yield TN

do(T0,pick(S,N,X),TN) :-
change_fluents(do_pick,pick(S,N,X),T0,T1),
update_loops(T1,TN).

do(T0,pull(S,N),TN) :- do_pull(S,N,T0,TN).

% If we pass the tip through a loop, we just use the loop crossing
% positions, not their ids

do(T0,pass_tip(S,T,X),TN) :-
get_loop_id(T0,X,W),!,
do(T0,pass_tip(S,T,W),TN).

do(T0,pass_tip(S,T,X),TN) :-
change_fluents(do_pass_tip,(S,T,X),T0,TN).

do(T0,pass_hole(H,P),TN) :-
get_loop_id(T0,P,W),!,
change_fluents(do_pass_hole,pass_hole(H,W),T0,T1),
update_loops(T1,TN).
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do(T0,skip,T0) :- !.

% Pass tip T of string S with chain Zs towards X. T can be "begin" or "end"
do_pass_tip(chain(S)=Zs,(S,end,X),ZsN) :-

append(Zs0,[(Y:A),(W:B)],Zs), % Take last crossing but
% one (Y:A). (W:B) is the tip

( opposite(X,Y),!,append(Zs0,[(W:B)],ZsN) % (PR) Remove last crossing (Y:A)
; midpoint(A,B,M),append(Zs0,[(Y:A),(X:M),(W:B)],ZsN) ).

% (PL) insert a new crossing

% NOTE: for simplicity, passing tips to the opposite side of a hole
% never creates new loops. We pass the tip "pulling" the string with it
do_pass_tip(chain(S)=[(W:A),(X:_)|Zs],(S,begin,X),[(W:A)|Zs]) :- !. % (NL)
do_pass_tip(chain(S)=[(W:A),(Y:B)|Zs],(S,begin,X),[(W:A),(X1:M),(Y:B)|Zs]) :-

opposite(X,X1),midpoint(A,B,M). % (NR)

% passhole(H,P,Zs,ZsN)
% passholed object H to face P changes crossings Zs to ZsN

passhole(_,_, [Z],[Z]) :- !.
passhole(H,P, [Z,(X:A)|Zs],[Z|ZsN]) :-

xing_sign_hole(X,_,G), G\=H, !, passhole(H,P, [(X:A)|Zs],ZsN).

passhole(H,P, [(X:A),(W:B),(Y:D)|Zs],[(X:A),(P:M),(W:B),(P1:M1)|ZsN]) :-
xing_sign_hole(X,_,H),opposite(P,P1),X \= P1, Y \= P, !,
midpoint(A,B,M), midpoint(B,D,M1),
passhole(H,P, [(Y:D)|Zs],ZsN). % (1R)

passhole(H,P, [(P1:_),(X:B),(P:C)|Zs], [(X:B)|ZsN]) :-
xing_sign_hole(X,_,H),opposite(P,P1),!,
passhole(H,P, [(P:C)|Zs],L), L=[(P:C)|ZsN]. % (1L)

passhole(H,P, [(X:A),(W:B),(P:D)|Zs],[(X:A),(P:B),(W:D)|ZsN]) :-
xing_sign_hole(W,_,H),opposite(P,P1), X \= P1, !,
passhole(H,P, [(P:D)|Zs],L), L=[(P:D)|ZsN]. % (2R)

passhole(H,P, [(P1:A),(W:B),(Y:D)|Zs], [(W:A),(P1:B)|ZsN]) :-
xing_sign_hole(W,_,H),opposite(P,P1),Y \= P,!,
passhole(H,P, [(Y:D)|Zs],ZsN). % (2L)

% To be used with change_fluents
do_pass_hole(chain(_)=Zs,pass_hole(H,P),Ws) :-

passhole(H,P,Zs,Ws).

% Execution of a pick on string S with chain of crossings Zs after crossing
% number N (beginning with 0) towards X and backwards and generates new crossings
% Ws and a new loop l(S,X,C,D). We assume that N is at least 0 and at most
% length(Zs)-2 (i.e. string tips are included)
% MidPT is a midpoint to place in the middle of the new crossings (left and right).
% If MidPT=mid then the midpoint is (A+B)/2

pick(S,Zs,N,X,l(S,X,C,D),MidPT,Ws) :-
opposite(X,Y),
append(Zs0,[(Z1:A),(Z2:B) | Zs1],Zs), length(Zs0,N), % split Zs
(MidPT = mid,!,midpoint(A,B,M); M=MidPT),
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midpoint(A,M,C),midpoint(M,B,D),
append(Zs0,[(Z1:A),(X:C),(Y:D),(Z2:B)|Zs1],Ws).

midpoint(A,B,M) :- M is (A+B) rdiv 2.

% Version for using with "change_fluents". We add the new loop as a fact
% for "newloop" dynamic predicate
do_pick(chain(S)=Zs,pick(S,N,X),Ws) :-

pick(S,Zs,N,X,_,mid,Ws).

% Pulling a "clean" loop on crossing number N (begins with 0) of a string S
% A "clean" loop crosses one hole in one direction and returns back immediately
% after. For instance [...,-r,+r,...]
% T - original state; TN - final state
% We assume that the N-th crossing is a loop (otherwise, the action is not executable)

do_pull(S,N,T,TN) :-
member(chain(S)=Zs,T),
append(Zs0,[(X:A),(_:B)|Zs1],Zs), length(Zs0,N), % split Zs

% Get all loops on string S
findall(SLoop,(member(SLoop,T),loop_string(SLoop,S)),SLoops),

% Crossings A B on S will disappear.
% Find out which loops disappear:
%this will include l(S,X,A,B), the pulled loop
findall(L,(member(L,SLoops),has_some_xing(L,[A,B])),RemovLs),
% remove them from the list of SLoops
remove_all(RemovLs,SLoops,SLoops1),
loop_replacements(SLoops1,RemovLs,Rs), % Rs are replacements L -> L2
member((l(S,X,A,B) -> L2),Rs),
opposite(X,Y),
% find all the strings crossing l(S,X,A,B) and pick them
(retractall(newxing(_)),!;true),
change_fluents(pulled_pick,(l(S,X,A,B),L2,Y),T,T2),
findall(NX,newxing(NX),NewXings),

% Add all the new crossings to the pulled string
% (new ids between A and B are assigned)
% The ordering among those xings is not determined.
new_ids(NewXings,A,B,NewIdXings),
append([Zs0,NewIdXings,Zs1],Zs2),

% Update chain(S)
append(Pre,[chain(S)=_|Suf],T2),
append(Pre,[chain(S)=Zs2|Suf],T3),

% Replace removed loops (they may inherit a bigger loop)
change_fluents(replace_loops,Rs,T3,T4),

% Finally, recompute loops accordingly to new crossings
update_loops(T4,TN),
true.

new_ids([],_,_,[]):-!.
new_ids([X|Xs],A,B,[(X:C)|Zs]) :- midpoint(A,B,C), new_ids(Xs,C,B,Zs).
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% Decides whether a loop on string S refers to some of the crossings in Xs
has_some_xing(l(_,_,A,B),Xs):-member(A,Xs),!;member(B,Xs).

% Check whether loop A-B is strictly included (starts,during,finishes) loop C-D
% provided that X and Y are on the "same side"
included(l(S,X,A,B),l(S,Y,C,D)) :- same_side(X,Y),A>=C, D>=B, (A \= C,!; B \= D).
same_side(- _,- _).
same_side(+ _,+ _).

loop_string(l(S,_,_,_),S).

% next_super_loop(T,L,T2)
% Look for the smallest loop Ln in set of loops Ls for same
% string S that "includes" loop L for S
next_super_loop(Ls,L,Ln) :-

member(Ln,Ls), included(L,Ln),
\+ (member(L3,Ls), included(L,L3), included(L3,Ln)).

% For each removed loop, add its next super loop (if existing).
% Otherwise add "none"
loop_replacements(_,[],[]) :- !.
loop_replacements(SLoops,[L|Ls],[(L->L2) | Rs]) :-

(next_super_loop(SLoops,L,L2),!; L2=none),loop_replacements(SLoops,Ls,Rs).

% pulled_pick(chain(S)=Zs, (L,L2,Y), ZsN)
% Replace all crossings of loop L by L2 (or remove if L2=none)
% and create, before and after, new loops crossing towards Y
% The pulled string will cross those loops in the same direction
% each crossed new loop NX is asserted as a fact newxing(NX)
% pulled_pick is designed to be used by change_fluents

pulled_pick(chain(S)=Zs,(L,L2,Y),ZsN) :-
append(Zs0,[(X:A)|Zs1],Zs),xing_sign_hole(X,D,L),!,

% we found a crossing thru loop L
length(Zs0,N), % locate its position
N1 is N-1,
append(Zs0,Zs1,Zs2), % Zs2 = result of removing the crossing
pick(S,Zs2,N1,Y,NewLoop,A,Zs3), % make new pick towards Y, using midpoint A
xing_sign_hole(NX,D,NewLoop),
opposite(NX,NX1),
asserta(newxing(NX1)),

( L2=none,!,Zs4=Zs3 % if L2=none then crossing is removed
; xing_sign_hole(W,D,L2), % otherwise, create a crossing through L2
N2 is N+2,
insert((W:A),N2,Zs3,Zs4) % and insert it in the middle of the new pick

),
pulled_pick(chain(S)=Zs4,(L,L2,Y),ZsN). % continue making replacements

pulled_pick(chain(_S)=Zs,(_,_,_),Zs).

% replace_loops(chain(S)=Zs,Rs,ZsN)
% Rs provides a list of loop replacements L -> L2 that must be done on Zs

replace_loops(chain(_S)=[],_Rs,[]) :- !.
replace_loops(chain(S)=[(X:A) | Zs],Rs,ZsN) :-

xing_sign_hole(X,D,L), member((L -> L2),Rs),!,
( L2=none,!,replace_loops(chain(S)=Zs,Rs,ZsN) % This loop is removed
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; xing_sign_hole(Y,D,L2), replace_loops(chain(S)=Zs,Rs,Zs2), ZsN=[(Y:A)|Zs2]
).

replace_loops(chain(S)=[Z|Zs],Rs,[Z|ZsN]) :-replace_loops(chain(S)=Zs,Rs,ZsN).

get_loop_id(T0,X,W) :-
xing_sign_hole(X,D,loop(S2,M,N)),
member(chain(S2)=Zs,T0),
nth0(M,Zs,(Y:A),_),
nth0(N,Zs,(_:B),_),
xing_sign_hole(W,D,l(S2,Y,A,B)).

% Some predicates about crossings (xing) and holes
opposite(+X,-X).
opposite(-X,+X).

xing_hole(+X,X).
xing_hole(-X,X).
xing_sign_hole(+X,+,X).
xing_sign_hole(-X,-,X).

% Removing from a list
remove_all(Xs,L,L2) :- partition(contains(Xs),L,_,L2).
contains(L,X) :- member(X,L).

% Insert X at position N
insert(X,N,Ls,Ls2) :-

N1 is N-1, append(Pre,Suf,Ls), length(Pre,N1), append(Pre,[X|Suf],Ls2).

write_state(T) :- repeat, (member(F,T),write(F),nl,fail; !).

writeall(Xs):- repeat, (member(X,Xs),write(X),fail; !).
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