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The Space within Fisherman’s Folly:
playing with a puzzle in mereotopology

Paulo E. Santos Pedro Cabalar
FEI, Sho Paulo, Brazil Coruna University,Spain

In this paper we propose a spatial ontology for reasoningiaholes, rigid
objects and a string, taking a classical puzzle as a matiyatkample. In
this ontology the domain is composed of spatial regions elnea theory
about holes is defined over a mereotopological basis. Withistheory
we define a data structure, named chain, that facilitatesa eind efficient
representation of the puzzle states and its solution.

Qualitative Spatial Reasoning, Commonsense Reasoning

1 Introduction

Understanding the reasoning processes involved in spatialledge is one of the
key issues in the investigation of cognition, as space niyt sfmapes our actions
in the commonsense world, but also serves as the scenarioidh wur everyday
experiences take place. ResearcBumlitative Spatial Reasonin@SR) (Stock,
1997; Ligozat et al., 2004) attempts the logical formal@abf spatial knowledge
based on primitive relations defined over elementary spatiities. For instance,
QSR theories include a mereotopological theory based ordhaectivity be-
tween spatial regions (Randell et al., 1992), the definitibocclusion and paral-
lax (Randell et al., 2001; Randell and Witkowski, 2002) tepaagueness (Cohn
et al., 1997; Guesgen, 2002a), the abductive assimilafisemsor data (Santos
and Shanahan, 2002; Santos and Shanahan, 2003; Santok, &0gll as the
definition of qualitative theories about distance (Hedemet al., 1995; Gues-
gen, 2002b), boundaries (Meathrel and Galton, 2001), shéehlieder, 1996;
Clementini and Felice, 1997) and so forth (Cohn and Haza#ia1).

This work investigates, from a QSR perspective, the spiatialviedge of a do-
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main composed of non-trivial objects such astrgng andholed objects To this
aim, we take as a starting point the formalisation of puiikieexamples, since
these domains offer a small number of objects while keepirogigh complexity
for a challenging problem of knowledge representation. Yésgnt a first attempt
to capture the spatial ontology underlying a spatial pyzd#ed the Fisherman’s
Folly. An automated solution to this puzzle was previouslygmsed in (Cabalar
and Santos, 2006) although that work was strictly tackledhfa planning per-
spective, without really deepening into the underlyingisppéeatures. In the cur-
rent paper we are concerned instead with the explicit foatrn of the spatial
relations involving the relative location of objects wittsspect to holes. We also
show how holes entry boundaries can be used to provide eRuitapresenta-
tion of the arrangement of objects in this domain (includimg string) allowing
an automated solution to the puzzle. In order to accomptishtask, we draw
some attention on how actions can be executed in this domairder to achieve
a pre-defined goal.

First of all, let us describe the motivating spatial puzaswamed in this work.

The Fisherman’s Folly puzzle

The elements of the puzzle are a holed pd3) fixed to a wooden base3|), a
string (Str), a ring (R), a pair of spheresY, S2) and a pair of disks{,, D3).
The spheres can be moved along the string, whereas the deskixed at each
string endpoint. The string passes through the post’s haenay that one sphere
and one disk remain on each side of the post. It is worth panbiut that the
spheres are larger than the post’s hole, therefore thegstannot be separated
from the post without cutting either the post, or the stringdestroying one of
the spheres. The disks and the ring, in contrast, can passginthe post's hole.
We should also mention that the disks do not fit into the rinig hithrough where
the spheres can pass freely if it is not already occupied bthan object.

In this work we assume that neither the length nor the thiskmd the string
constrain any solution to the puzzle, i.e. the string is itdly extensible and
one-dimensional. Relaxing these assumptions is a mattéutioe work.

In the initial state (shown in Figure 1(a)) the post is in thieldte of the ring,
which in its turn is supported on the post’s base. The godiisfduzzle is to find
a sequence of transformations that, while maintaining thesical integrity of the
domain objects, allow us to free the ring from the rest of ofgjeregardless their
final configuration. Figure 1(b) shows one possible goaéstat

Amongst the domain objects, we have also to consider foweshiol order to
provide an automated solution to the puzzle. The holes iptizele are: the post
hole (Ph), the ring hole k) and the two sphere hole§#, andSh.). The do-
main entities can be classified into three different sdoisg objectsregular ob-
jectsandholes corresponding in the puzzle to the s¢B Str}, {P’, R, S1, Sa,
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(a) Initial (b) Goal: the ring must be free

Figure 1: A spatial puzzle: the Fisherman'’s Folly.

D1, Dy, B} and{Ph, Rh, Shy, Sho}, respectively. For our purposes, we con-
sider that the solbng objectgepresents elliptic cylindrical bodies whose major
axis is much larger than their mean and minor axes; wheegasar objectsden-
tifies the remainder puzzle objects that are not holes. Wealigtdivide the post
into its top partP’ containing the hole, and its bottom pdtt below the hole. In
this work we only consider permeability through holes,rglout of our domain
semisolid objects (such as sponges, gelatinous bodies etc)

The goal of this paper is to formalise the Fisherman’s Follgzte in terms
of an ontology about holes built upon mereotopologicaltiehs (described in
Section 2). We also show how this ontology can be used to defitata structure
that provides a clear and efficient representation of thelpustates (Section 3)
and the state changes towards the puzzle solution (dedénit@ection 4).

2 A theory about holes

In this section we follow the guidelines proposed in (Vat896; Casati and Varzi,
1999) and construct a basic ontology about holes using rapelogical rela-
tions. In order to accomplish this task, in this work the gezabjects are identi-
fied with their occupancy regions. We definba@e in an objectr as the spatial
region constituting that portion af's complement that lies insidés occupancy
region. Objectr receives the name diostof hole h.

There are at least three distinct types of holeavities i.e. holes that are
entirely hidden inside their hosthpllows which are superficial depressions on
the host; and, perforating holes (or tunnels), which arefitiiat have at least two
distinct entry boundaries. As we will exclusively focus b tatter, from now on
by aholewe will mean a perforating hole.

In the formalisation described below, holes are assumeges i@gions whose
boundaries belong to their host objects. The relationseipden holes and their
hosts is formalised using the elementary relatiéh(%, ), meaning % is a hole
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in the objectz” (conversely, % is the host ofh”) (Casati and Varzi, 1999). For
example, in the puzzle domain we havé&{Rh, R)AH(Shy, S1)AH(Sha, S3) A
H(Ph, P"). We will include the constraint:

H(h,x) NH(h,y) — x =y 1)

which asserts that a hole has a unique host. Although thidatésn was not
present in Casati & Varzi's formalisationit will allow simplifying the formula-
tion in the current context.

As we assumed that the space is only populated by spati@nggapart from
the relationH /2, it is convenient to include in the basic theory about holesta
of mereotopological relations accounting for the conmectnd the part-whole
relations between spatial regions. In this work we use RQB#hdell et al.,
1992) which is a first-order axiomatisation of spatial rielas based on a dyadic
primitive relation ofconnectivityC'/2) between two regions. Informally, assum-
ing two regionse andy, the relationC(z, y), read as' x is connected withy” ,
is true if and only if theclosuresof 2 andy haveat least apoint in common.
Assuming the”'/2 relation as primitive, and that, y andz are variables for spa-
tial regions, the following mereotopological relationsdze defined:DC'(z,y),
which stands for £ is disconnected frony”; EQ(z,y), for “a is equal toy”;
PO(z,y), for “x partially overlapg”; EC(x,y), for “z andy are externally con-
nected”;TPP(x,y), for “x is a tangential proper part of; NTPP(x,y), for
“x is a non-tangential proper part 9f; and, TPPi/2 and NTPPi/2 are the
inverse relations of ' PP/2 and NT PP/2 respectively. These relations are de-
picted in Figure 2. We writed®? P(z,y) (“x is a proper part of/”) to stand for
TPP(z,y)V NTPP(x,y).

Here we follow the original interpretation 6f/2 as proposed in (Randell et al.,
1992) (and further explained in (Cohn et al., 1997)). Althbthere are point-free
interpretations of connectivity, understandifigz, y) holding whenthe topolog-
ical closures ofr andy share at least one poirdllows us to represent an object
position with respect to a hole in an appropriate way, as \aé sbe further in this
paper.

Assuming RCC, the relatioH (h, ) can be constrained by Axioms (2) and (3)
below. Axiom (2) guarantees that the host of a hole is noffits@ole; whereas
Axiom (3) states that the hole and it's host object are exigrconnected (Casati
and Varzi, 1999).

H(h,z) — —H(x,y) 2
H(h,z) — EC(h,z) 3)

Moreover, Axiom 2 implies that the relatiafi is irreflexive (meaning that no
hole hosts itself) and asymmetric (i.e., the host cannot bela of its hole). In

1As an example, in the general case, for instance, we could a2 is a part of a compound
objecty, and that bottH (h, ) and H (h, ).



The space within a puzzlé&

TPPH
0 86— ot
AN
DC EC

NTPPi
~o yd
@
PO _
TPPI

Figure 2: The RCC8 relations and their conceptual neighbourhoagtdra.

this way, we can establish a first classification of regiobs two sortsholesand
non-holesdefining the sort predicates:

Hole(h) = 3ZJyH(h,y)
Nonhole(x) —Hole(x)

In the rest of the paper, we will use the sorted variablgs to denote holes and
sorted variables, y to denote non-holes, whereasv will be used for regions of
any kind.

2.1 Penetrating objects

An essential characteristic of holes is that they can betpeted by other objects.
Therefore, the hole ontology has to include relations atimitelative location of
a hole with respect to the penetrating object. In a world uelyg populated by
spatial regions, relative location can be expressed by atapelogical relations.
In order to define relative location with respect to a hole,need the concept
of a holeentry boundaryEB) that is defined in (Casati and Varzi, 1999) by the
relation EB(h', h,x), read as i’ is a maximally connected part of the hale
(fiat) boundary that is nowhere a boundary of the hdsin our case, as the host
x of h is uniquely defined, we can just represent thigzd(h’, h) assuming that
Hole(h) is true. If a holeh hasn entry boundaries, we will usually denote them
ash! with 1 < i < n (as we deal with perforating holes,> 2). However, when
n = 2 we will also writeh~ andh* in place ofh! andh? respectively. This is
the case, for instance, of the four holes in the Fishermaully puzzle, so that
we would deal with the fact& B(Ph~, Ph), EB(Ph™, Ph), EB(Rh™, Rh),
EB(Rh*, Rh), and EB(Sh; , Sh;), EB(Sh;r,Shj) for the two sphereg =
1,2.

This paper assumes that any entry boundgrgand any other spatial region
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in this work) has the same dimension as the space within whislembeddeti
This assumption guarantees the intended interpretatid®G8 relations in the
present work.

We can now express the following relations with respect tolgjectz and a
holeh:

e WOut(z,h), read as & is wholly outside:,” if and only if DC(z, h);

e JOut(x,h,h?), read % is just outsideh with respect to entry boundaty,”
and equivalent to

Jy H(h,y) AN EB(h',h) A (EC(z,h%) vV PO(z,h')) A =T PP(z,h) A
(DC(z,y) V EC(z,y));

e POut(x,h,h?), read as is partially outsideh with respect to entry bound-
ary h'” and equivalent to

Jy H(h,y) A EB(h',h) A PO(x, h) A PO(z, h') A PO(z,€) A
(DC(z,y) V EC(x,y));
where¢ represents the complementot) y U h.

o JIn(x, h,ht), read ‘ is just insideh with respect to boundarg?,” and
equivalent to

Jy H(h,y) AN EB(h',h) A (EC(z,h") vV PO(z,h")) NTPP(z,h) A
(DC(‘T’ y) \ EC(.’L‘, y))7

e Win(z,h), read % is wholly insideh,” and equivalent to

PP(x,h) A=3h (EB(h', h) A C(x, hY)).

WOut, JOut, POut, WIn andJIn are depicted in Figure 3, where the host
object is the cuboid, the hole is the cylindrical figure imstie cuboid and the
penetrating object is theshaped figure. Figure 3 can be understood as a sequence
of continuous transitions from the relatiamolly outsideto wholly inside

2In the case of an entry boundary*{ this is equivalent to assuming thiat has a (infinitely) small
fiat thickness.
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(a) WOut (b) JOut (c) POut (d) Jin (e) Win

Figure 3: Relative location of an objeetwith respect to a holé.

It is worth pointing out that, in contrast to (Casati and Vat®999), encoding
the relative location of an object with respect to a hole g$RCC relations al-
lowed us to include botlfOut andJIn into the same formalism since RCC is
defined over thelosureof regions. Therefore, the concepts of just inside and just
outside can coexist with the initial assumption of holespasnoregions. Another
difference between the formalism presented above witheadp that proposed
in (Casati and Varzi, 1999) is the inclusion of the hole ebibyndary in the def-
initions of JOut, POut andJIn, in order to account for the action of an object
passing through a particular hole entry.

When a hole is crossed by a longer object, we may have contmsaif these
relations relative to the involved entry boundaries. Caesifor instance, the se-
guence of situations for inserting the strifg- in the post holePh from its right
boundaryPh™ to its left boundaryPh ™, excluding the rest of the domain ob-
jects. We would move through the situations shown in Figuri@ 4he automated
solution we will present later, we will actually factor odtthe intermediate situa-
tions between state 0 in Figure 4 (the string is wholly outlobke) and state 4 (the
string is crossing a hole through its two boundaries). Umnfaately, the current
relations do not suffice to capture all the information witthie puzzle‘'s domain
due to the flexibility of the string: it may be the case whereesal segments
of the string are entangled inside a particular hole (withemtually crossing it).
Current predicates would just point out that the string idiglly out the two hole
boundaries, but not how many segments of the string are ihdlee

3 Crossings, segments and chains

As explained before, a crucial feature for a suitable puezpgesentation is the
possibility of dealing with the current crossings of a lorjext through the exist-
ing holes, bearing in mind that it can cross the same holeaktimes. Therefore,
we can naturally think about@ossing (regionjnd try to formalise this concept
using our spatial ontology. Formally, létbe a long object and a hole. We
say that the region is acrossingbetween andh, written Crossing(c, h, 1), if

c is a proper part of included inh that is passing through (exactly) two entry
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r Str
. 7

3: POut(Str, Ph, Ph*)  4: POut(Str, Ph, Pht)
AJIn(Str, Ph, Ph™) APOut(Str, Ph, Ph™)

Figure 4: Passing the stringtr through the post hol&h leftwards.

boundaries of.. More formally:

Crossing(c,l,h) = TPP(¢,l) N(TPP(c,h)V EQ(c,h))
AJ2h" Throughl(c,l, h, h")
A=33h" Through(c,1, h, h?) (4)

wherednz P(x) with n > 1 means that there exist at leastlifferent individuals
x satisfyingP(z), that is:

1, 29, ..., Tn( /\ P(xz;) A /\ (x; # x5))

i€[1,n] i,j€[1,n],i#]

whereas predicatBhrough(c, 1, h, ) is defined as:

Through(c,l,h,h") = JIn(c,h,h")NTPP(c,l)
AJy(TPP(y,1) AN EC(y,c) A JOut(y, h, b))

or informally, regionc just inside holeh wrt boundaryh’ is externally connected
to a subregion of just outside:’.

We should also guarantee that distinct hole crossings gtrthe same hole do
not overlap:

Crossing(c, h,1) A Crossing(c',h, ") Nc # ¢ (5)
— DC(c, ")V EC(c,c)

wherel and!’ might refer to the same long object. Note that the sort of long
objects contains only non-perforated bodies. In casesenhés constraint is not
satisfied, Axiom 5 is not satisfied (take a co-axial cableipgshrough a hole as
a counter example).
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As it can be observed, crossings divide a long object as iéievpartitioned by
all the holes itis currently passing through. In the same asagll the crossings of
[ are proper parts of it, we can think about the remaining prisand call them
segmentsA segmentan be defined as a maximal continuous part of a long object
not overlapping with any hole. Formally, we begin defining:

Freepart(z,y) = (PP(z,y)VEQ(x,y))
AVh[Hole(h) — DC(z,h) V EC(z,h)]

meaning that: is a part ofy that does not overlap with any hole Theni; is a
segment of, written Segment(l;, 1) when it is a maximal free part éf that is:

Segment(l;,1) = Freepart(l;,1) AN —=3x[PP(l;,z) A Freepart(z,l)]

Notice that the above definition segments general enough to cover objects
with star shaped tips. For instance, we could perfectlywrapin this way the
segments of an Y-shaped body whose three arms are crosfrguli holes. In
the puzzle, however, we deal with objects of a more restdcthape, we have
calledlong objectsthat show as one of their essential feature that they allow u
recognising dinear sequence of crossings from one of their tips to the other.
Therefore, we include an additional axiom stating thatafoy long object, there
cannot be a segment connecting more than two hole crossings:

Segment(l;,1) A Crossing(c, h,1) N EC(l;, )
NCrossing(c',h',1) N EC(l;,c")
ACrossing(c’,h" 1) N EC(l;, ")
Ne#Acd ="' =cvd =¢

Considering segments for other objects that do not show/lthear” feature is

a topic for future research.
A graphical representation of hole crossings and long ¢sggments is shown

in Figure 5.
h h
\/@——\\\\_1( i’ ~

(a) Hole crossingu. (b) long object segmerdf

Figure 5: Hole crossing and long object segment.

We now use the concepts of hole crossing and long object segmelefine
a chain of crossings of a long object, something essential in oumgta do-
main to keep track of the string status at each situation. éfmé a chain for
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some long object, we distinguish the two opposite extremitiesigfdenoted as
2~ andz™ (using a similar notation to that of hole boundaries) angeetively
called negativeand positive terminalof x. As a thumb rule, when not stated,
we assume in all figures that the rightmost or the topmosesiities are pos-
itive, whereas the leftmost or the bottommost are negatitee(e the left-right
dichotomy dominates the top-bottom one). For example, itiet disk D- is
linked to Str™, while the post bas® is linked toP~. We, thus, associate each
long objectx to a listchain(z) collecting the sequence of all hole crossings made
by z following the direction fromz~ to 2. In the general case, where holes may
haven > 2 entry boundaries;hain(z) would collect apair of hole boundaries
(ht, h7) per each crossing, wheté would be the “entrance” to the hole and

the “exit” in that imaginary travel fromx™ to z™. As an example, consider the
string Str in Figure 6 crossing holds, g andk, that correspond to the interiors of
three hanging T-shirts. The list fehain(Str) would correspond in this case to
(", 13), (9%, 42), (K2, K4)].

h2

1
h
AIIISIISS

Str

Figure 6: An example of crossings as pairs of entry boundaries.

When all holes have. = 2 boundaries, however, we can simplify this nota-
tion by keeping only one boundary per crossing, say for mstathe hole exit.
We illustrate the chain formalisation of the puzzle domasing diagrams. In
these diagrams a box representhade, a circle aregular object a thick line
stands for dong objectand a small black circle represents a link or connec-
tion. Examples of this graphical representation are shawkigure 7. Follow-
ing the previously defined criterionhain(Str) at situationS, (Figure 7(a))
corresponds to the list of “outgoing” boundaries frafw— to Str+, that is,
chain(Str) = [Shi, Pht, Sh$]. Similarly, atS; we would havehain(Str) =
[Shi, Ph*,Shy, Ph™].

In order to provide a formalisation of the lishainin first-order logic we de-
fine a functionnext that will allow us to build the chain structure according to
segments of long objects. To do that we assume an schematésesntation of a
chain as a linear graph whereby its nodes are segments auhies are the hole
crossings that connect two nodes (segments). The grapbk adg&abelled by the
corresponding outgoing hole entry boundary. Thereforeirthial situation of the
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(@) So (initial state) (b) S1 (D2 passes left)

Figure 7: StatesSy andS;.

string Str (Figure 1(a)) could be represented as:

Shi + Shi
Str:0 2% Str: 120 St 2272 Sty 3, (6)

where the numbers preceded by a colon in Formula 6 repraesgetes enu-
merating the string segments.

The functionnext, then, takes a segment (and its index) and gives a tuple rep-
resenting the next hole crossing and the index of the nexherg(sweeping the
long object from the negative to the positive tip). Thereforext(x,i) = (p, j)

represents the labelled graph edge i -2~ z : j. For convenience, the last
segmentin the list : ¢ will further point to a special constaiind, rather than to

a pair(p, j).
The initial situation in the puzzle can be represented nowhbyormula:

next(Str,0) = (Sh{, 1) Anext(Str,1) = (Pht,2)
A next(Str,2) = (Shy,3) A next(Str,3) = End
Anext(P,0) = (Rh',1) Anext(P,1) = End (7)

It is easy to see from an inductive proof that the statemgaresented by For-
mula (7) is equivalent to the list description:

chain(Str) = [Shi, Ph™, Sh3] A chain(P) = [Rh1].

In what follows we use only the list representation of chdamdrevity.

4 Acting on puzzle objects

To emphasise the utility of thehain structure, and for completeness sake, we
recall in this section the formal solution to the puzzle jjwegly obtained in (Ca-
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balar and Santos, 2006). The solution relies on two basicemewts: the action
pass_o (passing a long object terminal through a hole) and the agtizs_h
(passing a holed object through another hole).

The actionpass_o(a, h*) represents passing a long object diphrough some
hole towards the hole boundar§. For example, the executiga.ss_o(Str™, Ph™)
in the initial stateS, leads toS; (both depicted in Figure 7) and corresponds to
moving the positive terminal oftr (which is linked to diskDs) to the left of the
post hole Ph™).

It is clear that the execution qfass_o(z*,h?) (resp. pass_o(z~, h')) may
equally mean that we are adding or removing the hole crodsamg chain(z)
depending on the context. The possible effectsasf_o are depicted in Figure 8,
where if B is h™ (resp.h™) then— B stands forh,~ (resp.h™).

B pass 0(A,B) B

- B
H
T I ""A

pass_o(. A -B)
Figure 8: Possible effects gass_o.

The actiorpass_h(a, b) represents passing a haléowards a hole entry bound-
ary b (belonging to a hole that is disjoint witk). Back to the example, we would
execute the actiopass_h(Ph, Rh™~) on the initial situation leading to the result-
ing state depicted in Figure 9.

Figure 9: Possible effect opass_h.

The most relevant effect of this action is that the stringichahich was pre-
viously unrelated to the ring hole, has gained two new cngssas an effect of
pass_h(Ph, Rh™). In other words, the listzhain(Str) = [Sh{, Ph*, Shi] has
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to be updated tochain(Str) = [Shi, Rh—, Pht, Rh*,Sh]. Note that this
effect is due to the post-conditions of the actj@ss_h and not a consequence of
the mereotopological description of the domain. This isdose we just disregard
the intermediate situations in which a holed object is drasa hole and so, we
are not considering their topological aspects either.

The complete set of possible movements is graphically showFigure 10.
Formally, if we want to executpass_h(z,e) andz is crossed by some string,
then for any string” crossinge, and any occurrence afin chain(Y'), the list of
possible movements would correspond to:

(AR) chain(Y) =[...,a,2%,b,...] = [...,a,e,2%,—e,b,...] with a,b & {e, —e}
ora=-e,b=—e.
(AL) chain(Y)=1[...,—e,z%e,...] = [...,2%,...]
(2R) chain(Y)=1[...,a,2%e,...] = [...,a,e,z%,...]witha # —e
(2L) chain(Y)=1[...,—e,z%a,...] = [..., 2%, —e,a,...] witha # e}
b (1R) b
h L] - h L] |
[ x] x|
7| — 7]
(L)
(2R) ...
h - h
[ x] x|
B -— o |
[] “o T []

Figure 10: Possible effects gfass_h.

An important observation is that, while all the represergtaments in each
movement would be involved in the distinction of the movettgpe, only the
underlined parts constitute the movement effect. This meaninstance, that in
movement (2R)q is only used in the predecessor state to establish that weehav
(2R) movement and not a (1L).
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0: [Rh*], [Sht, Ph*, Shi]
pass_o(Strt, Ph™)

1:[Rh*], [Shi, Pht,Shy, Ph|
pass_o(Pt, Rh™) & pass_h(Ph, Rh™)

2:[], [Sh{,Rh=, PRt RhT,Shy, Rh~, Ph—, Rh]
pass_h(Sha, Rh™)

3:[], [Shi, Rh=, PhT,Shi, Ph—, RhT]
pass_h(Rh, PhT)

4:[], [Sh¥, Ph*, Rh~, Shi, Rh*, Ph]
pass_h(Sha, Rh)

5:[], [Shi, Pht,Shy, Ph™]
Figure 11: A formal solution for the Fisherman'’s puzzle.

Using the chain description of the puzzle and the actionsgmted above a
solution to the Fisherman'’s Folly puzzle can be represebyethe sequence of
chains shown on Figure 11 (and depicted in Figure 12), wiyeeslch state is
identified by its sequence number plus the pair of ligtsin(P) andchain(Str)
in this order. The performed actions in each transition@eriaced between each
statei and the next oné+ 1. Note that State 5 has actually reached the goal since,
at this point, the ring holé?h does not occur in any list, i.e., it is not crossed by
any long object

5 Concluding remarks

In this work we investigated knowledge representationdssegarding the spatial
aspects of a puzzle. The puzzle chosen is called FisherrRalysand is consti-
tuted by an arrangement of rigid objects and non-trivialelats such as holes and
a string. This paper defined the basic elements of an ontabgut the puzzle
using a mereotopological theory about holes (followingdb@lelines in (Casati
and Varzi, 1999)).

We also proposed a novel data structure, catleain for representing the ar-
rangement of the domain objects. Using this data strucallied with the def-

SRemember that the goal of the puzzle is to free the ring fromsiystem of objects, while the
configuration left for the rest of objects is irrelevant.
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Figure 12: The diagrams for the solution presented in Figure 11. Taesb,
andsS; are shown in Figure 7.

initions of two actions, we presented a formal solution te Eisherman’s Folly

puzzle (whose automated reasoning implementation hagiresented elsewhere
(Cabalar and Santos, 2006)). In our current investigatiwashave been suc-
cessfully using similar techniques to provide automatégtgms to various other

puzzles composed of strings, holes and solid objects (@ahatl Santos, 2007).
These findings suggest that the results of the present igageh may be used in

a variety of domains where there is an interplay betweentflexibjects (such as
strings) and immaterial bodies (such as holes).

The present paper is, however, only a first step towards a ledeynderstand-
ing of how to represent and reason about complex arrangsnoémon-trivial
objects that include flexibility or penetrability as sometloéir spatial attributes.
The region-based ontology we propose is an attempt to pe@vithorous account
for the domain objects so that properties about space ceubidved in this con-
text. Nevertheless, our interest in the ontology was to @edifiormalism about
actions and change on spatial knowledge that is capabldwhgguzzles such
as that presented in this paper. The success of the pregertqgrathis endeavour
was partial. On the one hand, the mereotopological thebt (vas the start-
ing point of this work) was rich enough to allow the definitiohhole crossing
string segmerandchain(Section 3). On the other hand, the actions facilitating an
autonomous solution to the puzzle had to be built outsidestiduting mereotopo-
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logical definitions. Therefore, the problem of defining tl@cepts of actions and
change within a spatial domain remains still open.

Another open issue for future research is the considerafiémots in the do-
main and the investigation of the consequent increase indheplexity of prob-
lem solving due to the multitude of states that knots imply.

The ultimate goal of this research is to provide a rigorousant of reasoning
about flexible objects, immaterial bodies and actions wimgl them in order to
facilitate automated reasoning about commonsense shatalledge.
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