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The Space within Fisherman’s Folly:
playing with a puzzle in mereotopology

Paulo E. Santos
FEI, S̃ao Paulo, Brazil

Pedro Cabalar
Coruña University,Spain

In this paper we propose a spatial ontology for reasoning about holes, rigid
objects and a string, taking a classical puzzle as a motivating example. In
this ontology the domain is composed of spatial regions whereby a theory
about holes is defined over a mereotopological basis. Withinthis theory
we define a data structure, named chain, that facilitates a clear and efficient
representation of the puzzle states and its solution.

Qualitative Spatial Reasoning, Commonsense Reasoning

1 Introduction

Understanding the reasoning processes involved in spatialknowledge is one of the
key issues in the investigation of cognition, as space not only shapes our actions
in the commonsense world, but also serves as the scenario in which our everyday
experiences take place. Research inQualitative Spatial Reasoning(QSR) (Stock,
1997; Ligozat et al., 2004) attempts the logical formalisation of spatial knowledge
based on primitive relations defined over elementary spatial entities. For instance,
QSR theories include a mereotopological theory based on theconnectivity be-
tween spatial regions (Randell et al., 1992), the definitionof occlusion and paral-
lax (Randell et al., 2001; Randell and Witkowski, 2002), spatial vagueness (Cohn
et al., 1997; Guesgen, 2002a), the abductive assimilation of sensor data (Santos
and Shanahan, 2002; Santos and Shanahan, 2003; Santos, 2007), as well as the
definition of qualitative theories about distance (Hernández et al., 1995; Gues-
gen, 2002b), boundaries (Meathrel and Galton, 2001), shapes (Schlieder, 1996;
Clementini and Felice, 1997) and so forth (Cohn and Hazarika, 2001).

This work investigates, from a QSR perspective, the spatialknowledge of a do-
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main composed of non-trivial objects such as astring andholed objects. To this
aim, we take as a starting point the formalisation of puzzle-like examples, since
these domains offer a small number of objects while keeping enough complexity
for a challenging problem of knowledge representation. We present a first attempt
to capture the spatial ontology underlying a spatial puzzle, called the Fisherman’s
Folly. An automated solution to this puzzle was previously proposed in (Cabalar
and Santos, 2006) although that work was strictly tackled from a planning per-
spective, without really deepening into the underlying spatial features. In the cur-
rent paper we are concerned instead with the explicit formulation of the spatial
relations involving the relative location of objects with respect to holes. We also
show how holes entry boundaries can be used to provide a suitable representa-
tion of the arrangement of objects in this domain (includingthe string) allowing
an automated solution to the puzzle. In order to accomplish this task, we draw
some attention on how actions can be executed in this domain in order to achieve
a pre-defined goal.

First of all, let us describe the motivating spatial puzzle assumed in this work.

The Fisherman’s Folly puzzle

The elements of the puzzle are a holed post (P ) fixed to a wooden base (B), a
string (Str), a ring (R), a pair of spheres (S1, S2) and a pair of disks (D1, D2).
The spheres can be moved along the string, whereas the disks are fixed at each
string endpoint. The string passes through the post’s hole in a way that one sphere
and one disk remain on each side of the post. It is worth pointing out that the
spheres are larger than the post’s hole, therefore the string cannot be separated
from the post without cutting either the post, or the string,or destroying one of
the spheres. The disks and the ring, in contrast, can pass through the post’s hole.
We should also mention that the disks do not fit into the ring hole, through where
the spheres can pass freely if it is not already occupied by another object.

In this work we assume that neither the length nor the thickness of the string
constrain any solution to the puzzle, i.e. the string is infinitely extensible and
one-dimensional. Relaxing these assumptions is a matter for future work.

In the initial state (shown in Figure 1(a)) the post is in the middle of the ring,
which in its turn is supported on the post’s base. The goal of this puzzle is to find
a sequence of transformations that, while maintaining the physical integrity of the
domain objects, allow us to free the ring from the rest of objects, regardless their
final configuration. Figure 1(b) shows one possible goal state.

Amongst the domain objects, we have also to consider four holes in order to
provide an automated solution to the puzzle. The holes in thepuzzle are: the post
hole (Ph), the ring hole (Rh) and the two sphere holes (Sh1 andSh2). The do-
main entities can be classified into three different sorts:long objects, regular ob-
jectsandholes, corresponding in the puzzle to the sets{P, Str}, {P ′, R, S1, S2,



The space within a puzzle3

(a) Initial (b) Goal: the ring must be free

Figure 1.: A spatial puzzle: the Fisherman’s Folly.

D1, D2, B} and{Ph, Rh, Sh1, Sh2}, respectively. For our purposes, we con-
sider that the sortlong objectsrepresents elliptic cylindrical bodies whose major
axis is much larger than their mean and minor axes; whereasregular objectsiden-
tifies the remainder puzzle objects that are not holes. We actually divide the post
into its top partP ′ containing the hole, and its bottom partP , below the hole. In
this work we only consider permeability through holes, ruling out of our domain
semisolid objects (such as sponges, gelatinous bodies etc).

The goal of this paper is to formalise the Fisherman’s Folly puzzle in terms
of an ontology about holes built upon mereotopological relations (described in
Section 2). We also show how this ontology can be used to definea data structure
that provides a clear and efficient representation of the puzzle states (Section 3)
and the state changes towards the puzzle solution (described in Section 4).

2 A theory about holes

In this section we follow the guidelines proposed in (Varzi,1996; Casati and Varzi,
1999) and construct a basic ontology about holes using mereotopological rela-
tions. In order to accomplish this task, in this work the puzzle objects are identi-
fied with their occupancy regions. We define aholeh in an objectx as the spatial
region constituting that portion ofx’s complement that lies insidex’s occupancy
region. Objectx receives the name ofhostof holeh.

There are at least three distinct types of holes:cavities, i.e. holes that are
entirely hidden inside their hosts;hollows, which are superficial depressions on
the host; and, perforating holes (or tunnels), which are holes that have at least two
distinct entry boundaries. As we will exclusively focus on the latter, from now on
by aholewe will mean a perforating hole.

In the formalisation described below, holes are assumed as open regions whose
boundaries belong to their host objects. The relationship between holes and their
hosts is formalised using the elementary relation:H(h, x), meaning “h is a hole
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in the objectx” (conversely, “x is the host ofh”) (Casati and Varzi, 1999). For
example, in the puzzle domain we have:H(Rh, R)∧H(Sh1, S1)∧H(Sh2, S2)∧
H(Ph, P ′). We will include the constraint:

H(h, x) ∧ H(h, y) → x = y (1)

which asserts that a hole has a unique host. Although this restriction was not
present in Casati & Varzi’s formalisation1, it will allow simplifying the formula-
tion in the current context.

As we assumed that the space is only populated by spatial regions, apart from
the relationH/2, it is convenient to include in the basic theory about holes aset
of mereotopological relations accounting for the connection and the part-whole
relations between spatial regions. In this work we use RCC-8(Randell et al.,
1992) which is a first-order axiomatisation of spatial relations based on a dyadic
primitive relation ofconnectivity(C/2) between two regions. Informally, assum-
ing two regionsx andy, the relationC(x, y), read as“ x is connected withy” ,
is true if and only if theclosuresof x andy haveat least apoint in common.
Assuming theC/2 relation as primitive, and thatx, y andz are variables for spa-
tial regions, the following mereotopological relations can be defined:DC(x, y),
which stands for “x is disconnected fromy”; EQ(x, y), for “x is equal toy”;
PO(x, y), for “x partially overlapsy”; EC(x, y), for “x andy are externally con-
nected”;TPP (x, y), for “x is a tangential proper part ofy”; NTPP (x, y), for
“x is a non-tangential proper part ofy”; and, TPPi/2 andNTPPi/2 are the
inverse relations ofTPP/2 andNTPP/2 respectively. These relations are de-
picted in Figure 2. We writePP (x, y) (“x is a proper part ofy”) to stand for
TPP (x, y) ∨ NTPP (x, y).

Here we follow the original interpretation ofC/2 as proposed in (Randell et al.,
1992) (and further explained in (Cohn et al., 1997)). Although there are point-free
interpretations of connectivity, understandingC(x, y) holding whenthe topolog-
ical closures ofx andy share at least one pointallows us to represent an object
position with respect to a hole in an appropriate way, as we shall see further in this
paper.

Assuming RCC, the relationH(h, x) can be constrained by Axioms (2) and (3)
below. Axiom (2) guarantees that the host of a hole is not itself a hole; whereas
Axiom (3) states that the hole and it’s host object are externally connected (Casati
and Varzi, 1999).

H(h, x) → ¬H(x, y) (2)

H(h, x) → EC(h, x) (3)

Moreover, Axiom 2 implies that the relationH is irreflexive (meaning that no
hole hosts itself) and asymmetric (i.e., the host cannot be ahole of its hole). In

1As an example, in the general case, for instance, we could have thatx is a part of a compound
objecty, and that bothH(h, x) andH(h, y).



The space within a puzzle5

x

y

x

x y

x

y

x

y

x

y

y yx

xy

DC EC PO

TPP

TPPi

EQ
NTPP

NTPPi

Figure 2.: The RCC8 relations and their conceptual neighbourhood diagram.

this way, we can establish a first classification of regions into two sorts,holesand
non-holes, defining the sort predicates:

Hole(h) ≡ ∃yH(h, y)

Nonhole(x) ≡ ¬Hole(x)

In the rest of the paper, we will use the sorted variablesh, h′ to denote holes and
sorted variablesx, y to denote non-holes, whereasv, w will be used for regions of
any kind.

2.1 Penetrating objects

An essential characteristic of holes is that they can be penetrated by other objects.
Therefore, the hole ontology has to include relations aboutthe relative location of
a hole with respect to the penetrating object. In a world uniquely populated by
spatial regions, relative location can be expressed by mereotopological relations.
In order to define relative location with respect to a hole, weneed the concept
of a holeentry boundary(EB) that is defined in (Casati and Varzi, 1999) by the
relationEB(hi, h, x), read as “hi is a maximally connected part of the holeh
(fiat) boundary that is nowhere a boundary of the hostx”. In our case, as the host
x of h is uniquely defined, we can just represent this asEB(hi, h) assuming that
Hole(h) is true. If a holeh hasn entry boundaries, we will usually denote them
ashi with 1 ≤ i ≤ n (as we deal with perforating holes,n ≥ 2). However, when
n = 2 we will also writeh− andh+ in place ofh1 andh2 respectively. This is
the case, for instance, of the four holes in the Fisherman’s Folly puzzle, so that
we would deal with the factsEB(Ph−, Ph), EB(Ph+, Ph), EB(Rh−, Rh),
EB(Rh+, Rh), andEB(Sh−

j , Shj), EB(Sh+
j , Shj) for the two spheresj =

1, 2.
This paper assumes that any entry boundaryhi (and any other spatial region
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in this work) has the same dimension as the space within whichit is embedded2.
This assumption guarantees the intended interpretation ofRCC relations in the
present work.

We can now express the following relations with respect to anobjectx and a
holeh:

• WOut(x, h), read as “x is wholly outsideh,” if and only if DC(x, h);

• JOut(x, h, hi), read “x is just outsideh with respect to entry boundaryhi,”
and equivalent to

∃y H(h, y) ∧ EB(hi, h) ∧ (EC(x, hi) ∨ PO(x, hi)) ∧ ¬TPP (x, h) ∧

(DC(x, y) ∨ EC(x, y));

• POut(x, h, hi), read as “x ispartially outsideh with respect to entry bound-
aryhi,” and equivalent to

∃y H(h, y) ∧ EB(hi, h) ∧ PO(x, h) ∧ PO(x, hi) ∧ PO(x, ξ) ∧

(DC(x, y) ∨ EC(x, y));

whereξ represents the complement ofx ∪ y ∪ h.

• JIn(x, h, hi), read “x is just insideh with respect to boundaryhi,” and
equivalent to

∃y H(h, y) ∧ EB(hi, h) ∧ (EC(x, hi) ∨ PO(x, hi)) ∧ TPP (x, h) ∧

(DC(x, y) ∨ EC(x, y));

• WIn(x, h), read “x is wholly insideh,” and equivalent to

PP (x, h) ∧ ¬∃hi(EB(hi, h) ∧ C(x, hi)).

WOut, JOut, POut, WIn andJIn are depicted in Figure 3, where the host
object is the cuboid, the hole is the cylindrical figure inside the cuboid and the
penetrating object is thev-shaped figure. Figure 3 can be understood as a sequence
of continuous transitions from the relationwholly outsideto wholly inside.

2In the case of an entry boundary (hi) this is equivalent to assuming thathi has a (infinitely) small
fiat thickness.
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Figure 3.: Relative location of an objectv with respect to a holeh.

It is worth pointing out that, in contrast to (Casati and Varzi, 1999), encoding
the relative location of an object with respect to a hole using RCC relations al-
lowed us to include bothJOut andJIn into the same formalism since RCC is
defined over theclosureof regions. Therefore, the concepts of just inside and just
outside can coexist with the initial assumption of holes as open regions. Another
difference between the formalism presented above with respect to that proposed
in (Casati and Varzi, 1999) is the inclusion of the hole entryboundary in the def-
initions of JOut, POut andJIn, in order to account for the action of an object
passing through a particular hole entry.

When a hole is crossed by a longer object, we may have combinations of these
relations relative to the involved entry boundaries. Consider, for instance, the se-
quence of situations for inserting the stringStr in the post holePh from its right
boundaryPh+ to its left boundaryPh−, excluding the rest of the domain ob-
jects. We would move through the situations shown in Figure 4. In the automated
solution we will present later, we will actually factor out all the intermediate situa-
tions between state 0 in Figure 4 (the string is wholly out of ahole) and state 4 (the
string is crossing a hole through its two boundaries). Unfortunately, the current
relations do not suffice to capture all the information within the puzzle‘s domain
due to the flexibility of the string: it may be the case where several segments
of the string are entangled inside a particular hole (without actually crossing it).
Current predicates would just point out that the string is partially out the two hole
boundaries, but not how many segments of the string are in thehole.

3 Crossings, segments and chains

As explained before, a crucial feature for a suitable puzzlerepresentation is the
possibility of dealing with the current crossings of a long object through the exist-
ing holes, bearing in mind that it can cross the same hole several times. Therefore,
we can naturally think about acrossing (region)and try to formalise this concept
using our spatial ontology. Formally, letl be a long object andh a hole. We
say that the regionc is acrossingbetweenl andh, written Crossing(c, h, l), if
c is a proper part ofl included inh that is passing through (exactly) two entry
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Str

P’

PhPh- +

0: WOut(Str, Ph) 1: JOut(Str, Ph, Ph+) 2: POut(Str, Ph, Ph+)

3: POut(Str, Ph, Ph+) 4: POut(Str, Ph, Ph+)
∧JIn(Str, Ph, Ph−) ∧POut(Str, Ph, Ph−)

Figure 4.: Passing the stringStr through the post holePh leftwards.

boundaries ofh. More formally:

Crossing(c, l, h) ≡ TPP (c, l) ∧ (TPP (c, h) ∨ EQ(c, h))

∧∃2hi Through(c, l, h, hi)

∧¬∃3hi Through(c, l, h, hi) (4)

where∃nxP (x) with n ≥ 1 means that there exist at leastn different individuals
x satisfyingP (x), that is:

∃x1, x2, . . . , xn(
∧

i∈[1,n]

P (xi) ∧
∧

i,j∈[1,n],i6=j

(xi 6= xj))

whereas predicateThrough(c, l, h, hi) is defined as:

Through(c, l, h, hi) ≡ JIn(c, h, hi)∧TPP (c, l)

∧∃y(TPP (y, l) ∧ EC(y, c) ∧ JOut(y, h, hi))

or informally, regionc just inside holeh wrt boundaryhi is externally connected
to a subregion ofl just outsidehi.

We should also guarantee that distinct hole crossings through the same hole do
not overlap:

Crossing(c, h, l) ∧ Crossing(c′, h, l′) ∧ c 6= c′ (5)

→ DC(c, c′) ∨ EC(c, c′)

wherel andl′ might refer to the same long object. Note that the sort of long
objects contains only non-perforated bodies. In cases where this constraint is not
satisfied, Axiom 5 is not satisfied (take a co-axial cable passing through a hole as
a counter example).
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As it can be observed, crossings divide a long object as if it were partitioned by
all the holes it is currently passing through. In the same wayas all the crossings of
l are proper parts of it, we can think about the remaining partsof l and call them
segments. A segmentcan be defined as a maximal continuous part of a long object
not overlapping with any hole. Formally, we begin defining:

Freepart(x, y) ≡ (PP (x, y) ∨ EQ(x, y))

∧∀h[Hole(h) → DC(x, h) ∨ EC(x, h)]

meaning thatx is a part ofy that does not overlap with any holeh. Thenli is a
segment ofl, writtenSegment(li, l) when it is a maximal free part ofl, that is:

Segment(li, l) ≡ Freepart(li, l) ∧ ¬∃x[PP (li, x) ∧ Freepart(x, l)]

Notice that the above definition ofsegmentis general enough to cover objects
with star shaped tips. For instance, we could perfectly capture in this way the
segments of an Y-shaped body whose three arms are crossing different holes. In
the puzzle, however, we deal with objects of a more restrictive shape, we have
called long objects, that show as one of their essential feature that they allow us
recognising alinear sequence of crossings from one of their tips to the other.
Therefore, we include an additional axiom stating that, forany long objectl, there
cannot be a segment connecting more than two hole crossings:

Segment(li, l) ∧ Crossing(c, h, l) ∧ EC(li, c)

∧Crossing(c′, h′, l) ∧ EC(li, c
′)

∧Crossing(c′′, h′′, l) ∧ EC(li, c
′′)

∧c 6= c′ → c′′ = c ∨ c′′ = c′

Considering segments for other objects that do not show this“linear” feature is
a topic for future research.

A graphical representation of hole crossings and long object segments is shown
in Figure 5.

hC

h

(a) Hole crossinghc

hi hj

l i

(b) long object segmentli

Figure 5.: Hole crossing and long object segment.

We now use the concepts of hole crossing and long object segment to define
a chain of crossings of a long object, something essential in our example do-
main to keep track of the string status at each situation. To define a chain for
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some long objectx, we distinguish the two opposite extremities ofx, denoted as
x− andx+ (using a similar notation to that of hole boundaries) and respectively
callednegativeandpositive terminalsof x. As a thumb rule, when not stated,
we assume in all figures that the rightmost or the topmost extremities are pos-
itive, whereas the leftmost or the bottommost are negative (where the left-right
dichotomy dominates the top-bottom one). For example, the right disk D2 is
linked toStr+, while the post baseB is linked toP−. We, thus, associate each
long objectx to a listchain(x) collecting the sequence of all hole crossings made
by x following the direction fromx− to x+. In the general case, where holes may
haven ≥ 2 entry boundaries,chain(x) would collect apair of hole boundaries
(hi, hj) per each crossing, wherehi would be the “entrance” to the hole andhj

the “exit” in that imaginary travel fromx− to x+. As an example, consider the
stringStr in Figure 6 crossing holesh, g andk, that correspond to the interiors of
three hanging T-shirts. The list forchain(Str) would correspond in this case to
[(h1, h3), (g1, g2), (k2, k4)].

h1

h4

h2

h3 g1
g2

g3

g4

k2

k3
k1

k4
Str-

Str+

Figure 6.: An example of crossings as pairs of entry boundaries.

When all holes haven = 2 boundaries, however, we can simplify this nota-
tion by keeping only one boundary per crossing, say for instance, the hole exit.
We illustrate the chain formalisation of the puzzle domain using diagrams. In
these diagrams a box represents ahole, a circle aregular object, a thick line
stands for along objectand a small black circle represents a link or connec-
tion. Examples of this graphical representation are shown in Figure 7. Follow-
ing the previously defined criterion,chain(Str) at situationS0 (Figure 7(a))
corresponds to the list of “outgoing” boundaries fromStr− to Str+, that is,
chain(Str) = [Sh+

1 , Ph+, Sh+
2 ]. Similarly, atS1 we would havechain(Str) =

[Sh+
1 , Ph+, Sh+

2 , Ph−].
In order to provide a formalisation of the listchain in first-order logic we de-

fine a functionnext that will allow us to build the chain structure according to
segments of long objects. To do that we assume an schematic representation of a
chain as a linear graph whereby its nodes are segments and itsedges are the hole
crossings that connect two nodes (segments). The graph edges are labelled by the
corresponding outgoing hole entry boundary. Therefore, the initial situation of the
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+
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(b) S1 (D2 passes left)

Figure 7.: StatesS0 andS1.

stringStr (Figure 1(a)) could be represented as:

Str : 0
Sh

+

1−→ Str : 1
Ph+

−→ Str : 2
Sh

+

2−→ Str : 3, (6)

where the numbers preceded by a colon in Formula 6 represent indexes enu-
merating the string segments.

The functionnext, then, takes a segment (and its index) and gives a tuple rep-
resenting the next hole crossing and the index of the next segment (sweeping the
long object from the negative to the positive tip). Therefore,next(x, i) = 〈p, j〉

represents the labelled graph edgex : i
p

−→ x : j. For convenience, the last
segment in the listx : i will further point to a special constantEnd, rather than to
a pair〈p, j〉.

The initial situation in the puzzle can be represented now bythe formula:

next(Str, 0) = 〈Sh+
1 , 1〉 ∧ next(Str, 1) = 〈Ph+, 2〉

∧ next(Str, 2) = 〈Sh+
2 , 3〉 ∧ next(Str, 3) = End

∧ next(P, 0) = 〈Rh+, 1〉 ∧ next(P, 1) = End (7)

It is easy to see from an inductive proof that the statement represented by For-
mula (7) is equivalent to the list description:

chain(Str) = [Sh+
1 , Ph+, Sh+

2 ] ∧ chain(P ) = [Rh+].

In what follows we use only the list representation of chainsfor brevity.

4 Acting on puzzle objects

To emphasise the utility of thechain structure, and for completeness sake, we
recall in this section the formal solution to the puzzle previously obtained in (Ca-
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balar and Santos, 2006). The solution relies on two basic movements: the action
pass o (passing a long object terminal through a hole) and the action pass h
(passing a holed object through another hole).

The actionpass o(a, hi) represents passing a long object tipa through some
hole towards the hole boundaryhi. For example, the executionpass o(Str+, Ph−)
in the initial stateS0 leads toS1 (both depicted in Figure 7) and corresponds to
moving the positive terminal ofStr (which is linked to diskD2) to the left of the
post hole (Ph−).

It is clear that the execution ofpass o(x+, hi) (resp. pass o(x−, hi)) may
equally mean that we are adding or removing the hole crossingfrom chain(x)
depending on the context. The possible effects ofpass o are depicted in Figure 8,
where ifB is h+ (resp.h−) then−B stands forh− (resp.h+).

H A

-B B
HA

-B B pass_o(A,B)

pass_o(A,-B)

Figure 8.: Possible effects ofpass o.

The actionpass h(a, b) represents passing a holea towards a hole entry bound-
ary b (belonging to a hole that is disjoint witha). Back to the example, we would
execute the actionpass h(Ph, Rh−) on the initial situation leading to the result-
ing state depicted in Figure 9.

Ph

- +

- +

Sh1 Sh2- + - +
D1

Str

P

D2

B

Rh
+

-

-

+

Figure 9.: Possible effect ofpass h.

The most relevant effect of this action is that the string chain, which was pre-
viously unrelated to the ring hole, has gained two new crossings as an effect of
pass h(Ph, Rh−). In other words, the list:chain(Str) = [Sh+

1 , Ph+, Sh+
2 ] has
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to be updated to:chain(Str) = [Sh+
1 , Rh−, Ph+, Rh+, Sh+

2 ]. Note that this
effect is due to the post-conditions of the actionpass h and not a consequence of
the mereotopological description of the domain. This is because we just disregard
the intermediate situations in which a holed object is crossing a hole and so, we
are not considering their topological aspects either.

The complete set of possible movements is graphically shownin Figure 10.
Formally, if we want to executepass h(x, e) andx is crossed by some string,
then for any stringY crossingx, and any occurrence ofx in chain(Y ), the list of
possible movements would correspond to:

(1R) chain(Y ) = [. . . , a, xz, b, . . . ] =⇒ [. . . , a, e, xz,−e, b, . . . ] with a, b 6∈ {e,−e}
or a = e, b = −e.

(1L) chain(Y ) = [. . . ,−e, xz, e, . . . ] =⇒ [. . . , xz, . . . ]

(2R) chain(Y ) = [. . . , a, xz, e, . . . ] =⇒ [. . . , a, e, xz, . . . ] with a 6= −e

(2L) chain(Y ) = [. . . ,−e, xz, a, . . . ] =⇒ [. . . , xz,−e, a, . . . ] with a 6= e}

h

x

a

b

h

x

a

b
(1R)

(1L)

h

x

a

h

x

a

(2R)

(2L)

Figure 10.: Possible effects ofpass h.

An important observation is that, while all the representedelements in each
movement would be involved in the distinction of the movement type, only the
underlined parts constitute the movement effect. This means, for instance, that in
movement (2R),a is only used in the predecessor state to establish that we have a
(2R) movement and not a (1L).
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0 : [Rh+], [Sh+
1 , Ph+, Sh+

2 ]
pass o(Str+, Ph−)

1 : [Rh+], [Sh+
1 , Ph+, Sh+

2 , Ph−]
pass o(P+, Rh−) & pass h(Ph, Rh−)

2 : [ ], [Sh+
1 , Rh−, Ph+, Rh+, Sh+

2 , Rh−, Ph−, Rh+]
pass h(Sh2, Rh−)

3 : [ ], [Sh+
1 , Rh−, Ph+, Sh+

2 , Ph−, Rh+]
pass h(Rh, Ph+)

4 : [ ], [Sh+
1 , Ph+, Rh−, Sh+

2 , Rh+, Ph−]
pass h(Sh2, Rh+)

5 : [ ], [Sh+
1 , Ph+, Sh+

2 , Ph−]

Figure 11.: A formal solution for the Fisherman’s puzzle.

Using the chain description of the puzzle and the actions presented above a
solution to the Fisherman’s Folly puzzle can be representedby the sequence of
chains shown on Figure 11 (and depicted in Figure 12), whereby each state is
identified by its sequence number plus the pair of listschain(P ) andchain(Str)
in this order. The performed actions in each transition are interlaced between each
statei and the next onei+1. Note that State 5 has actually reached the goal since,
at this point, the ring holeRh does not occur in any list, i.e., it is not crossed by
any long object3.

5 Concluding remarks

In this work we investigated knowledge representation issues regarding the spatial
aspects of a puzzle. The puzzle chosen is called Fisherman’sFolly and is consti-
tuted by an arrangement of rigid objects and non-trivial elements such as holes and
a string. This paper defined the basic elements of an ontologyabout the puzzle
using a mereotopological theory about holes (following theguidelines in (Casati
and Varzi, 1999)).

We also proposed a novel data structure, calledchain, for representing the ar-
rangement of the domain objects. Using this data structure,allied with the def-

3Remember that the goal of the puzzle is to free the ring from the system of objects, while the
configuration left for the rest of objects is irrelevant.



The space within a puzzle15

Ph

-

+

- +

Sh1 Sh2- + - +
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P

B

Rh
+

-
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+

D2

S2

Ph

-

+
- +

Sh2- +
D1
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B
-

+
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Sh1- +
Str

-

+

Sh2- +
D1

P
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-

+

D2
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Sh1- +

Str

Ph- +

-

+

Sh2- +
D1

P

B
-

+

D2

S5

Rh -+

Sh1- +

Str
Ph- +

Figure 12.: The diagrams for the solution presented in Figure 11. The statesS0

andS1 are shown in Figure 7.

initions of two actions, we presented a formal solution to the Fisherman’s Folly
puzzle (whose automated reasoning implementation has beenpresented elsewhere
(Cabalar and Santos, 2006)). In our current investigationswe have been suc-
cessfully using similar techniques to provide automated solutions to various other
puzzles composed of strings, holes and solid objects (Cabalar and Santos, 2007).
These findings suggest that the results of the present investigation may be used in
a variety of domains where there is an interplay between flexible objects (such as
strings) and immaterial bodies (such as holes).

The present paper is, however, only a first step towards a complete understand-
ing of how to represent and reason about complex arrangements of non-trivial
objects that include flexibility or penetrability as some oftheir spatial attributes.
The region-based ontology we propose is an attempt to provide a rigorous account
for the domain objects so that properties about space could be proved in this con-
text. Nevertheless, our interest in the ontology was to define a formalism about
actions and change on spatial knowledge that is capable of solving puzzles such
as that presented in this paper. The success of the present paper on this endeavour
was partial. On the one hand, the mereotopological theory (that was the start-
ing point of this work) was rich enough to allow the definitionof hole crossing,
string segmentandchain(Section 3). On the other hand, the actions facilitating an
autonomous solution to the puzzle had to be built outside thestarting mereotopo-
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logical definitions. Therefore, the problem of defining the concepts of actions and
change within a spatial domain remains still open.

Another open issue for future research is the considerationof knots in the do-
main and the investigation of the consequent increase in thecomplexity of prob-
lem solving due to the multitude of states that knots imply.

The ultimate goal of this research is to provide a rigorous account of reasoning
about flexible objects, immaterial bodies and actions involving them in order to
facilitate automated reasoning about commonsense spatialknowledge.

Acknowledgements: Paulo Santos acknowledges support from FAPESP, São
Paulo, Brazil; Pedro Cabalar is partially supported by Spanish Ministry MEC
project TIN2006-15455-C03-02, Spain.

References

Cabalar, P. and Santos, P. (2006). Strings and holes: an exercise on spatial reason-
ing. In Proc. of SBIA-IBERAMIA, volume 4140 ofLNAI, pages 419–429.

Cabalar, P. and Santos, P. (2007). Formalising the fisherman’s folly puzzle.
Manuscript.

Casati, R. and Varzi, A. C. (1999).Parts and Places: the structures of spatial
representation. MIT Press.

Clementini, E. and Felice, P. D. (1997). A global framework for qualitative shape
description.GeoInformatica, 1(1):11–27.

Cohn, A. G., Bennett, B., Gooday, J., and Gotts, N. (1997). Representing and
reasoning with qualitative spatial relations about regions. In Stock, O., ed-
itor, Spatial and Temporal Reasoning, pages 97 – 134. Kluwer Academic
Publishers.

Cohn, A. G. and Hazarika, S. M. (2001). Qualitative spatial representation and
reasoning: An overview.Fundamenta Informaticae, 46(1-2):1–29.

Guesgen, H. (2002a). From the egg-yolk to the scrambled-eggtheory. InProc.
FLAIRS, pages 476–480.

Guesgen, H. (2002b). Reasoning about distance based on fuzzy sets. Applied
Intelligence (Special Issue on Spatial and Temporal Reasoning).

Hernández, D., Clementini, E., and di Felice, P. (1995). Qualitative distances. In
Kuhn, W. and Frank, A., editors,LNAI, pages 45–58. Springer-Verlag.

Ligozat, G., Mitra, D., and Condotta, J.-F. (2004). Spatialand temporal reasoning:
beyond Allen’s calculus.AI Communications archive, 17(4):223–233.



The space within a puzzle17

Meathrel, R. C. and Galton, A. P. (2001). A hierarchy of boundary-based shape
descriptors. InProc. of IJCAI, pages 1359–1364.

Randell, D., Cui, Z., and Cohn, A. (1992). A spatial logic based on regions and
connection. InProc. of KR, pages 165–176, Cambridge, U.S.

Randell, D. and Witkowski, M. (2002). Building large composition tables via
axiomatic theories. InProc. of KR, pages 26–35, Toulouse, France.

Randell, D., Witkowski, M., and Shanahan, M. (2001). From images to bodies:
Modeling and exploiting spatial occlusion and motion parallax. In Proc. of
IJCAI, pages 57–63, Seattle, U.S.

Santos, P. (2007). Reasoning about depth and motion from an observer’s view-
point. Spatial Cognition and Computation, 7(2):133–178.

Santos, P. and Shanahan, M. (2002). Hypothesising object relations from image
transitions. In van Harmelen, F., editor,Proc. of ECAI, pages 292–296, Lyon,
France.

Santos, P. and Shanahan, M. (2003). A logic-based algorithmfor image sequence
interpretation and anchoring. InProc. of IJCAI, pages 1408–1410, Acapulco,
Mexico.

Schlieder, C. (1996). Qualitative shape representation. In Burrough, P. A. and
Frank, A. U., editors,Geographic Objects with Indeterminate Boundaries,
pages 123–140. Taylor & Francis Inc.

Stock, O., editor (1997).Spatial and Temporal Reasoning. Kluwer Academic
Publishers.

Varzi, A. C. (1996). Reasoning about space: The hole story.Logic and Logical
Philosophy, 4:3–39.


