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EXTENDED VERSION

Abstract. In this paper we propose an extension of Answer Set Pro-
gramming (ASP) [1], and in particular, of its most general logical coun-
terpart, Quantified Equilibrium Logic (QEL) [2], to deal with partial
functions. Although the treatment of equality in QEL can be established
in different ways, we first analyse the choice of decidable equality with
complete functions and Herbrand models, recently proposed in the liter-
ature [3]. We argue that this choice yields some counterintuitive effects
from a logic programming and knowledge representation point of view.
We then propose a variant called QEL=

F where the set of functions is par-
titioned into partial and Herbrand functions (we also call constructors).
In the rest of the paper, we show a direct connection to Scott’s Logic of
Existence [4] and present a practical application, proposing an extension
of normal logic programs to deal with partial functions and equality, so
that they can be translated into function-free normal programs, being
possible in this way to compute their answer sets with any standard ASP
solver.

1 Introduction

Since its introduction two decades ago, the paradigm of Answer Set Program-
ming (ASP) [5] has gradually become one of the most successful and practical
formalisms for Knowledge Representation due to its flexibility, expressiveness
and current availability of efficient solvers. This success can be easily checked
by the continuous and plentiful presence of papers on ASP in the main con-
ferences and journals on Logic Programming, Knowledge Representation and
Artificial Intelligence during the last years. The declarative semantics of ASP
has allowed many syntactic extensions that have simplified the formalisation of
complex domains in different application areas like constraint satisfaction prob-
lems, planning or diagnosis.

In this paper we consider one more syntactic extension that is an underlying
feature in most application domains: the use of (partial) functions. Most ASP
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programs include some predicates that are nothing else than relational repre-
sentations of functions from the original domain being modelled. For instance,
when modelling the typical educational example of family relationships, we may
use a predicate mother(X,Y ) to express that X’s mother is Y , but of course,
we must add an additional constraint to ensure that Y is unique wrt X, i.e.,
that the predicate actually acts as the function mother(X) = Y . In fact, it is
quite common that first time Prolog students use this last notation as their first
attempt. Functions are not only a natural element for knowledge representation,
but can also simplify in a considerable way ASP programs. Apart from avoiding
constraints for uniqueness of value, the possibility of nesting functional terms like
in W = mother(father(mother(X))) allows a more compact and readable repre-
sentation than the relational version mother(X,Y ), father(Y, Z),mother(Z,W )
involving extra variables, which may easily mean a source of formalisation er-
rors. Similarly, as we will see later, the use of partial functions can also save the
programmer from including explicit conditions in the rule bodies to check that
the rule head is actually defined.

The addition of functions to ASP is not new at all, although there exist two
different ways in which functions are actually understood. Most of the existing
work in the topic (like the general approaches [6–8] or the older use of function
Result for Situation Calculus inside ASP [9]) treat functions in the same way as
Prolog, that is, they are just a way for constructing the Herbrand universe, and so
they satisfy the unique names assumption – e.g. mother(john) = mary is always
false. A different alternative is dealing with functions in a more similar way to
Predicate Calculus, as done for instance in Functional Logic Programming [10].
The first and most general approach in this direction is due to the logical char-
acterisation of ASP in terms of Equilibrium Logic [11] and, in particular, to its
extension to first order theories, Quantified Equilibrium Logic (QEL) [2]. As a
result of this characterisation, the concept of stable model is now defined for
any theory from predicate calculus with equality. In fact, stable models can be
alternatively described by a second-order logic operator [12] quite close to Cir-
cumscription [13], something that has been already used, for instance, to study
strong equivalence for programs with variables [3]. Another alternative for ASP
with (non-Herbrand) functions has been very recently presented in [14], with an
apparently similar behaviour to [2].

As we will explain in the next section, we claim that the exclusive use of Her-
brand functions and the currently proposed interpretation of equality in QEL
with the requirement for functions to be complete (something that [14] imposes
too) yield some counterintuitive results when introducing functions for knowl-
edge representation. To solve these problems, we propose a variation of QEL
that uses a similar structure to the logical characterisation [15] for functional
logic programs, where we separate Herbrand functions (or constructors) from
partial functions. We further show how our semantics for partial functions has
a direct relation to the Logic of Existence (or E-logic) proposed by Scott [4].

The rest of the paper is organized as follows. In the next section, we in-
formally consider some examples of knowledge representation with functions in



ASP, commenting the apparently expected behaviour and the problems that arise
when using the current proposal for QEL. In Section 3, we introduce our variant
called QEL=

F . Section 4 defines some useful derived operators, many of them
directly extracted from E-logic and showing the same behaviour. In Section 5
we consider a syntactic subclass of logic programs with partial functions and
Herbrand constants, and show how they can be translated into (non-functional)
normal logic programs afterwards. Finally, Section 6 contains a brief discussion
about related work and Section 7 concludes the paper.

2 A Motivating Example

Consider the following simple scenario with a pair of rules.

Example 1. When deciding the second course of a given meal once the first
course is fixed, we want to apply the following criterion: on Fridays, we repeat
the first course as second one; the rest of week days, we choose fish if the first
was pasta. ut

A straightforward encoding of these rules1 into ASP would correspond to the
program Π1:

second(fish)← first(pasta) ∧ ¬friday (1)
second(X)← first(X) ∧ friday (2)

⊥ ← first(X) ∧ first(Y ) ∧X 6= Y (3)
⊥ ← second(X) ∧ second(Y ) ∧X 6= Y (4)

where the last two rules just represent that each course is unique, i.e., first(salad)
and first(pasta) cannot be simultaneously true, for instance. In fact, these con-
straints immediately point out that first and second are 0-ary functions. A very
naive attempt to use these functions for representing our example problem could
be the pair of formulas Π2:

second = fish← first = pasta ∧ ¬friday (5)
second = first← friday (6)

Of course, Π2 is not a logic program, but it can still be given a logic programming
meaning by interpreting it under Herbrand models of QEL, or the equivalent re-
cent characterisation of stable models for first order theories [12]. Unfortunately,
the behaviour of Π2 in QEL with Herbrand models will be quite different to
that of Π1 by several reasons that can be easily foreseen. First of all, there exists
now a qualitative difference between functions first and second with respect to
fish and pasta. For instance, while it is clear that fish = pasta must be false,
we should allow second = first to cope with our Fridays criterion. If we deal

1 As a difference wrt to the typical ASP notation, we use ¬ to represent default
negation and, instead of a comma, we use ∧ to separate literals in the body.



with Herbrand models or unique names assumption, the four constants would
be pairwise different and (5) would be equivalent to ⊥ ← ⊥, that is, a tautology,
whereas (6) would become the constraint ⊥ ← friday.

Even after limiting the unique names assumption only to constants fish and
pasta, new problems arise. For instance, the approaches in [2, 12, 3, 14] deal with
complete functions and the axiom of decidable equality :

x = y ∨ ¬(x = y) (DE)

This axiom is equivalent to x = y ← ¬¬(x = y) which informally implies that
we always have a justification to assign any value to any function. Thus, for
instance, if it is not Friday and we do not provide any information about the
first course, i.e., no atom first(X) holds, then Π1 will not derive any information
about the second course, that is, no atom second(X) is derived. In Π2, however,
functions first and second must always have a value, which is further justified
in any stable model by (DE). As a result, we get that a possible stable model
is, for instance, first = fish and second = pasta. A related problem of axiom
(DE) is that it allows rewriting a rule like (5) as the constraint:

⊥ ← first = pasta ∧ ¬friday ∧ ¬(second = fish)

whose relational counterpart would be

⊥ ← first(pasta) ∧ ¬friday ∧ ¬second(fish) (7)

and whose behaviour in logic programming is very different from the original
rule (1). As an example, while Π1 ∪ {first(pasta)} entails second(fish), the
same program after replacing (1) by (7) has no stable models.

Finally, even after removing decidable equality, we face a new problem that
has to do with directionality in the equality symbol when used in the rule heads.
The symmetry of ‘=’ allows rewriting (6) as:

first = second← friday (8)

that in a relational notation would be the rule:

first(X)← second(X) ∧ friday (9)

which, again, has a very different meaning from the original (2). For instance
Π1 ∪ {friday, second(fish)} does not entail anything about the first course,
whereas if we replace in this program (2) by (9), we obtain first(fish). This
is counterintuitive, since our program was intended to derive facts about the
second course, and not about the first one. To sum up, we will need some kind
of new directional operator to specify the function value in a rule head.

3 Quantified Equilibrium Logic with Partial Functions

The definition of propositional Equilibrium Logic [11] relied on establishing a
selection criterion on models of the intermediate logic, called the logic of Here-
and-There (HT) [16]. The first order case [2] followed similar steps, introducing



a quantified version of HT, called SQHT= that stands for Quantified HT with
static domains2 and equality. In this section we describe the syntax and semantics
of a variant, called SQHT=

F , for dealing with partial functions.
We begin by defining a first-order language by its signature, a tuple Σ =

〈C,F ,P〉 of disjoint sets where C and F are sets of function names and P a set
of predicate names. We assume that each function (resp. predicate) name has
the form f/n where f is the function (resp. predicate) symbol, and n ≥ 0 is
an integer denoting the number of arguments (or arity). Elements in C will be
called Herbrand functions (or constructors), whereas elements in F will receive
the name of partial functions. The sets C0 (Herbrand constants) and F0 (partial
constants) respectively represent the elements of C and F with arity 0. We
assume C0 contains at least one element.

First-order formulas are built up in the usual way, with the same syntax of
classical predicate calculus with equality =. We assume that ¬ϕ is defined as
ϕ → ⊥ whereas x 6= y just stands for ¬(x = y). Given any set of functions A
we write Terms(A) to stand for the set of ground terms built from functions
(and constants) in A. In particular, the set of all possible ground terms for
signature Σ = 〈C,F ,P〉 would be Terms(C ∪ F) whereas the subset Terms(C)
will be called the Herbrand Universe of L. The Herbrand Base HB(C,P) is a
set containing all atoms that can be formed with predicates in P and terms in
the Herbrand Universe, Terms(C).

From now on, we assume that all free variables are implicitly universally
quantified. We use letters x, y, z and their capital versions to denote variables,
t to denote terms, and letters c, d to denote ground terms. Boldface letters like
x, t, c, . . . represent tuples (in this case of variables, terms and ground terms,
respectively). The corresponding semantics for SQHT=

F is described as follows.

Definition 1 (state). A state for a signature Σ = 〈C,F ,P〉 is a pair (σ,A)
where A ⊆ HB(C,P) is a set of atoms from the Herbrand Base and
σ : Terms(C ∪F)→ Terms(C)∪{u} is a function assigning to any ground term
in the language some ground term in the Herbrand Universe or the special value
u 6∈ Terms(C ∪ F) (standing for undefined). Function σ must satisfy:

(i) σ(c) = c for all c ∈ Terms(C).

(ii) σ(f(t1, . . . , tn)) =
{
u if σ(ti) = u for some i = 1 . . . n
σ(f(σ(t1), . . . , σ(tn))) otherwise

ut

As we can see, our domain is exclusively formed by the terms from the
Herbrand Universe, Terms(C). These elements are used as arguments of ground
atoms in the set A, that collects the true atoms in the state. Similarly, the value
of any functional term is an element from Terms(C), excepting the cases in
which partial functions are left undefined – if so, they are assigned the special
element u (different from any syntactic symbol) instead. Condition (i) asserts, as

2 The term static domain refers to the fact that the universe is shared among all
worlds in the Kripke frame.



expected, that any term c from the Herbrand Universe has the fixed valuation
σ(c) = c. Condition (ii) guarantees, on the one hand, that a functional term with
an undefined argument becomes undefined in its turn, and on the other hand,
that functions preserve their interpretation through subterms – for instance, if
we have σ(f(a)) = c we expect that σ(g(f(a)) and σ(g(c)) coincide. It is easy to
see that (ii) implies that σ is completely determined by the values it assigns to
all terms like f(c) where f is any partial function and c a tuple of elements in
Terms(C).

Definition 2 (Ordering � among states). We say that state S = (σ,A) is
smaller than state S′ = (σ′, A′), written S � S′, when both:

i) A ⊆ A′.
ii) σ(d) = σ′(d) or σ(d) = u, for all d ∈ Terms(C ∪ F). ut

We write S ≺ S′ when the relation is strict, that is, S � S′ and S 6= S′. The
intuitive meaning of S � S′ is that the former contains less information than
the latter, so that any true atom or defined function value in S must hold in S′.

Definition 3 (HT -interpretation). An HT interpretation I for a signature
Σ = 〈C,F ,P〉 is a pair of states I = 〈Sh, St〉 with Sh � St. ut

The superindices h, t represent two worlds (respectively standing for here and
there) with a reflexive ordering relation further satisfying h ≤ t. An interpreta-
tion like 〈St, St〉 is said to be total, referring to the fact that both states contain
the same information3.

Given an interpretation I = 〈Sh, St〉, with Sh = (σh, Ih) and St = (σt, It),
we define when I satisfies a formula ϕ at some world w ∈ {h, t}, written I, w |= ϕ,
inductively as follows:

– I, w |= p(t1, . . . , tn) if p(σw(t1), . . . , σw(tn)) ∈ Iw;
– I, w |= t1 = t2 if σw(t1) = σw(t2) 6= u;
– I, w 6|= ⊥; I, w |= >;
– I, w |= α ∧ β if I, w |= α and I, w |= β;
– I, w |= α ∨ β if I, w |= α or I, w |= β;
– I, w |= α→ β if for all w′ s.t. w ≤ w′: I, w′ 6|= α or I, w′ |= β;
– I, w |= ∀x α(x) if for each c ∈ Terms(C): I, w |= α(c);
– I, w |= ∃x α(x) if for some c ∈ Terms(C): I, w |= α(c). ut

An important observation is that the first condition above implies that an
atom with an undefined argument will always be valuated as false since, by
definition, u never occurs in ground atoms of Ih or It. Something similar happens
with equality: t1 = t2 will be false if any of the two operands, or even both, are
undefined. As usual, we say that I is a model of a formula ϕ, written I |= ϕ,
when I, h |= ϕ. Similarly, I is a model of a theory Γ when it is a model of all of
its formulas. The next definition introduces the idea of equilibrium models for
SQHT=

F .
3 Note that by total we do not mean that functions cannot be left undefined. We may

still have some term d for which σt(d) = u.



Definition 4 (Equilibrium model). A model 〈St, St〉 of a theory Γ is an
equilibrium model if there is no strictly smaller state Sh ≺ St that 〈Sh, St〉 is
also model of Γ . ut

The Quantified Equilibrium Logic with partial functions (QEL=
F ) is the logic

induced by the SQHT=
F equilibrium models.

For space reasons we describe SQHT= (resp. QEL) as a particular instance of
SQHT=

F (resp. QEL=
F ). It can be easily checked that this description is equivalent

to the one in [3]. The syntax for SQHT= is the same as for SQHT=
F (that is,

Predicate Calculus with equality) but starting from a signature 〈F ,P〉 where no
distinction is made among functions in set F . Each SQHT= interpretation for
signature 〈F ,P〉 further deals with a universe domain, a set U 6= ∅ which is said
to be static, that is, common to both worlds h and t. To capture this in SQHT=

F
we can just use signature 〈C,F ,P〉 and define C as a set of constant names, one c′

per each individual c ∈ U . The most important feature of SQHT= interpretations
is that they satisfy the axiom t = t for any term t. In other words, any ground
term d ∈ Terms(C ∪ F) is defined σh(d) 6= u and, in fact, by construction of
interpretations, this also means σh(d) = σt(d). As a result, SQHT= actually
uses a unique σ function for both worlds h and t and interpretations can be
represented instead as 〈σ, Ih, It〉. Under this restriction, it is easy to see that
decidable equality t1 = t2 ∨ t1 6= t2 is a valid formula.

Herbrand models from SQHT= and signature 〈C,P〉 can be easily captured
by just considering SQHT=

F interpretations for signature 〈C, ∅,P〉. Finally, the
models selection criterion in the definition of equilibrium models need not be
modified. Since σh = σt = σ and all terms and defined, the � ordering relation
among states in QEL actually amounts to a simple inclusion of sets of ground
atoms.

4 Useful Derived Operators

From the SQHT=
F semantics, it is easy to see that the formula (t = t), usually

included as an axiom for equality, is not valid in SQHT=
F . In fact, I, w |= (t = t)

iff σw(t) 6= u, that is, term t is defined. In this way, we can introduce Scott’s [4]
existence operator4 in a standard way: E t

def= (t = t). Condition (ii) in Def-
inition 1 implies the strictness condition of E-logic, formulated by the axiom
E f(t)→ E t. As happens with (t = t), the substitution axiom for functions:

t1 = t2 → f(t1) = f(t2)

is not valid, since it may be the case that the function is undefined. However,
the following weaker version is an SQHT=

F tautology:

t1 = t2 ∧ E f(t1)→ f(t1) = f(t2)
4 Contrarily to the original Scott’s E-logic, variables in SQHT=

F are always defined.
This is not an essential difference: terms may be left undefined instead, and so most
theorems, like (x = y) → (y = x) are expressed here using metavariables for terms
(t1 = t2) → (t2 = t1).



Usual axioms for equality that are valid in SQHT=
F are, for any predicate P :

t1 = t2 → t2 = t1

t1 = t2 ∧ t2 = t3 → t1 = t3

t1 = t2 ∧ P (t1)→ P (t2)

To represent the difference between two terms, we may also have several
alternatives. The straightforward one is just ¬(t1 = t2), usually abbreviated as
t1 6= t2. However, this formula can be satisfied when any of the two operands is
undefined. We may sometimes want to express a stronger notion of difference that
behaves as a positive formula (this is usually called apartness in the intuitionistic
literature [17]). In our case, we are especially interested in an apartness operator
t1#t2 where both arguments are required to be defined:

t1#t2
def= E t1 ∧ E t2 ∧ ¬(t1 = t2)

To understand the meaning of this operator, consider the difference between
¬(King(France) = LouisXIV ) and King(Spain)#LouisXIV . The first ex-
pression means that we cannot prove that the King of France is Louis XIV,
what includes the case in which France has not a king. The second expression
means that we can prove that the King of Spain (and so, such a concept exists)
is not Louis XIV.

The next operator we introduce has to do with definedness of rule heads in
logic programs. The inclusion of a formula in the consequent of an implication
may have an undesired effect when thinking about its use as a rule head. For in-
stance, consider the rule visited(next(x))← visited(x) and assume we have the
fact visited(1) but there is no additional information about next(1). We would
expect that the rule above does not yield any particular effect on next(1). Un-
fortunately, as visited(next(1)) must be true, the function next(1) must become
defined and, as a collateral effect, it will be assigned some arbitrary value, say
next(1) = 10 so that visited(10) is made true. To avoid this problem, we will use
a new operator :- to define a different type of implication where the consequent
is only forced to be true when all the functional terms that are “necessary to
build” the atoms in the consequent are defined. Given a term t we define its set
of structural arguments Args(t) as follows:

– Args(t) def= {t1, . . . , tn} if t has the form f(t1, . . . , tn) for any partial function
f/n ∈ F .

– Args(t) def= t otherwise.

We extend this definition for any atom A, so that its set of structural arguments
Args(A) corresponds to:

Args(P (t1, . . . , tn)) def= {t1, . . . , tn}

Args(t = t′) def= Args(t) ∪Args(t′)



In our previous example, Args(visited(next(x))) = {next(x)}. Notice that, for
an equality atom t = t′, we do not consider {t, t′} as arguments as we have done
for the rest of predicates, but go down one level instead, considering Args(t) ∪
Args(t′) in its turn. For instance, ifA is the atom friends(mother(x),mother(y)),
then Args(A) would be {mother(x),mother(y)}, whereas for an equality atom
A′ like mother(x) = mother(y), Args(A′) = {x, y}. We define [ϕ] as the result
of replacing each atom A in ϕ by the conjunction of all E t → A for each t ∈
Args(A). We can now define the new implication operator as follows ϕ :- ψ

def=
ψ → [ϕ]. Back to the example, if we use now visited(next(x)) :- visited(x) we
obtain, after applying the previous definitions, that it is equivalent to:

visited(x)→ [visited(next(x))]
↔ visited(x)→ (E next(x)→ visited(next(x)))
↔ visited(x) ∧ E next(x)→ visited(next(x))

Another important operator will allow us to establish a direction in a rule
head assignment – remember the discussion about distinguishing between (6)
and (8) in Section 2. We define this assignment operator as follows:

f(t) := t′
def= E t′ → f(t) = t′

Now, our Example 1 would be encoded with the pair of formulas:

second := fish :- first = pasta ∧ ¬friday second := first :- friday

that, after some elementary transformations, lead to:

second = fish← first = pasta ∧ ¬friday
second = first← E first ∧ friday

Using these operators, a compact way to fix a default value t′ for a function
f(t) would be f(t) := t′ :- ¬(f(t)#t′). Finally, we introduce a nondeterministic
choice assignment with the following set-like expression:

f(t) ∈ {x | ϕ(x)} (10)

where ϕ(x) is a formula (called the set condition) that contains the free variable
x. The intuitive meaning of (10) is self-explanatory. As an example, the formula
a ∈ {x | ∃y Parent(x, y)} means that a should take a value among those x that
are parents of some y. Expression (10) is defined as the conjunction of:

∀x (ϕ(x)→ f(t) = x ∨ f(t) 6= x) (11)
¬∃x (ϕ(x) ∧ f(t) = x)→ ⊥ (12)

Other typical set constructions can be defined in terms of (10):

f(t) ∈ {t′(y) | ∃y ϕ(y)} def= f(t) ∈ {x | ∃y (ϕ(y) ∧ t′(y) = x)}

f(t) ∈ {t′1, . . . , t′n}
def= f(t) ∈ {x | t′1 = x ∨ · · · ∨ t′n = x}



It must be noticed that variable x in (10) is not free, but implicitly quantified
and local to this expression. Note that ϕ(x) may contain other quantified and/or
free variables. For instance, observe the difference between:

Person(y)→ a(y) ∈ {x | Parent(x, y)} (13)
Person(y)→ a(y) ∈ {x | ∃y Parent(x, y)} (14)

In (13) we assign, per each person y, one of her parents to a(y), whereas in (13)
we are assigning any parent as, in fact, we could change the set condition to
∃z Parent(x, z).

At a first sight, it could seem that the formula ∃x(ϕ(x) ∧ f(t) = x) could
capture the expected meaning of f(t) ∈ {x | ϕ(x)} in a more direct way. Unfortu-
nately, such a formula would not “pick” a value x among those that satisfy ϕ(x).
For instance, if we translate a ∈ {x | ∃y Parent(x, y)} as ∃x(∃y Parent(x, y) ∧
a = x) would allow the free addition of facts for Parent(x, y). Notice also that
a formula like a ∈ {t} is stronger than an assignment a := t since when t is un-
defined, the former is always false, regardless the value of a (it would informally
correspond to an expression like a ∈ ∅).

5 Logic Programs with Partial Functions

In this section we consider a subset of QEL=
F which corresponds to a certain

kind of logic program that allow partial functions but not constructors other
than a finite set of Herbrand constants C = C0. The interest of this syntactic
class is that it can be translated into ground normal logic programs, and so,
equilibrium models can be computed by any of the currently available answer
set provers. From now on, we assume that any function f/n with arity n > 0 is
partial, f/n ∈ F , and any constant c is a constructor, c ∈ C, unless we include
a declaration c/0 ∈ F . As usual in logic programming notation, we use in this
section capital letters to represent variables.

In what follows we will use the tag ‘FLP’ to refer to functional logic program-
ming definitions, and ‘LP’ to talk about the more restrictive syntax of normal
logic programs (without functions). An FLP-atom has the form5 p(t) or t1 = t2,
where p is a predicate name, t a tuple of terms and t1, t2 a pair of terms. An
FLP-literal is an atom A or its default negation ¬A. We call LP-terms (resp.
LP-atoms, resp. LP-literals) to those not containing partial function symbols.

An FLP-rule is an implication α :- β where β (called body) is a conjunction
of literals, and α (called head) has the form of one the following expressions:

– an atom p(t);
– the truth constant ⊥;
– an assignment f(t) := t′ with f ∈ F ;
– or a choice like f(t) ∈ {x | ϕ(x)} with f ∈ F and ϕ(x) a conjunction of

literals. We call x the choice variable and ϕ(x) the choice condition.

5 Expressions like t1#t2 are left for a future work.



A choice rule is a rule with a choice head. A functional logic program is a set
of FLP-rules. A rule is said to be safe when: (1) if a variable x is the term t′ or
one of the terms in t, or occurs in the scope of negation, or in a choice condition
(excepting the choice variable), then it also occurs in some positive literal in the
body; and (2) if x is a choice variable, then it occurs in some positive literal
of the choice condition ϕ(x). For instance, the rules p(f(X), Y ) :- q(Y ) and
f ∈ {Y | p(Y )} are safe, whereas the rules f(Z) := 0 or f ∈ {Y | ¬p(Y )} are
not safe. A safe program is a set of safe rules. The following is an example of a
program in FLP syntax:

Example 2 (Hamiltonian cycles). Let Π2 be the FLP-program:

⊥ :- next(X) = next(Y ) ∧X 6= Y (15)
next(X) ∈ {Z | arc(X,Z)} :- node(X) (16)

visited(1) (17)
visited(next(X)) :- visited(X) (18)
⊥ :- ¬visited(X) ∧ node(X). (19)

An LP-rule is such that its body exclusively contains LP-literals and its head
is either ⊥ or an LP-atom p(t). An LP-program is a set of LP-rules. It is easy
to see that, for LP-rules, α :- β is equivalent to β → α. Thus, an LP-program
has the form of a (standard) normal logic program with constraints and without
partial functions. The absence of partial functions guarantees that QEL=

F and
QEL coincide for this kind of program:

Proposition 1. QEL=
F equilibrium models of an LP-program Π correspond to

QEL equilibrium models of Π.

Furthermore, it is also very easy to see that, for LP-programs, the definition of
safeness we provided generalises the standard definition for normal logic pro-
grams. As a result, this means in particular that when an LP-program Π is safe,
QEL=

F equilibrium models coincide with the set of stable models of the grounded
version of Π, since QEL satisfies this property.

The translation of an FLP-program Π will be done in two steps. In a first
step, we will define a QEL theory Γ (Π) for a different signature and prove that
it is SQHT=

F equivalent modulo the original signature. This theory Γ (Π) is not
an LP-program, but can be easily translated into an LP-program Π∗ applying
some simple transformations that preserve equivalence wrt equilibrium models
(even in QEL). The main idea of the translation is that, for each partial function
f/n ∈ F occurring in Π we will handle a predicate like holds f(X1, . . . , Xn, V )
in Π∗, or holds f(X, V ) for short. The technique of converting a function into
a predicate and shifting the function value as an extra argument is well known
in Functional Logic Programming and has received the name of flattening [18,
19]. Obviously, once we deal with a predicate, we will need that no two different
values are assigned to the same function. This can be simply captured by:

⊥ ← holds f(X, V ) ∧ holds f(X,W ) ∧ ¬(V = W ) (20)



with variables V,W not included in X.
Given the original signature Σ = 〈C,F ,P〉 for program Π, the theory Γ (Π)

will deal with a new signature Σ∗ = 〈C, ∅,P∗〉 where P∗ consists of P plus a
new predicate holds f/(n+ 1) per each partial function f/n ∈ F .

Definition 5 (Correspondence of interpretations). Given an HT inter-
pretation I = 〈Sh, St〉 for signature Σ = 〈C,F ,P〉 we define a corresponding
interpretation I∗ = 〈(σh, Jh), (σt, J t)〉 for signature Σ∗ = 〈C, ∅,P∗〉 so that, for
any f/n ∈ F , any tuple c of n elements from C, any predicate p/n ∈ P and any
w ∈ {h, t}:

1. holds f(c, d) ∈ Jw iff σw(c) = d with d ∈ C.
2. p(c) ∈ Jw iff p(c) ∈ Iw. ut

Once (20) is fixed, the correspondence between I and I∗ is bidirectional:

Proposition 2. Given signature Σ = 〈C,F ,P〉 and an interpretation J for Σ∗

satisfying (20), then there exists an interpretation I for Σ such that I∗ = J .

Definition 6 (Translation of terms). We define the translation of a term t
as the triple 〈t∗, Φ(t)〉 where t∗ is an LP-term and Φ(t) is a formula s.t.:

1. For an LP-term t, then t∗
def= t and Φ(t) def= >.

2. When t = f(t) with f a partial function, then t∗
def= Xt and Φ(t) def=

Φ(t) ∧ holds f(t∗, Xt) where Xt is a new fresh variable and Φ(t) stands
for the conjunction of all Φ(ti) for all terms ti in the tuple t. ut

For 0-ary partial functions, we would have that t is empty – in this case we
just assume that Φ(t) = >. We introduce now some additional notation. Given
a term t, subterms(t) denotes all its subterms, including t itself. Given a set
of terms T , by T ∗ we mean {t∗ | t ∈ S}. If ρ is a replacement of variables by
Herbrand constants [X← c], we write I, w, ρ |= ϕ to stand for I, w |= ϕ[X← c].
Given a conjunction of literals B = L1∧· · ·∧Ln, we denote B∗ def= L∗1∧· · ·∧L∗n.

Definition 7 (Translation of literals). The translation of an atom (or posi-
tive literal) A is a formula A∗ defined as follows:

1. If A = p(t), then A∗
def= ∃X

(
p(t∗) ∧ Φ(t)

)
where X is the set of new fresh

variables in subterms(t)∗ (those not occurring in the original literal).
2. If A = (t1 = t2), then A∗

def= ∃X
(
t∗1 = t∗2 ∧ Φ(t1) ∧ Φ(t2)

)
where X is the

set of new fresh variables in subterms(t1)∗ ∪ subterms(t1)∗.

The translation of a negative literal L = ¬A is the formula L∗ def= ¬A∗. ut

Definition 8 (Translation of rules). The translation of an (FLP) rule r like
H :- B is a conjunction of formulas Γ (r) defined as follows:

1. If H = ⊥, then Γ (r) is the formula ⊥ ← B∗.



2. If H is like p(t) then Γ (r) is the formula p(t∗)← Φ(t) ∧B∗
3. If H has the form f(t) := t′ then Γ (r) is the formula

holds f(t∗, t′∗)← Φ(t) ∧ Φ(t′) ∧B∗
4. If H has the form f(t) ∈ {X | ϕ(X)} then Γ (r) is the conjunction of:

holds f(t∗, X) ∨ ¬holds f(t∗, X)← Φ(t) ∧B∗ ∧ ϕ(X)∗ (21)
⊥ ← ¬∃X(holds f(t∗, X) ∧ ϕ(X)∗) ∧ Φ(t) ∧B∗ (22)

where we assume that, if X happened to occur in B, we have previously
replaced it in the choice by a new fresh variable symbol, say {Y | ϕ(Y )}.

Definition 9 (Translation of a program Γ (Π)). The translation of an FLP
program Π is a theory Γ (Π) consisting of the union of all Γ (r) per each rule
r ∈ Π plus, for each partial function f/n, the schemata (20). ut
Theorem 1 (Correctness of Γ (Π)). For any FLP-program Π with signature
Σ = 〈C,F ,P〉 any pair of interpretations I for Σ and J for Σ∗ such that J = I∗:
I, w |= Π iff I∗, w |= Γ (Π). ut

As an example, the translation of Π2 is the theory Γ (Π2):

⊥ ← holds next(X,X0) ∧ holds next(Y,X1) ∧X0 = X1 ∧ ¬(X = Y ) (23)
holds next(X,Z) ∨ ¬holds next(X,Z)← arc(X,Z) ∧ node(X) (24)

⊥ ← ¬∃Z(holds next(X,Z) ∧ arc(X,Z)) ∧ node(X) (25)
visited(1) (26)

visited(X2)← holds next(X,X2) ∧ visited(X) (27)
⊥ ← ¬visited(X) ∧ node(X) (28)

⊥ ← holds next(X,V ) ∧ holds next(X,W ) ∧ ¬(V = W ) (29)

Of course, Γ (Π) is not a normal logic program, since it contains disjunction
and negation in the head of “rules”, whereas it may also contain expressions
like ∃X(ϕ(X)) with ϕ(X) a conjunction of literals. However, we can build an
LP-program Π∗ by removing these constructions and introducing new auxiliary
predicates. For instance, a formula like p ∨ ¬p← α is equivalent (w.r.t. equilib-
rium models) to the pair of rules (p← ¬aux∧α) and (aux← ¬p∧α) where aux
is a new auxiliary predicate. Similarly, we can replace a formula ∃X(ϕ(X)) in a
rule body by a new auxiliary predicate aux′, and include a rule (aux′ ← ϕ(X))
for its definition. In our example, these transformations would replace (24) by:

holds next(X,Z)← ¬aux(X,Z) ∧ arc(X,Z) ∧ node(X)
aux(X,Z)← ¬holds next(X,Z) ∧ arc(X,Z) ∧ node(X)

and (25) by the rules:

aux′(X)← holds next(X,Z) ∧ arc(X,Z) ∧ node(X)
⊥ ← ¬aux′(X) ∧ node(X)

where, of course, the auxiliary predicates must incorporate as arguments all the
free variables of the original expression they replace.

Proposition 3. If Π is safe then Π∗ is safe. ut



6 Related Work

The present approach has incorporated many of the ideas previously presented
in [20, 21]. With respect to other logical characterisations of Functional Program-
ming languages, the closest one is [15], from where we extracted the separation
of constructors and partial functions. The main difference is that QEL=

F provides
a completely logical description of all operators that allows an arbitrary syntax
(including rules with negation, disjunction in the head, etc).

Scott’s E-Logic is not the only choice for logical treatment of partial func-
tions. A related approach is the so-called Logic of Partial Functions (LPF) [22].
The main difference is that LPF is a three-valued logic – formulas containing
undefined terms have a third, undefined truth value. The relation to (relational)
ASP in this way in much more distant than the current approach, since stable
models and their logical counterpart, equilibrium models, are two-valued6.

As for the relation to other approaches exclusively dealing with Herbrand
functions [6–8] it seems that they should be embedable in QEL=, which corre-
sponds to the fragment of QEL=

F without partial functions. In a similar way, the
recent approach in [14] seems to correspond to the fragment of QEL=

F with com-
plete functions (that is, the addition of decidable equality). Formal comparisons
are left for future work.

7 Conclusions

This paper has tried to clarify some relevant aspects related to the use of func-
tions in ASP for Knowledge Representation. These aspects include definedness,
the treatment of equality or the directionality in function assignments. The func-
tional nature of some predicates is hidden in many ASP domains. When functions
are represented in a relational way, we require the continuous addition of con-
straints for uniqueness of value, and a considerable amount of extra variables
to replace the ability of nesting functional terms. All this additional effort may
easily become a source for programming errors. Although, as we have shown, the
proposed approach can be translated into relational ASP and merely considered
as syntactic sugar, we claim that the use of functions may provide a more nat-
ural, compact and readable way of representing many scenarios. The previous
experience with a very close language to that of Section 5, implemented in an
online interpreter7 and used for didactic purposes in the past, shows that the
functional notation helps the student concentrate on the mathematical definition
of the domain to be represented, and forget some of the low level representation
tasks, as those commented above, or as the definedness conditions, that must be
also considered in the relational representation, but the functional interpreter
checks in an automatic way.

We hope that the current approach will help to integrate, in the future, the
explicit treatment of arithmetic functions made by some ASP tools, that are
6 Note that in this work we are not considering explicit negation.
7 Available at http://www.dc.fi.udc.es/~cabalar/fal/



currently handled outside the formal setting. For instance, the ASP grounder
lparse8 syntactically accepts a program like p(div(10, X)) ← q(X) but raises
a “divide by zero” runtime error if fact q(0) is added to the program. On the
other hand, when div is replaced by a non-built-in function symbol, say f , the
meaning is quite different, and we get {p(f(10, 0)), q(0)} as a stable model. In
this paper we have also identified and separated evaluable and (possibly) partial
functions (like div above) from constructors (like f in the previous example).

We have provided a translation of our functional language into normal logic
programs to show that: (1) it can be implemented with current ASP solvers;
but more important (2) that the proposed semantics is sensible with respect to
the way in which we usually program in the existing ASP paradigm. A topic
for future study is the implementation of a solver that directly handles the
functional semantics. Other open topics are the axiomatisation of the current
logical framework or the addition of a second, explicit (or strong) negation.

Acknowledgements I am especially thankful to Joohyung Lee and Yunsong
Meng for pointing out some technical errors in a preliminary version of this work,
and to the anonymous referees for their helpful suggestions.
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Appendix. Proofs

(Only for revision purposes: to be removed in the final version)

Proof (of Proposition 2). Then, it suffices with defining Iw = {p(c) ∈ Jw | p/n ∈
P} and σw such that, for any partial function f and tuple c in elements of
Terms(C): σw(f(c)) = d if holds f(c, d) ∈ Jw; or σw(f(c)) = u otherwise.
Note that the latter is well-defined since (20) guarantees that no pair of atoms
holds f(c, d) and holds f(c, e) with e 6= d are included in any Jw. The rest of
mapping σw is built up from its structural definition implied by Condition (ii)
in Definition 1. ut

Lemma 1. For any term t, interpretation I and corresponding interpretation
I∗, and for any replacement ρ of variables in subterms(t)∗ then I∗, w, ρ |= Φ(t)
is equivalent to: I, w, ρ |= E t and I, w, ρ |= (t′)∗ = t′ for any t′ ∈ subterms(t).

ut

Proof. We proceed by induction. For the base case, when t is an LP-term, E t
is valid, and so equivalent to > = Φ(t); besides, t∗ = t by definition and t
has no subterms. Assume proved for a tuple of terms t and consider t = f(t).
Then note that I∗, w, ρ |= Φ(t) is equivalent to condition (A): I∗, w, ρ |= Φ(t)
and I∗, w, ρ |= holds f(t∗, Xt). Now the first conjunct of (A) is equivalent, by
induction, to I, w, ρ |= E t and I, w |= (t′)∗ = t′ for any subterm of t, whereas
the second conjunct of (A) is equivalent, by the correspondence between I and
I∗, to I, w, ρ |= f(t) = Xt provided that we have already obtained I, w, ρ |=
t∗ = t. To sum up, (A) is therefore equivalent to I, w, ρ |= E t ∧ f(t) = Xt and
I, w, ρ |= (t′)∗ = t′ for any subterm of t. Since E t ∧ f(t) = Xt is equivalent to
E f(t) ∧ f(t) = Xt and this, by definition, is the same than E t ∧ t = t∗, we
finally obtain I, w, ρ |= E t and I, w, ρ |= (t′)∗ = t′ for any subterm of t. ut

Lemma 2. For any body literal L: I∗, w |= L∗ iff I, w |= L. ut

Proof. Depending on the form of L we have:

1. If L is some atom p(t), then I∗, w |= L∗ means that for some substitution ρ of
variables in subterms(t)∗: I∗, w, ρ |= p(t∗) and I∗, w, ρ |= Φ(t). By Lemma 1,
the second conjunct is equivalent to I, w, ρ |= E t and I, w, ρ |= t∗ = t
for any subterm t of t (and so of L), and in particular I, w, ρ |= t∗ = t.
But this means that I∗, w, ρ |= p(t∗) is equivalent to I, w, ρ |= p(t) by
the correspondence of I and I∗. Since p(t) implies E t we can remove the
latter and, as a result, the original condition I∗, w, ρ |= L∗ is equivalent to
I, w, ρ |= p(t) and I, w, ρ |= t∗ = t for any subterm t of L. As p(t) does not
contain variables in subterms(t)∗, the previous conditions are equivalent to:
I, w |= p(t) and there exists some ρ for which I, w, ρ |= t∗ = t. But as
I, w |= p(t) means that p(t) is defined in I, w, the existence of a substitution
ρ for variables in subterms(t)∗ that satisfies I, w, ρ |= t∗ = t for any subterm
t of L is guaranteed, and so, is a redundant condition that can be removed.

2. If L has the form t1 = t2 then the proof follows similar steps to case 1.



3. If L has the form ¬A, then I∗, w |= ¬A∗ is equivalent to I∗, t 6|= A∗. Applying
the proof for cases 1 and 2 to atom A, this is equivalent to I, t 6|= A that is
further equivalent to I, w |= ¬A. ut

Obviously, Lemma 2 directly implies that I, w |= B is equivalent to I∗, w |=
B∗.

Lemma 3. I∗, w |= Γ (r) iff I, w |= r. ut

Proof. If r = (H :- B), depending on the form of H we have:

1. If H = ⊥, is easy to see that (⊥ :- B) is equivalent to (⊥ ← B). Then,
I∗, w |= ⊥ ← B∗ ⇔ I∗, t 6|= B∗ ⇔ (by Lemma 2) I, t 6|= B ⇔ I, w |= ⊥ ← B.

2. If H is like p(t), then p(t) :- B is equivalent to p(t) ← B ∧ E t. Then,
I∗, w |= p(t∗) ← Φ(t) ∧ B∗ ⇔ for all w′ ≥ w: if I∗, w′ |= Φ(t) ∧ B∗ then
I∗, w′ |= p(t∗) . Let us call (A) to this condition. By Lemma 2, I∗, w′ |= B∗ is
equivalent to I, w′ |= B. Now note that rules are universally quantified. Take
any replacement ρ of variables in subterms(t)∗. By Lemma 1, I∗, w′, ρ |=
Φ(t) is equivalent to I, w′, ρ |= E t and I, w′, ρ |= t′∗ = t′ for any t′ ∈
subterms(t). If this holds, I∗, w′, ρ |= p(t∗), which coincides with I, w′, ρ |=
p(t∗), is equivalent to I, w′, ρ |= p(t). To sum up, (A) is equivalent to: for
all w′ ≥ w, if I, w′, ρ |= B ∧ E t then I, w′, ρ |= p(t) for any replacement ρ.
But this is the same than I, w |= p(t)← B ∧ E t.

3. If H has the form f(t) := t′, we may first observe that (H :- B) is equivalent
to f(t) = t′ ← E t ∧ E t′ ∧ B. Then, I∗, w |= holds f(t∗, t′∗) ← Φ(t) ∧
Φ(t′) ∧ B∗ is equivalent to, for any world w′ ≥ w and any replacement of
variables ρ: if I∗, w′, ρ |= Φ(t) ∧ Φ(t′) ∧ B∗ then I∗, w′, ρ |= holds f(t∗, t′∗).
By Lemmas 1 and 2, the antecedent is equivalent to I, w′, ρ |= E t∧E t′∧B
plus I, w′, ρ |= k∗ = k for each k ∈ subterms(t · t′). On the other hand,
I∗, w′, ρ |= holds f(t∗, t′∗) is equivalent, by correspondence of I and I∗, to
I, w′, ρ |= f(t∗) = t′∗ and this, in presence of the equivalent condition for
the antecedent we obtained before, is equivalent to I, w′, ρ |= f(t) = t′. The
rest of the proof follows as in the previous case.

4. If H has the form f(t) ∈ {X | ϕ(X)} then, after some simple transforma-
tions, it can be checked that (H :- B) is equivalent to the conjunction of
the formulas:

f(t) = X ∨ ¬f(t) = X ← ϕ(X) ∧ E t ∧B (30)
⊥ ← ¬∃X(ϕ(X) ∧ f(t) = X) ∧ E t ∧B (31)

The proof for this case is tedious, but follows similar steps to the previous two
cases. By analogy, it is not difficult to see that I, w |= (30) iff I∗, w |= (21)
and that I, w |= (31) iff I∗, w |= (22). ut

Proof (of Theorem 1). The proof directly follows from Lemma 3. ut


