
Metric Temporal Answer Set Programming
over Timed Traces?

Pedro Cabalar1, Mart́ın Diéguez2, Torsten Schaub3, and Anna Schuhmann3

1 University of Corunna, Spain
2 LERIA, Université d’Angers, France

3 University of Potsdam, Germany

Abstract. In temporal extensions of Answer Set Programming (ASP)
based on linear-time, the behavior of dynamic systems is captured by
sequences of states. While this representation reflects their relative order,
it abstracts away the specific times associated with each state. In many
applications, however, timing constraints are important like, for instance,
when planning and scheduling go hand in hand. We address this by
developing a metric extension of linear-time temporal equilibrium logic,
in which temporal operators are constrained by intervals over natural
numbers. The resulting Metric Equilibrium Logic provides the foundation
of an ASP-based approach for specifying qualitative and quantitative dy-
namic constraints. To this end, we define a translation of metric formulas
into monadic first-order formulas and give a correspondence between their
models in Metric Equilibrium Logic and Monadic Quantified Equilibrium
Logic, respectively. Interestingly, our translation provides a blue print for
implementation in terms of ASP modulo difference constraints.

1 Introduction

Reasoning about action and change, or more generally about dynamic systems,
is not only central to knowledge representation and reasoning but at the heart of
computer science [14]. In practice, this often requires both qualitative as well as
quantitative dynamic constraints. For instance, when planning and scheduling at
once, actions may have durations and their effects may need to meet deadlines.

Over the last years, we addressed qualitative dynamic constraints by combining
traditional approaches, like Dynamic and Linear Temporal Logic (DL [16] and
LTL [26]), with the base logic of Answer Set Programming (ASP [21]), namely,
the logic of Here-and-There (HT [17]) and its non-monotonic extension, called
Equilibrium Logic [24]. This resulted in non-monotonic linear dynamic and
temporal equilibrium logics (DEL [5, 8] and TEL [1, 11]) that gave rise to the
temporal ASP system telingo [10, 7] extending the ASP system clingo [15].

Another commonality of dynamic and temporal logics is that they abstract
from specific time points when capturing temporal relationships. For instance,
in temporal logic, we can use the formula �(use → ♦clean) to express that a

? An extended abstract of this paper appeared in [12].

2 Pedro Cabalar, Mart́ın Diéguez, Torsten Schaub, and Anna Schuhmann

machine has to be eventually cleaned after being used. Nothing can be said about
the delay between using and cleaning the machine.

A key design decision was to base both logics, TEL and DEL, on the same
linear-time semantics. We continued to maintain the same linear-time semantics,
embodied by sequences of states, when elaborating upon a first “light-weight”
metric temporal extension of HT [9]. The “light-weightiness” is due to treating
time as a state counter by identifying the next time with the next state. For
instance, this allows us to refine our example by stating that, if the machine is
used, it has to be cleaned within the next 3 states, viz. �(use → ♦[1..3]clean).
Although this permits the restriction of temporal operators to subsequences of
states, no fine-grained timing constraints are expressible.

In this paper, we address this by associating each state with its time, as done
in Metric Temporal Logic (MTL [20]). This allows us to measure time differences
between events. For instance, in our example, we may thus express that whenever
the machine is used, it has to be cleaned within 60 to 120 time units, by writing:

�(use → ♦[60..120]clean) .

Unlike the non-metric version, this stipulates that once use is true in a state,
clean must be true in some future state whose associated time is at least 60 and
at most 120 time units after the time of use. The choice of time domain is crucial,
and might even lead to undecidability in the continuous case. We rather adapt a
discrete approach that offers a sequence of snapshots of a dynamic system.

2 Metric temporal logic

Given m ∈ N and n ∈ N∪{ω}, we let [m..n] stand for the set {i ∈ N | m ≤ i ≤ n},
[m..n) for {i ∈ N | m ≤ i < n}, and (m..n] stand for {i ∈ N | m < i ≤ n}.

Given a set A of propositional variables (called alphabet), a metric formula ϕ
is defined by the grammar:

ϕ ::= p | ⊥ | ϕ1 ⊗ ϕ2 | •Iϕ | ϕ1 SI ϕ2 | ϕ1 TI ϕ2 | ◦Iϕ | ϕ1 UI ϕ2 | ϕ1 RI ϕ2

where p ∈ A is an atom and ⊗ is any binary Boolean connective ⊗ ∈ {→,∧,∨}.
The last six cases above correspond to temporal operators, each of them indexed
by some interval I of the form [m..n) with m ∈ N and n ∈ N∪{ω}. In words, •I ,
SI , and TI are past operators called previous, since, and trigger, respectively;
their future counterparts ◦I , UI , and RI are called next, until, and release. We
let subindex [m..n] stand for [m..n+1), provided n 6= ω. Also, we sometimes use
the subindices ‘≤n’, ‘≥m’ and ‘m’ as abbreviations of intervals [0..n], [m..ω) and
[m..m], respectively. Also, whenever I = [0..ω), we simply omit subindex I.

A metric theory is a (possibly infinite) set of metric formulas.

We also define several common derived operators like the Boolean connectives
> def

= ¬⊥, ¬ϕ def
= ϕ → ⊥, ϕ ↔ ψ

def
= (ϕ → ψ) ∧ (ψ → ϕ), and the following

Metric Temporal Answer Set Programming over Timed Traces 3

temporal operators:

�Iϕ
def
= ⊥ TI ϕ always before

�Iϕ
def
= > SI ϕ eventually before

I def
= ¬•> initial

•̂Iϕ def
= •Iϕ ∨ ¬•I> weak previous

�Iϕ
def
= ⊥ RI ϕ always afterward

♦Iϕ
def
= >UI ϕ eventually afterward

F def
= ¬◦> final

◦̂Iϕ def
= ◦Iϕ ∨ ¬◦I> weak next

Note that initial and final are not indexed by any interval; they only depend
on the state of the trace, not on the actual time that this state is mapped to.
On the other hand, the weak version of next can no longer be defined in terms
of final, as done in [11] with non-metric ◦̂ϕ ≡ ◦ϕ ∨ F. For the metric case ◦̂Iϕ,
the disjunction ◦Iϕ ∨ ¬◦I> must be used instead, in order to keep the usual
dualities among operators (the same applies to weak previous).

The definition of Metric Equilibrium Logic (MEL for short) is done in two
steps. We start with the definition of a monotonic logic called Metric logic of
Here-and-There (MHT), a temporal extension of the intermediate logic of Here-
and-There [17]. We then select some models from MHT that are said to be in
equilibrium, obtaining in this way a non-monotonic entailment relation.

An example of metric formulas is the modeling of traffic lights. While the
light is red by default, it changes to green within less than 15 time units (say,
seconds) whenever the button is pushed; and it stays green for another 30 seconds
at most. This can be represented as follows.

�(red ∧ green → ⊥) (1)

�(¬green → red) (2)

�
(
push → ♦[1..15)(�≤30 green)

)
(3)

Note that this example combines a default rule (2) with a metric rule (3),
describing the initiation and duration period of events. This nicely illustrates the
interest in non-monotonic metric representation and reasoning methods.

A Here-and-There trace (for short HT-trace) of length λ ∈ N ∪ {ω} over
alphabet A is a sequence of pairs (〈Hi, Ti〉)i∈[0..λ) with Hi ⊆ Ti ⊆ A for any
i ∈ [0..λ). For convenience, we usually represent an HT-trace as the pair 〈H,T〉
of traces H = (Hi)i∈[0..λ) and T = (Ti)i∈[0..λ). Notice that, when λ = ω, this
covers traces of infinite length. We say that 〈H,T〉 is total when H = T, that is,
Hi = Ti for all i ∈ [0..λ).

Definition 1. A timed trace (〈H,T〉, τ) over (N, <) is a pair consisting of

– an HT-trace 〈H,T〉 = (〈Hi, Ti〉)i∈[0..λ) and
– a function τ : [0..λ)→ N such that τ(i) ≤ τ(i+1).

A timed trace of length λ > 1 is called strict if τ(i) < τ(i+1) for all i ∈ [0..λ) such
that i+ 1 < λ and non-strict otherwise. We assume w.l.o.g. that τ(0) = 0. ut

Function τ assigns, to each state index i ∈ [0..λ), a time point τ(i) ∈ N represent-
ing the number of time units (seconds, miliseconds, etc, depending on the chosen
granularity) elapsed since time point τ(0) = 0 chosen as the beginning of the

4 Pedro Cabalar, Mart́ın Diéguez, Torsten Schaub, and Anna Schuhmann

trace. The difference to the variant of MHT presented in [9] boils down to the
choice of function τ . In [9], this was the identity function on the interval [0..λ).

Given any timed HT-trace, satisfaction of formulas is defined as follows.

Definition 2 (MHT-satisfaction). A timed HT-trace M = (〈H,T〉, τ) of
length λ over alphabet A satisfies a metric formula ϕ at step k ∈ [0..λ), written
M, k |= ϕ, if the following conditions hold:

1. M, k 6|= ⊥
2. M, k |= p if p ∈ Hk for any atom p ∈ A
3. M, k |= ϕ ∧ ψ iff M, k |= ϕ and M, k |= ψ
4. M, k |= ϕ ∨ ψ iff M, k |= ϕ or M, k |= ψ
5. M, k |= ϕ → ψ iff M′, k 6|= ϕ or M′, k |= ψ, for both M′ = M and

M′ = (〈T,T〉, τ)
6. M, k |= •I ϕ iff k > 0 and M, k−1 |= ϕ and τ(k)− τ(k−1) ∈ I
7. M, k |= ϕSI ψ iff for some j ∈ [0..k] with τ(k)− τ(j) ∈ I, we have M, j |= ψ

and M, i |= ϕ for all i ∈ (j..k]
8. M, k |= ϕ TI ψ iff for all j ∈ [0..k] with τ(k)− τ(j) ∈ I, we have M, j |= ψ

or M, i |= ϕ for some i ∈ (j..k]
9. M, k |= ◦I ϕ iff k + 1 < λ and M, k+1 |= ϕ and τ(k+1)− τ(k) ∈ I

10. M, k |= ϕUIψ iff for some j ∈ [k..λ) with τ(j)−τ(k) ∈ I, we have M, j |= ψ
and M, i |= ϕ for all i ∈ [k..j)

11. M, k |= ϕ RI ψ iff for all j ∈ [k..λ) with τ(j)− τ(k) ∈ I, we have M, j |= ψ
or M, i |= ϕ for some i ∈ [k..j) ut

Satisfaction of derived operators can be easily deduced:

Proposition 1. Let M = (〈H,T〉, τ) be a timed HT-trace of length λ over
A. Given the respective definitions of derived operators, we get the following
satisfaction conditions:

13. M, k |= I iff k = 0
14. M, k |= •̂I ϕ iff k = 0 or M, k−1 |= ϕ or τ(k)− τ(k−1) 6∈ I
15. M, k |= �I ϕ iff M, i |= ϕ for some i ∈ [0..k] with τ(k)− τ(i) ∈ I
16. M, k |= �I ϕ iff M, i |= ϕ for all i ∈ [0..k] with τ(k)− τ(i) ∈ I
17. M, k |= F iff k + 1 = λ
18. M, k |= ◦̂I ϕ iff k + 1 < λ or M, k+1 |= ϕ or τ(k+1)− τ(k) 6∈ I
19. M, k |= ♦I ϕ iff M, i |= ϕ for some i ∈ [k..λ) with τ(i)− τ(k) ∈ I
20. M, k |= �I ϕ iff M, i |= ϕ for all i ∈ [k..λ) with τ(i)− τ(k) ∈ I ut

A formula ϕ is a tautology (or is valid), written |= ϕ, iff M, k |= ϕ for any
timed HT-trace M and any k ∈ [0..λ). MHT is the logic induced by the set of
all such tautologies. For two formulas ϕ,ψ we write ϕ ≡ ψ, iff |= ϕ ↔ ψ, that
is, M, k |= ϕ↔ ψ for any timed HT-trace M of length λ and any k ∈ [0..λ). A
timed HT-trace M is an MHT model of a metric theory Γ if M, 0 |= ϕ for all
ϕ ∈ Γ . The set of MHT models of Γ having length λ is denoted as MHT(Γ, λ),
whereas MHT(Γ)

def
=
⋃ω
λ=0 MHT(Γ, λ) is the set of all MHT models of Γ of any

length. We may obtain fragments of any metric logic by imposing restrictions

Metric Temporal Answer Set Programming over Timed Traces 5

on the timed traces used for defining tautologies and models. That is, MHTf
stands for the restriction of MHT to traces of any finite length λ ∈ N and MHTω
corresponds to the restriction to traces of infinite length λ = ω.

An interesting subset of MHT is the one formed by total timed traces
(〈T,T〉, τ). In the non-metric version of temporal HT, the restriction to to-
tal models corresponds to Linear Temporal Logic (LTL [26]). In our case, the
restriction to total traces defines a metric version of LTL, that we call Metric
Temporal Logic (MTL for short). It can be proved that MTL are those models
of MHT satisfying the excluded middle axiom schema: �(p ∨ ¬p) for any atom
p ∈ A. We present next several properties about total traces and the relation
between MHT and MTL.

Proposition 2 (Persistence). Let (〈H,T〉, τ) be a timed HT-trace of length
λ over A and let ϕ be a metric formula over A. Then, for any k ∈ [0..λ), if
(〈H,T〉, τ), k |= ϕ then (〈T,T〉, τ), k |= ϕ. ut

Thanks to Proposition 2 and a decidability result in [23], we get:

Corollary 1 (Decidability of MHTf). The logic of MHTf is decidable. ut

Proposition 3. Let (〈H,T〉, τ) be a timed HT-trace of length λ over A and let ϕ
be a metric formula over A. Then, (〈H,T〉, τ), k |= ¬ϕ iff (〈T,T〉, τ), k 6|= ϕ. ut

Proposition 4. Let ϕ and ψ be metric formulas without implication (and so,
without negation either). Then, ϕ ≡ ψ in MTL iff ϕ ≡ ψ in MHT. ut

Many tautologies in MHT or its fragments have a dual version depending on
the nature of the operators involved. The following pair of duality properties
allows us to save space and proof effort when listing interesting valid equivalences.
We define all pairs of dual connectives as follows: ∧I/∨I , >I/⊥I , UI/RI , ◦I/◦̂I ,
�I/♦I , SI/TI , •I/•̂I , �I/�I . For any formula ϕ without implications, we
define δ(ϕ) as the result of replacing each connective by its dual operator.

Then, we get the following corollary of Proposition 4.

Corollary 2 (Boolean Duality). Let ϕ and ψ be formulas without implication.
Then, MHT satisfies: ϕ ≡ ψ iff δ(ϕ) ≡ δ(ψ). ut

Let UI/SI , RI/TI , ◦I/•I , ◦̂I/•̂I , �I/�I , and ♦I/�I be all pairs of
swapped-time connectives and σ(ϕ) be the replacement in ϕ of each connective
by its swapped-time version. Then, we have the following result for finite traces.

Lemma 1. There exists a mapping % on finite timed HT-traces M of the same
length λ ≥ 0 such that for any k ∈ [0..λ), M, k |= ϕ iff %(M), λ−1−k |= σ(ϕ).

Theorem 1 (Temporal Duality Theorem). A metric formula ϕ is a MHTf -
tautology iff σ(ϕ) is a MHTf -tautology. ut

As in traditional Equilibrium Logic [24], non-monotonicity is achieved by a
selection among the MHT models of a theory.

6 Pedro Cabalar, Mart́ın Diéguez, Torsten Schaub, and Anna Schuhmann

Definition 3 (Metric Equilibrium/Stable Model). Let S be some set of
timed HT-traces. A total timed HT-trace (〈T,T〉, τ) ∈ S is a metric equilibrium
model of S iff there is no other H < T such that (〈H,T〉, τ) ∈ S. The timed
trace (T, τ) is called a metric stable model of S. ut

We talk about metric equilibrium (or metric stable) models of a theory Γ when
S = MHT(Γ), and we write MEL(Γ, λ) and MEL(Γ) to stand for the metric
equilibrium models of MHT(Γ, λ) and MHT(Γ), respectively. Metric Equilibrium
Logic (MEL) is the non-monotonic logic induced by the metric equilibrium
models of metric theories. As before, variants MELf and MELω refer to MEL
when restricted to traces of finite and infinite length, respectively.

Proposition 5. The set of metric equilibrium models of Γ can be partitioned
on the trace lengths, namely,

⋃ω
λ=0 MEL(Γ, λ) = MEL(Γ). ut

We can enforce metric models to be traces with a strict timing function τ ,
that is, τ(i) < τ(i+ 1) for any i such that i+ 1 ∈ [1..λ). This can be achieved
with the simple addition of the axiom �¬◦0>. In the following, we assume that
this axiom is included and consider, in this way, strict timing. For instance, a
consequence of strict timing is that one-step operators become definable in terms
of other connectives. For non-empty intervals [m..n) with m < n, we get:

•[m..n)ϕ ≡ �[1..m)⊥ ∧ �[h..n)ϕ
◦[m..n)ϕ ≡ �[1..m)⊥ ∧ ♦[h..n)ϕ where h = max(1,m);

whereas for empty intervals with m ≥ n, we obtain •[m..n)ϕ ≡ ◦[m..n)ϕ ≡ ⊥.
Back to our example, suppose we have the theory Γ consisting of the

formulas (1)-(3). In the example, we abbreviate subsets of the set of atoms
{green, push, red} as strings formed by their initials: For instance, pr stands for
{push, red}. For readability sake, we represent traces (T0, T1, T2) as T0 · T1 · T2.
Consider first the total models of Γ : the first two rules force one of the two atoms
green or red to hold at every state. Besides, we can choose adding push or not,
but if we do so, green should hold later on according to (3). Now, for any total
model (〈T,T〉, τ), 0 |= Γ where green or push hold at some states, we can always
form H where we remove those atoms from all the states and it is not difficult to
see that (〈H,T〉, τ), 0 |= Γ , so (〈T,T〉, τ) is not in equilibrium. As a consequence,
metric equilibrium models of Γ have the form (〈T,T〉, τ) being T = 〈Ti〉i∈[0..λ)
with Ti = {red} for all i ∈ [0..λ) and any arbitrary strict timing function τ . To
illustrate non-monotonicity, suppose now that we have Γ ′ = Γ ∪ {◦5 push} and,
for simplicity, consider length λ = 3 and traces of the form T0 · T1 · T2. Again,
it is not hard to see that total models with green or push in state T0 are not in
equilibrium, being the only option T0 = {red}. The same happens for green at
T1, so we get T1 = {push, red} as only candidate for equilibrium model. However,
since push ∈ T1, the only possibility to satisfy the consequent of (3) is having
green ∈ T2. Again, we can also see that adding push at that state would not be in
equilibrium so that the only trace in equilibrium is T0 = {red}, T1 = {push, red}
and T2 = {green}. As for the timing, τ(0) = 0 is fixed, and satisfaction of formula

Metric Temporal Answer Set Programming over Timed Traces 7

(◦5 push) fixes τ(1) = 5. Then, from (3) we conclude that green must hold at
any moment starting at t between 5 + 1 and 5 + 14 and is kept true in all states
between t and t+ 30 time units, but as λ = 2, this means just t. To sum up, we
get 14 metric equilibrium models with τ(0) = 0 and τ(1) = 5 fixed, but varying
τ(2) between 6 and 19.

We observe next the effect of the semantics of always and eventually on truth
constants. Let ϕ be an arbitrary metric formula and m,n ∈ N. Then, �[m..n)⊥
means that there is no state in interval [m..n) and ♦[m..n)> means that there is
at least one state in this interval. The formula �[m..n)> is a tautology, whereas
♦[m..n)⊥ is unsatisfiable. The same applies to past operators �[m..n) and �[m..n).

The following equivalences state that interval I = [0..0] makes all binary
metric operators collapse into their right hand argument formula, whereas unary
operators collapse to a truth constant. For metric formulas ψ and ϕ, we have:

ψ U0 ϕ ≡ ψ R0 ϕ ≡ ϕ (4)

◦0 ϕ ≡ •0 ϕ ≡ ⊥ (5)

◦̂0 ϕ ≡ •̂0 ϕ ≡ > (6)

The last two lines are precisely an effect of dealing with strict traces: For instance,

◦0 ϕ ≡ ⊥ tells us that it is always impossible to have a successor state with the
same time (the time difference is 0) as the current one, regardless of the formula
ϕ we want to check. The next lemma allows us to unfold metric operators for
single-point time intervals [n..n] with n > 0.

Lemma 2. For metric formulas ψ and ϕ and for n > 0, we have:

ψ Un ϕ ≡
∨n
i=1 ◦i(ψ Un−i ϕ) (7)

ψ Rn ϕ ≡
∧n
i=1 ◦̂i(ψ Rn−i ϕ) (8)

♦nϕ ≡
∨n
i=1 ◦i♦n−iϕ (9)

�nϕ ≡
∧n
i=1 ◦̂i�n−iϕ (10)

The same applies for the dual past operators. ut
Going one step further, we can also unfold until and release for intervals of

the form [0..n] with the application of the following result.

Lemma 3. For metric formulas ψ and ϕ and for n > 0, we have:

ψ U≤n ϕ ≡ϕ ∨ (ψ ∧
∨n
i=1 ◦i(ψ U≤(n−i) ϕ)) (11)

ψ R≤n ϕ ≡ϕ ∧ (ψ ∨
∧n
i=1 ◦̂i(ψ R≤(n−i) ϕ)) (12)

The same applies for the dual past operators. ut
Finally, the next theorem contains a pair of equivalences that, when dealing

with finite intervals, can be used to recursively unfold until and release into
combinations of next with Boolean operators (an analogous result applies for
since, trigger and previous due to temporal duality).

Theorem 2 (Next-unfolding). For metric formulas ψ and ϕ and for m,n ∈ N
such that 0 < m and m < n− 1 we have:

ψ U[m..n) ϕ ≡
∨m
i=1 ◦i(ψ U[m−i..n−i) ϕ) ∨

∨n−1
i=m+1 ◦i(ψ U≤(n−1−i) ϕ) (13)

ψ R[m..n) ϕ ≡
∧m
i=1 ◦̂i(ψ R[(m−i)..(n−i)) ϕ) ∧

∧n−1
i=m+1 ◦̂i(ψ R≤(n−1−i) ϕ) (14)

8 Pedro Cabalar, Mart́ın Diéguez, Torsten Schaub, and Anna Schuhmann

The same applies for the dual past operators. ut
As an example, consider the metric formula pU[2..4) q.

pU[2..4) q ≡
∨2
i=1 ◦i(pU[(2−i)..(4−i)) q) ∨

∨3
i=2+1 ◦i(pU≤(3−i) q)

≡ ◦1(pU[1..3) q) ∨ ◦2(pU≤1 q) ∨ ◦3(pU0 q)

≡ ◦1(pU[1..3) q) ∨ ◦2(q ∨ (p ∧ ◦1q)) ∨ ◦3q

≡ ◦1(◦1(q ∨ (p ∧ ◦1q)) ∨ ◦2q) ∨ ◦2(q ∨ (p ∧ ◦1q)) ∨ ◦3q

Another useful result that can be applied to unfold metric operators is the
following range splitting theorem.

Theorem 3 (Range splitting). For metric formulas ψ and ϕ, we have

ψ U[m..n) ϕ ≡ (ψ U[m..i) ϕ) ∨ (ψ U[i..n) ϕ) for all i ∈ [m..n)

ψ R[m..n) ϕ ≡ (ψ R[m..i) ϕ) ∧ (ψ R[i..n) ϕ) for all i ∈ [m..n)

The same applies for the dual past operators. ut

3 Translation into Monadic Quantified Here-and-There
with Difference Constraints

In a similar spirit as the well-known translation of Kamp [19] from LTL to first-
order logic, we consider a translation from MHT into a first-order version of HT,
more precisely, a function-free fragment of the logic of Quantified Here-and-There
with static domains (QHT s in [25]). The word static means that the first-order
domain D is fixed for both worlds, here and there. We refer to our fragment of
QHT s as monadic QHT with difference constraints (QHT [4δ]). In this logic,
the static domain is a subset D ⊆ N of the natural numbers containing at least
the element 0 ∈ D. Intuitively, D corresponds to the set of relevant time points
(i.e. those associated to states) considered in each model. Note that the first state
is always associated with time 0 ∈ D.

The syntax of QHT [4δ] is the same as for first-order logic with several
restrictions: First, there are no functions other than the 0-ary function (or
constant) ‘0’ always interpreted as the domain element 0 (when there is no
ambiguity, we drop quotes around constant names). Second, all predicates are
monadic except for a family of binary predicates of the form 4δ with δ ∈ Z∪{ω}
where δ is understood as part of the predicate name. For simplicity, we write
x 4δ y instead of 4δ(x, y) and x 4δ y 4δ′ z to stand for x 4δ y ∧ y 4δ′ z. Unlike
monadic predicates, the interpretation of x 4δ y is static (it does not vary in
worlds here and there) and intuitively means that the difference x− y in time
points is smaller or equal than δ. A first-order formula ϕ satisfying all these
restrictions is called a first-order metric formula or FOM-formula for short. A
formula is a sentence if it contains no free variables. For instance, we will see that
the metric formula (3) can be equivalently translated into the FOM-sentence:

∀x (x 40 0 ∧ push(x)→ ∃y (x 4−1 y 414 x ∧ ∀z (y 40 z 430 y → green(z))))
(15)

Metric Temporal Answer Set Programming over Timed Traces 9

We sometimes handle partially grounded FOM sentences where some variables
in predicate arguments have been directly replaced by elements from D. For
instance, if we represent (15) as ∀x ϕ(x), the expression ϕ(4) stands for:

4 40 0 ∧ push(4)→ ∃y (x 4−1 y 414 x ∧ ∀z (y 40 z 430 y → green(z)))

and corresponds to a partially grounded FOM-sentence where the domain element
4 is used as predicate argument in atoms 4 40 0 and push(4).

A QHT [4δ]-signature is simply a set of monadic predicates P. Given D as
above, Atoms(D,P) denotes the set of all ground atoms p(n) for every monadic
predicate p ∈ P and every n ∈ D. A QHT [4δ]-interpretation for signature P
has the form 〈D,H, T 〉 where D ⊆ N, 0 ∈ D and H ⊆ T ⊆ Atoms(D,P).

Definition 4 (QHT [4δ]-satisfaction; [25]). A QHT [4δ]-interpretation M =
〈D,H, T 〉 satisfies a (partially grounded) FOM-sentence ϕ, written M |= ϕ, if
the following conditions hold:

1. M |= > and M 6|= ⊥
2. M |= p(d) iff p(d) ∈ H
3. M |= t1 4δ t2 iff t1 − t2 ≤ δ, with t1, t2 ∈ D
4. M |= ϕ ∧ ψ iff M |= ϕ and M |= ψ
5. M |= ϕ ∨ ψ iff M |= ϕ or M |= ψ
6. M |= ϕ→ ψ iff 〈D,X, T 〉 6|= ϕ or 〈D,X, T 〉 |= ψ, for X ∈ {H,T}
7. M |= ∀x ϕ(x) iff M |= ϕ(t), for all t ∈ D
8. M |= ∃x ϕ(x) iff M |= ϕ(t), for some t ∈ D ut

We can read the expression x 4δ y as just another way of writing the difference
constraint x − y ≤ δ. When δ is an integer, we may see it as a lower bound
x − δ ≤ y for y or as an upper bound x ≤ y + δ for x. For δ = ω, x 4ω y is
equivalent to > since it amounts to the comparison x − y ≤ ω. An important
observation is that this difference predicate 4δ satisfies the excluded middle
axiom, that is, the following formula is a QHT [4δ]-tautology:

∀x ∀y (x 4δ y ∨ ¬(x 4δ y)) (16)

for every δ ∈ Z ∪ {ω}. We provide next several useful abbreviations:

x ≺δ y def
= ¬(y 4−δ x)

x ≤ y def
= x 40 y x 6= y

def
= ¬(x = y)

x = y
def
= (x ≤ y) ∧ (y ≤ x) x < y

def
= (x ≤ y) ∧ (x 6= y)

For any pair �, ⊕ of comparison symbols, we extend the abbreviation x� y ⊕ z
to stand for the conjunction x � y ∧ y ⊕ z. Note that the above derived order
relation x ≤ y captures the one used in Kamp’s original translation [19] for LTL.

Equilibrium models for first-order theories are defined as in [25].

Definition 5 (Quantified Equilibrium Model; [25]). Let ϕ be a first-order
formula. A total QHT [4δ]-interpretation 〈D,T, T 〉 is a first-order equilibrium
model of ϕ if 〈D,T, T 〉 |= ϕ and there is no H ⊂ T satisfying 〈D,H, T 〉 |= ϕ. ut

10 Pedro Cabalar, Mart́ın Diéguez, Torsten Schaub, and Anna Schuhmann

Before presenting our translation, we need to remark that we consider non-
empty intervals of the form [m..n) with m < n.

Definition 6 (First-order encoding). Let ϕ be a metric formula over A. We
define the translation [ϕ]x of ϕ for some time point x ∈ N as follows:

[⊥]x
def
= ⊥

[p]x
def
= p(x), for any p ∈ A

[ϕ⊗ ψ]x
def
= [ϕ]x ⊗ [β]x , for any connective ⊗ ∈ {∧,∨,→}

[◦[m,n)ψ]x
def
= ∃y (x < y ∧ (¬∃z x < z < y) ∧ x 4−m y ≺n x ∧ [ψ]y)

[◦̂[m,n)ψ]x
def
= ∀y (x < y ∧ (¬∃z x < z < y) ∧ x 4−m y ≺n x→ [ψ]y)

[ϕU[m,n) ψ]x
def
= ∃y (x ≤ y ∧ x 4−m y ≺n x ∧ [ψ]y ∧ ∀z (x ≤ z < y → [ϕ]z))

[ϕ R[m,n) ψ]x
def
= ∀y ((x ≤ y ∧ x 4−m y ≺n x)→ ([ψ]y ∨ ∃z (x ≤ z < y ∧ [ϕ]z)))

[•[m,n)ψ]x
def
= ∃y (y < x ∧ ¬∃z (y < z < x) ∧ x ≺n y 4−m x ∧ [ψ]y)

[•̂[m,n)ψ]x
def
= ∀y ((y < x ∧ ¬∃z (y < z < x) ∧ x ≺n y 4−m x)→ [ψ]y)

[ϕ S[m,n) ψ]x
def
= ∃y (y ≤ x ∧ x ≺n y 4−m x ∧ [ψ]y ∧ ∀ (y < z ≤ x→ [ϕ]z))

[ϕ T[m,n) ψ]x
def
= ∀y ((y ≤ x ∧ x ≺n y 4−m x)→ ([ψ]y ∨ ∃z (y < z ≤ x ∧ [ϕ]z)))

ut

Each quantification introduces a new variable. For instance, consider the trans-
lation of (3) at point x = 0. Let us denote (3) as �(push → α) where α :=
♦[1..15)(�≤30 green). Then, if we translate the outermost operator �, we get:

[�(push → α)]0

= [⊥ R[0..ω) (push → α)]0

= ∀y ((0 ≤ y ∧ 0 4−0 y ≺ω 0)→ ([push → α]y ∨ ∃z (0 ≤ z < y ∧ ⊥)))

≡ ∀y (0 ≤ y ∧ 0 ≤ y ∧ > → ([push]y → [α]y) ∨ ⊥)

≡ ∀y (0 ≤ y ∧ push(y)→ [α]y)

≡ ∀x (0 ≤ x ∧ push(x)→ [α]x)

where we renamed the quantified variable for convenience. If we proceed further,
with α as ♦[1..15)β letting β := (�≤30 green), we obtain:

[α]x = [♦[1..15)β]x

= [> U[1..15) β]x

= ∃y (x ≤ y ∧ x 4−1 y ≺15 x ∧ [β]y ∧ ∀z (x ≤ z < y → >))

≡ ∃y (x 4−1 y ≺15 x ∧ [β]y) ≡ ∃y (x 4−1 y 414 x ∧ [β]y)

Metric Temporal Answer Set Programming over Timed Traces 11

Finally, the translation of β at y amounts to:

[�≤30 green]y

= [⊥ R[0..30) green]y

= ∀y′ (y ≤ y′ ∧ y 4−0 y′ ≺30 y → green(y′) ∨ ∃z (y ≤ z < y′ ∧ ⊥))

≡ ∀y′ (y ≤ y′ ∧ y 40 y
′ ∧ y′ ≺30 y → green(y′))

≡ ∀y′ (y 40 y
′ ≺30 y → green(y′))

≡ ∀z (y 40 z ≺30 y → green(z))

so that, when joining all steps together, we get the formula (15) given above.
The following model correspondence between MHTf and QHT [4δ] inter-

pretations can be established. Given a timed trace (〈H,T〉, τ) of length λ > 0
for signature A, we define the first-order signature P = {p/1 | p ∈ A} and a
corresponding QHT [4δ] interpretation 〈D,H, T 〉 where D = {τ(i) | i ∈ [0..λ)},
H = {p(τ(i)) | i ∈ [0..λ) and p ∈ Hi} and T = {p(τ(i)) | i ∈ [0..λ) and p ∈ Ti}.
Under the assumption of strict semantics, the following model correspondence
can be proved by structural induction.

Theorem 4. Let ϕ be a metric temporal formula, (〈H,T〉, τ) a metric trace,
〈D,H, T 〉 its corresponding QHT [4δ] interpretation and i ∈ [0..λ).

(〈H,T〉, τ), i |= ϕ iff 〈D,H, T 〉 |= [ϕ]τ(i) (17)

(〈T,T〉, τ), i |= ϕ iff 〈D,T, T 〉 |= [ϕ]τ(i) (18)

ut

4 Discussion

Seen from far, we have presented an extension of the logic of Here-and-There
with qualitative and quantitative temporal constraints. More closely, our logics
MHT and MEL can be seen es metric extensions of the linear-time logics THT
and TEL obtained by constraining temporal operators by intervals over natural
numbers. The current approach generalizes the previous metric extension of TEL
from [9] by uncoupling the ordinal position i of a state in the trace from its
location in the time line τ(i), which indicates now the elapsed time since the
beginning of that trace. Thus, while ♦[5..5] p meant in [9] that p must hold exactly
after 5 transitions, it means here that there must be some future state (after
n > 0 transitions) satisfying p and located 5 time units later. As a first approach,
we have considered time points as natural numbers, τ(i) ∈ N. Our choice of
a discrete rather than continuous time domain is primarily motivated by our
practical objective to implement the logic programming fragment of MEL on top
of existing temporal ASP systems, like telingo, and thus to avoid undecidability.

The need for quantitative time constraints is well recognized and many
metric extensions have been proposed. For instance, actions with durations
are considered in [27] in an action language adapting a state-based approach.

12 Pedro Cabalar, Mart́ın Diéguez, Torsten Schaub, and Anna Schuhmann

Interestingly, quantitative time constraints also gave rise to combining ASP
with Constraint Solving [3]; this connection is now semantically reinforced by
our translation advocating the enrichment of ASP with difference constraints.
Even earlier, metric extensions of Logic Programming were proposed in [6]. As
well, metric extensions of Datalog are introduced in [28] and applied to stream
reasoning in [29]. An ASP-based approach to stream reasoning is elaborated in
abundance in [4]. Streams can be seen as infinite traces. Hence, apart from certain
dedicated concepts, like time windows, such approaches bear a close relation
to metric reasoning. Detailing this relationship is an interesting topic of future
research. More remotely, metric constructs were used in trace alignment [13],
scheduling [22], and an extension to Golog [18].

Acknowledgments This work was supported by MICINN, Spain, grant PID2020-
116201GB-I00, Xunta de Galicia, Spain (GPC ED431B 2019/03), Région Pays
de la Loire, France (EL4HC and étoiles montantes CTASP), DFG grants SCHA
550/11 and 15, Germany, and European Union COST action CA-17124.

References

1. Aguado, F., Cabalar, P., Diéguez, M., Pérez, G., Vidal, C.: Temporal equilibrium
logic: a survey. Journal of Applied Non-Classical Logics 23(1-2), 2–24 (2013).

2. Balduccini, M., Lierler, Y., Woltran, S. (eds.): Proceedings of the Fifteenth Inter-
national Conference on Logic Programming and Nonmonotonic Reasoning (LP-
NMR’19), Springer (2019)

3. Baselice, S., Bonatti, P., Gelfond, M.: Towards an integration of answer set and
constraint solving. In: Proceedings of the Twenty-first International Conference on
Logic Programming (ICLP’05). pp. 52–66. Springer (2005)

4. Beck, H., Dao-Tran, M., Eiter, T.: LARS: A logic-based framework for analytic
reasoning over streams. Artificial Intelligence 261, 16–70 (2018).

5. Bosser, A., Cabalar, P., Diéguez, M., Schaub, T.: Introducing temporal stable
models for linear dynamic logic. In: Proceedings of the Sixteenth International
Conference on Principles of Knowledge Representation and Reasoning (KR’18). pp.
12–21. AAAI Press (2018)

6. Brzoska, C.: Temporal logic programming with metric and past operators. In:
Proceedings of the Workshop on Executable Modal and Temporal Logics. pp. 21–39.
Springer (1995)

7. Cabalar, P., Diéguez, M., Laferriere, F., Schaub, T.: Implementing dynamic answer
set programming over finite traces. In: Proceedings of the Twenty-fourth European
Conference on Artificial Intelligence (ECAI’20). pp. 656–663. IOS Press (2020).

8. Cabalar, P., Diéguez, M., Schaub, T.: Towards dynamic answer set programming
over finite traces. In: [2], pp. 148–162.

9. Cabalar, P., Diéguez, M., Schaub, T., Schuhmann, A.: Towards metric temporal
answer set programming. Theory and Practice of Logic Programming 20(5), 783–798
(2020)

10. Cabalar, P., Kaminski, R., Morkisch, P., Schaub, T.: telingo = ASP + Time. In:
[2], pp. 256–269.

11. Cabalar, P., Kaminski, R., Schaub, T., Schuhmann, A.: Temporal answer set
programming on finite traces. Theory and Practice of Logic Programming 18(3-4),
406–420 (2018).

Metric Temporal Answer Set Programming over Timed Traces 13

12. Cabalar, P., Diéguez, M., Schaub, T., Schuhmann, A.: Metric temporal answer
set programming over timed traces (Extended abstract). In: Stream Reasoning
Workshop (2021)

13. De Giacomo, G., Murano, A., Patrizi, F., Perelli, G.: Timed trace alignment
with metric temporal logic over finite traces. In: Proceedings of the Eighteenth
International Conference on Principles of Knowledge Representation and Reasoning
(KR’22). pp. 227–236. AAAI Press (2020).

14. Fisher, M., Gabbay, D., Vila, L. (eds.): Handbook of Temporal Reasoning in
Artificial Intelligence, Elsevier Science (2005)

15. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko,
P.: Theory solving made easy with clingo 5. In: Technical Communications of
the Thirty-second International Conference on Logic Programming (ICLP’16). pp.
2:1–2:15. OASIcs (2016)

16. Harel, D., Tiuryn, J., Kozen, D.: Dynamic Logic. MIT Press (2000).
17. Heyting, A.: Die formalen Regeln der intuitionistischen Logik. In: Sitzungsberichte

der Preussischen Akademie der Wissenschaften, pp. 42–56. Deutsche Akademie der
Wissenschaften zu Berlin (1930)

18. Hofmann, T., Lakemeyer, G.: A logic for specifying metric temporal constraints for
golog programs. In: Proceedings of the Eleventh Workshop on Cognitive Robotics
(CogRob’18). pp. 36–46. CEUR Workshop Proceedings (2019).

19. Kamp, J.: Tense Logic and the Theory of Linear Order. Ph.D. thesis, University of
California at Los Angeles (1968)

20. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time
Systems 2(4), 255–299 (1990)

21. Lifschitz, V.: Answer set planning. In: Proceedings of the International Conference
on Logic Programming (ICLP’99). pp. 23–37. MIT Press (1999)

22. Luo, R., Valenzano, R., Li, Y., Beck, C., McIlraith, S.: Using metric temporal
logic to specify scheduling problems. In: Proceedings of the Fifteenth International
Conference on Principles of Knowledge Representation and Reasoning (KR’16). pp.
581–584. AAAI Press (2016)

23. Ouaknine, J., Worrell, J.: On the decidability and complexity of metric temporal
logic over finite words. Logical Methods in Computer Science 3(1) (2007)

24. Pearce, D.: A new logical characterisation of stable models and answer sets. In:
Proceedings of the Sixth International Workshop on Non-Monotonic Extensions of
Logic Programming (NMELP’96). pp. 57–70. Springer (1997).

25. Pearce, D., Valverde, A.: Quantified equilibrium logic and foundations for answer
set programs. In: Proceedings of the Twenty-fourth International Conference on
Logic Programming (ICLP’08). pp. 546–560. Springer (2008).

26. Pnueli, A.: The temporal logic of programs. In: Proceedings of the Eight-teenth
Symposium on Foundations of Computer Science (FOCS’77). pp. 46–57. IEEE
Computer Society Press (1977).

27. Son, T., Baral, C., Tuan, L.: Adding time and intervals to procedural and hierarchical
control specifications. In: Proceedings of the Nineteenth National Conference on
Artificial Intelligence (AAAI’04). pp. 92–97. AAAI Press (2004).

28. Wa lega, P., Cuenca Grau, B., Kaminski, M., Kostylev, E.: DatalogMTL: Compu-
tational complexity and expressive power. In: Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence (IJCAI’19). pp. 1886–1892.
ijcai.org (2019)

29. Wa lega, P., Kaminski, M., Cuenca Grau, B.: Reasoning over streaming data in
metric temporal datalog. In: Proceedings of the Thirty-third National Conference
on Artificial Intelligence (AAAI’19). pp. 3092–3099. AAAI Press (2019)

