Extreme Programming (XP)

Pedro Cabalar

Departamento de Computacion
Facultad de Informatica
University of Corunna, SPAIN

Extreme Programming (XP)

 XPis an agile method emphasizing collaboration,
quick/early SW creation and skillful development

* Four values: communication, simplicity, feedback and
courage.

* |t recommends 12 practices we will see later. They
include pair programming, test-driven development,
refactoring or continuous integration.

Classification of methods

* Few documents, informal (story cards)
* Frequent iterations, short (1-3 weeks)
A

Ceremony

—————————————————————————————

Scrum

/
]
|
|
|
|
|
|
|
|
1
\

Classification of methods

Criticality Number of people
(defects cause loss of ...) 1-6 <20 <40 <100
Life
(L) L6 L20 | L40 | L100
Essential c40 | E100
Money (E)
Discretionary 4o | D100
Money (D)
Comfort ca0 | c100
(C)

e Typically: <10 developers.
* Not proved for safety-critical systems!

XP principles

* Communication and team work:
customers, developers, managers form a team and
work in a common room

e XP doesn’t detail workproducts: only code and tests.

* Other workproducts ok (story cards, task lists, ...),
but oral communication is preferred

XP # hacking
XP # code-and-fix programming
XP = disciplined development - doc. overhead

XP practices

* Team consists of programmers and customers

e Def. customer =the one that defines and
prioritizes features

 Possible customers

— Business analysts or marketing specialists in the
same company than SW developers

— A representative commissioned by users
— The paying customer him/herself

XP practices

The customer should work in the same room
than developers

If not, (s)he should be as close as possible

If not, find someone who can be close and
stand in for the true customer

Recent versions of XP consider a group of
customers

XP practices

* The team uses a common open workspace, a
“Wwar room” with

— Tables with workstations, each ws has 2 chairs

— Walls covered with calendars, diagrams, tasks lists,
status charts, ... (self-organizing team)

e The sound is a low buzz of conversation

* Pontential increase of distraction, but experience
shows a productivity increase of x2 compared to
isolated workplaces

XP practices

To estimate a requirement we don’t need all its
details. Details will surely change

The customer will talk about different stories or
features.

Each story is written on a story card, a paper
index card with a few words. Ex: “find lowest
fare”

The story card is a reminder of the conversation.
The developers write an estimation on the card

XP practices

Evolutionary delivery. An XP project delivers
working SW every two weeks

Release = major delivery usually put into
production. Frequency = 3 months or 6 iterations

Release planning game: % - 1 day where
customer writes (prioritized) story cards for the
next release and developers write estimations
(budget + time). They fix a date.

A release plan can be changed at any moment.

XP practices

* |teration = minor delivery (= 2 weeks) that may or
may not be put into production.

* |teration planning game

— customer decides the stories to implement subject to
budget, but once the iteration starts, no customer’s
changes are allowed

— developers fix the budget using experience from
previous iterations

— Developers split each story fixing a list of tasks that
are assigned by a volunteering round

XP practices

* Written by the customer, they are examples of
what the system should do

e Test principle: a test is useful if it can be passed
easily and repeatedly

* In this way, each modification can be rechecked

automatically, and acceptance criteria are never
broken

acceptance tests must be automated.
Use some simple, tailored script language

XP practices

 An example

AddEmp 310 “John Smith” 1510.36
Payday
Verify Paycheck EmpId=310 GrossPay=1510.36

* The script language may be enriched along the
project evolution

XP practices

Two developers at each computer:

— Driver: holds the keyboard/mouse and types the code
— Watcher: looks for errors and improvements

Roles change periodically

Pairs switch at least once a day. At the end of an

iteration, all possible pairs should have occurred
=» Everybody has worked on everything

Pairs do not decrease efficiency while they
significantly reduce defect rate

XP practices

Traditional test policy: first code, then test

Test-driven = first write the tests, then make the
program to pass those tests

Tests & code evolve, but tests always go ahead

Advantage 1: we gain a growing corpus of
executable tests

Advantage 2: small changes are automatically
tested not to break anything. This facilitates
refactoring

XP practices

* Typical use of unit test tools (e.g. JUnit)

* Advantage 3: unit tests + object oriented design
encourage module decoupling

* Mock objects = they replace/simulate a real
object whose behaviour is difficult to predict or is
just not implemented yet. Example

— Real object = alarm that sends a message at a given
clock time

— Mock object = replaces the alarm and sends the
message during the test

XP practices

Any pair of programmers can improve any
code

There is no individual responsibility or
authority for any module or technology

The entire team is collectively responsible
Keypoint: replace

by

XP practices

* Nice but, what if it’s not my speciality and |
break something made by a real expert?

* Remember that tests won't let you break
things

* Besides, we should be helped by coding
standards (all code should look the same)

XP practices

Code integration is usually managed using SW
configuration management: check-in (commit), merge

Integration is done several times per day

Example: a pair of programmers have been working 2
hours on a given task. They decide to check-in their
tests and code. Steps:

1. They run their new tests on their new code
2. They check-in (or merge if another pair did it before)

3. They integrate the code, build the whole system and run
all its tests (unit + acceptance)

Automated integration tools. Ex: AntHill,CruiseControl

XP practices

* ASW projectis not a sprint: it is a marathon

 The team must preserve their energy and
alertness, running a steady, moderate pace
* Working
Frequent overtime = symptom of deeper
problems

Only exception: last week for a release, but
handle with care

XP practices

Choose the simplest way first

Avoid speculative design for hypothetical
future changes.

Keep design expressive and comprehensible

If you think “I know I’'m going to need X” but
the story/task doesn’t require X,

Example: store a list of users’ suggestions

— “ok, let’s begin choosing a database”

— “hey, would a simple flat file work?”

XP practices

* Avoid top-down abstraction:
avoid creating generalized components that are
not immediately needed

* On the contrary, bottom-up: create abstractions
to remove duplication detected in existing code

* Adopt coding standards agreed by all the team
members. They are for success when we

have collective ownership, rotation of pairs and
refactoring!

XP practices

* With iterative development SW quality tends
to degrade into a mess, if we don’t look back
on what was done before

* Refactoring = tiny transformations that
improve the system structure without
affecting its behaviour

e Continuously (each % -1 hour) make small
changes to keep code clean, simple and
expressive. Then run tests.

XP practices

* To help seeing the big picture, capture
concepts using memorable metaphors

 Example: periodic chunks of data to be
processed =» “putting slices in the toaster”

 May sound ridiculous or useless, but people
understand things better using metaphors.

Example: directory with files vs folder with
documents

XP lifecycle

1. Exploration: write initial story cards,
etimates, check feasibility

2. Planning: release planning game, detail story
cards and estimations, fix next release date

3. Iterations for release: iteration planning

Cgame, task writing, testing and programming.
11,12, 13 ...

4. Productionizing: operational deployment,
documentation, training, marketing

5. Maintenance: enhance, fix, may start again

Other XP practices

Embrace change rather than fighting change
Visible wall graphs: metrics, tasks, diagrams

Tracker: regular collection of task and story
progress

Daily standup meeting

ldeal Engineering Hours (IEH) is the measure
for estimates

