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Abstract Multi-Context Systems (MCSs) are able to formally model, in Computa-
tional Logic, distributed systems composed of heterogeneous sources, or “contexts”,
interacting via special rules called “bridge rules”. In this paper, we consider how to
enhance flexibility and generality in bridge-rules definition and use. In particular, we
introduce and discuss some formal extensions of MCSs aimed to their practical ap-
plication in dynamic environments, and we provide guidelines for implementations.
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1 Introduction

Multi-Context Systems (MCSs) have been proposed in Artificial Intelligence and
Knowledge Representation to model information exchange among heterogeneous
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Università di L’Aquila, Italy
E-mail: stefania.costantini@univaq.it

G. De Gasperis
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sources [8,10,12]. MCSs do not make any assumption about such sources nor re-
quire them to be homogeneous; rather, the MCS approach deals explicitly with their
different representation languages and semantics. These sources, also called contexts
or modules, interact through special interconnection expressions called bridge rules;
such rules are very similar in syntax and in meaning to logic programming rules as
seen in Datalog (cf. [39,3]) or Answer Set Programming (ASP, cf. [32,33,40,31] for
foundations. See also [29] and the references therein for applications of ASP), save
that atoms in their bodies refer to knowledge items to be obtained from external con-
texts. A concept of equilibria is defined for MCSs, where an equilibrium is a system’s
state which is “stable” w.r.t. knowledge exchange; interesting system’s properties can
be defined and safely checked referring to such states.

The reason why MCSs are particularly interesting is that they aim at a formal
modeling of real applications requiring access to distributed sources, possibly on the
web. In many application domains the adoption of MCSs can bring real advances,
whenever different types of heterogeneous information systems are involved and a
rigorous formalization should be adopted, also in view of reliability and verifiability
of the resulting systems. Notice that this kind of systems often involves agents; MCSs
encompassing logical agents have in fact been proposed in the literature (cf., [16]).

Given the potential impact of MCSs for practical knowledge representation and
reasoning, there are some aspects in which their definition is still too abstract. In this
paper, we introduce and discuss some formal extensions of MCSs useful for a prac-
tical use in dynamic environments, and we try to provide guidelines for implementa-
tions. The paper considers in particular the following aspects, that will be motivated
and discussed in detail after the formal introduction of MCSs:

(i) The specification of how to specialize general bridge rules to the specific appli-
cation data at hand, and how to trigger their activation upon need; technically,
we will cope with bridge-rule grounding and grounded equilibria, and we will
propose a concept of proactive bridge-rule activation.

(ii) The explicit definition of the evolution of an MCS over time in consequence of
changes to the modules’ knowledge bases; in particular, we consider kinds of
evolution more general than those already seen in the literature.

(iii) The specification of how to specialize general bridge rules in an evolving MCS,
which is a necessary extension of what treated in (i).

(iv) The introduction of “Bridge Rules Patterns”, by which we make bridge rules para-
metric w.r.t. the actual contexts to be queried at run-time; this is done by intro-
ducing special terms called context designators to be replaced by actual context
names dynamically.

(v) The specification of Dynamic MCSs, i.e., MCSs whose composition (in terms of
participating contexts) can change over time; in fact, in practical settings context
may join or leave the system, or can be unavailable at certain time intervals (e.g.,
due to system/network faults).

(vi) The introduction of a “Multi-Source option”, i.e., whenever a required informa-
tion can be obtained from several other contexts, a choice may be possible con-
cerning the preferred source, where preferences may change over time and ac-
cording to current circumstances.
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(vii) The definition of practical modalities of execution of bridge rules in a distributed
MCS.

All these extensions represent substantial and much-needed improvements to the
basic MCS framework, as certified by existing connections with related work on
MCSs, discussed in next sections, that treat (though in a different way) some of these
issues.

This paper is a revised extended version of the work presented in [23,14], and
is organized in the following way. We first formally recall the MCS approach (Sec-
tion 2). In Section 3, after illustrating significant motivating scenarios, we better dis-
cuss points (i)-(vii) introduced above, explaining why the pre-existing definitions are
in our opinion problematic in practical application settings, and in which directions
they might be improved. In the subsequent sections, for every such aspect we discuss
and formalize some variations, enhancements, and extensions to basic MCSs that we
deem to be necessary/useful to improve the basic paradigm. In Section 9 we present a
case study to illustrate the practical usefulness of the enhanced features. In Section 10
we discuss the complexity of the new framework, and finally we conclude. We have
chosen to discuss related work whenever a discussion is useful and pertinent rather
than in a separate section.

2 Bridge Rules and Multi-Context Systems

Heterogeneous MCSs have been introduced in [34] in order to integrate different in-
ference systems without resorting to non-classical logic systems. Later, the idea has
been further developed and generalized to non-monotonic reasoning domains —see,
for instance, [8,10–12,42] among many. (Managed) MCSs are designed for the con-
struction of systems that need to access multiple (heterogeneous) data sources called
contexts. The information flow is modeled via bridge rules, whose form is similar to
Datalog rules with negation where however each element in their “body” explicitly
includes the indication of the contexts from which each item of information is to be
obtained. To represent the heterogeneity of sources, each context is supposed to be
based on its own logic, defined in a very general way [10]. A logic L defines its own
syntax as a set F of possible formulas (or KB-elements) under some signature pos-
sibly containing predicates, constants, and functions. As usual, formulas are expres-
sions built upon the idea of atom, that is, the application of a predicate to a number
n (the predicate arity) of terms. The latter, in their turn, can be variables, constants,
or compound terms using function symbols, as usual [39]. A term/atom/formula is
ground if there are no variables occurring therein. A logic is relational if in its sig-
nature the set of function symbols is empty, so its terms are variables and constants
only. Formulas can be grouped to form some knowledge base, kb ∈ 2F . The set of
all knowledge bases for L is defined as some KB ⊆ 2F . The logic also defines be-
liefs or data (usually, ground facts) that can be derived as consequences from a given
kb ∈ KB. The set Cn represents all possible belief sets in logic L. Finally, the logic
specification must also define some kind of inference or entailment. This is done by
defining which belief sets are acceptable consequences of a given kb ∈ KB with a re-
lation ACC⊆KB×Cn. Thus, ACC(kb,S) means that belief set S is an acceptable con-
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sequence of knowledge base kb. We can also use ACC as a function ACC : KB→ 2Cn

where S ∈ ACC(kb) is the same as ACC(kb,S) as a relation. To sum up, logic L can
be completely specified by the triple 〈KB,Cn,ACC〉.

A multi-context system (MCS) M = {C1, . . . ,C`} is a set of `= |M| contexts, each
of them of the form Ci = 〈ci,Li,kbi,bri〉, where ci is the context name (unique for
each context; if a specific name is omitted, i can act as such), Li = 〈KBi,Cni,ACCi〉
is a logic, kbi ∈ KBi is a knowledge base, and bri is a set of bridge rules. Each bridge
rule ρ ∈ bri has the form

s← A1, . . . ,Ah,not Ah+1, . . . ,not Am (1)

where the left-hand side s is called the head, denoted as hd(ρ), the right-hand side is
called the body, denoted as body(ρ), and the comma stands for conjunction. We de-
fine the positive (resp. negative) body as body+(ρ) = {A1, . . . ,Ah} (resp. body−(ρ) =
{Ah+1, . . . ,Am}). The head hd(ρ) = s is a formula in Li such that (kbi ∪{s}) ∈ KBi.
Each element Ak in the body has the form (c j : p) for a given j, 1≤ j ≤ |M|, and can
be seen as a query to the context C j ∈ M (possibly different from Ci) whose name
is c j, to check the status of belief p (a formula from L j) with respect to the current
belief state (defined below) in C j. When the query is made in the context j = i we will
omit the context name, simply writing p instead of (ci : p). In case the entire body
“succeeds” then the bridge rule can be applied, and its conclusion can be exploited
within context ci.

A belief state (or data state) S of an MCS M is a tuple S = (S1, . . . ,S`) such that
for 1≤ i≤ `= |M|, Si ∈Cni. Thus, a data state associates to each context Ci a possible
set of consequences Si. A bridge rule ρ ∈ bri of context Ci ∈M is applicable in belief
state S when, for any (c j : p j)∈ body+(ρ), p j ∈ S j, and for any (ck : pk)∈ body−(ρ),
pk 6∈ Sk; so, app(S) is the set the heads of those bridge rules that are applicable in S.

In managed MCSs (mMCSs)1 the conclusion s, which represents the “bare” bridge-
rule result, becomes o(s), where o is a special operator. The meaning is that s is
processed by operator o, that can perform any elaboration, such as format conver-
sion, belief revision, etc. More precisely, for a given logic L with formulas F = {s ∈
kb |kb∈KB}, a management base is a set of operation names (briefly, operations) OP,
defining elaborations that can be performed on formulas. For a logic L and a manage-
ment base OP, the set of operational statements that can be built from OP and F is
FOP = {o(s) |o∈OP,s∈ F}. The semantics of such statements is given by a manage-
ment function, mng : 2FOP ×KB→ KB, which maps a set of operational statements
and a knowledge base into a (possibly different) modified knowledge base.2 Now,
each context Ci = 〈ci,Li,kbi,bri,OPi,mngi〉 in an mMCS is extended to include its
own management function mngi which is crucial for knowledge incorporation from
external sources. Notice that, management functions are not required to be monotonic
operators.

The application of the management function mngi to the result of the applica-
ble rules must be acceptable with respect to ACCi. We say that a belief state S =

1 For the sake of simplicity, we define mMCS simply over logics instead of “logic suite” as done in [11],
where one can select the desired semantics among a set of possibilities.

2 We assume a management function to be deterministic, i.e., to produce a unique new knowledge base.
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(S1, . . . ,S`) is an equilibrium for an mMCS M iff, for 1≤ i≤ `,

Si ∈ ACCi(mngi(app(S),kbi)) (2)

Namely, for each context Ci, one

(i) applies all the bridge rules of Ci that are applicable in the belief state S (namely,
obtains the set app(S));

(ii) applies the management function which, by incorporating bridge-rule results into
Ci’s knowledge base kbi, computes a new knowledge base kb′i =mngi(app(S),kbi);

(iii) determines via ACCi the set of acceptable sets of consequences of kb′i.

In an equilibrium, such a set includes Si, i.e., an equilibrium is “stable” w.r.t. bridge-
rule application.

Conditions for existence of equilibria and the complexity of deciding equilib-
rium existence for mMCS have been studied [8]; roughly speaking, such complexity
depends on the complexity of computing formula (2) for each Ci ∈ M. Algorithms
for computing equilibria have been recently proposed [10,26] but, in practice, they
are only applicable when open-access to contexts’ contents is granted. For practical
purposes, one often provisionally assume that equilibria exist, and that they do not in-
clude inconsistent data sets. It has been proved that such local consistency is achieved
whenever all management functions are (lc-)preserving, i.e., if they always determine
a kb′ which is consistent.

3 Motivating Scenarios and Discussion

Some of the reasons of our interest in (m)MCSs and bridge-rules stem from a project
where we are among the proponents [1], concerning smart Cyber Physical Systems,
with particular attention (though without restriction) to applications in the e-Health
field. The general scenario of such “F&K” (“Friendly-and-Kind”) systems [1] is de-
picted in Figure 1. In such setting we have a set of computational entities, of knowl-
edge bases, and of sensors, all immersed in the “Fog” of the Internet of Things. All
components can, in time, join or leave the system. Some computational components
will be agents. In the envisaged e-Health application for instance, an agent will be
in charge of each patient. Such an agent will interact with other computational enti-
ties, with the patient, and with the environment, possibly exploiting sensors and other
communication capabilities (e.g., image and speech recognition, etc). The System’s
engine will keep track of present system’s configuration, and will enable the various
classes of rules to work properly. Terminological rules will allow for more flexible
knowledge exchange via Ontologies. Pattern Rules will have the role of defining and
checking coherence/correctness of system’s behavior. Bridge rules are the vital el-
ement, as they allow knowledge to flow among components in a clearly-specified
principled way: referring to Figure 1, devices for bridge-rule functioning can be con-
sidered as a part of the System’s engine. Therefore, F&Ks are ”knowledge-intensive”
systems, providing flexible access to dynamic, heterogeneous, and distributed sources
of knowledge and reasoning, within a highly dynamic computational environment.
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Fig. 1 Motivating Scenario: general architecture of the “Friendly-and-Kind” Cyber Physical System [1].
An agent takes case of a patient by monitoring her health status and by proactively interacting with other
computational entities and knowledge sources in case of need.

We basically consider such systems to be (enhanced) mMCSs: as mentioned in fact,
suitable extensions to include agents and sensors in such systems already exist.

Another application (depicted in Figure 2) in a very different domain though with
some analogous features is aimed at Digital Forensics and Digital Investigations. Dig-
ital Forensics is a branch of criminalistics which deals with the identification, acquisi-
tion, preservation, analysis, and presentation of the information content of computer
systems, or in general of digital devices, in relation to crimes that have been perpe-
trated. The objective of the Evidence Analysis stage of Digital Forensics, or more
generally of Digital Investigations, is to identify, categorize, and formalize digital
sources of evidence (or, however, sources of evidence represented in digital form).
The objective is to organize such sources of proof into evidences, so as to make them
robust in view of their discussion in court, either in civil or penal trials.

In recent work3 [24,41] we have identified a setting where an intelligent agent is
in charge of supporting the human investigator in such activities. The agent should
help identify, retrieve, and gather the various kinds of potentially useful evidence,
process them via suitable reasoning modules, and integrate the results into coherent
evidence. In this task, the agent may need to retrieve and exploit knowledge bases
concerning, e.g., legislation, past cases, suspect’s criminal history, and so on. In the

3 Supported by Action COST CA17124 “DIGFORASP: DIGital FORensics: evidence Analysis via
intelligent Systems and Practices, start September 10, 2018.”
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Fig. 2 General architecture of a MCS aimed at supporting Digital Forensics and Digital Investigations.
The system assists human activities by enabling access, interaction, and cross integration between compu-
tational entities, sources of knowledge, and sources of evidences.

picture, the agent considers: results from blood-pattern analysis on the crime scene,
which lead to model such a scene via a graph, where suitable graph reasoning may
reconstruct the possible patterns of action of the murderer; alibi verification in the
sense of a check of the GPS positions of suspects, so as to ascertain the possibility
of her/him being present on the crime scene on the crime time; alibi verification
in the sense of double-checking the suspect’s declarations with digital data such as
computer logs, videos from video cameras situated on the suspect’s path, etc. All the
above can be integrated with further evidence such as the results of DNA analysis and
others. The system can also include Complex Event Processing so as to infer from
significant clues the possibility that a crime is being or will be perpetrated.

In our view also this system can be seen as an (enhanced) mMCSs. In reality
however, many of the involved data must be retrieved, elaborated, or checked from
knowledge bases belonging to organizations which are external to the agent, and have
their own rules and regulations for data access and data elaboration. Thus, suitable
modalities for data retrieval and integration must be established in the agent to cor-
rectly access such organizations. Therefore, a relevant issue that we mention but we
do not treat here is exactly that of modalities of access to contexts included in an
MCS, which possibly include time limitations and the payment of fees.

In the perspective of the definition and implementation of such kind of systems
as mMCSs, the definition recalled in Section 2 must be somehow enhanced. Our



8 Pedro Cabalar et al.

first experiments show in fact that such definition is, though neat, too abstract when
confronted with practical implementation issues.

We list below and discuss some aspects that constitute limitations to the actual
flexible applicability of the MCS paradigm, or that might anyway be usefully im-
proved.

For the sake of illustration, we consider throughout the rest of the paper two
running examples. The first example has been introduced in [21], where we have pro-
posed Agent Computational Environments (ACE), that are actually MCSs including
agents among their components. In [21], an ACE has been used to model a personal
assistant agent aiding a prospective college student in choosing and applying to an
university, taking into account the subjects of interest, the available budget, and other
preferences. The second example concerns F&Ks, and is developed in detail in Sec-
tion 9 where we propose a full though small case study. There, a patient can be in
need of a medical doctor, possibly a specialized one, and may not know in advance
which one to consult. In the examples we adopt a Prolog-like syntax [39,3], with con-
stant, predicate and function symbols indicated by names starting with a lowercase
letter, and variable symbols indicated by names starting with an uppercase letter.

Grounded Knowledge Assumption. Bridge rules are ground by definition, i.e., they
do not contain variables. In [11] it is literally stated that [in their examples] they
“use for readability and succinctness schematic bridge rules with variables (upper
case letters and ’ ’ [the ’anonymous’ variable]) which range over associated sets of
constants; they stand for all respective instances (obtainable by value substitution)”.
The basic definition of mMCS does not require either contexts’ knowledge bases or
bridge rules to be finite sets. Though contexts’ knowledge bases will in practice be
finite, they cannot be assumed to necessarily admit a finite grounding, and thus a
finite number of bridge-rules’ ground instances. This assumption can be reasonable,
e.g., for standard relational databases and logic programming under the answer set
semantics [31]. In other kinds of logics, for instance simply “plain” general logic
programs, it is no longer realistic. In practical applications however, there should
either be a finite number of applicable (ground instances of) bridge-rules, or some
suitable device for run-time dynamic bridge-rule instantiation and application should
be provided. To emphasize the usefulness of non-ground bridge rules, let us consider
our running examples.

Example 1 Suppose that a patient is looking for a cardiologist from a medical direc-
tory, represented as a context, say, e.g., called med-dir. A ground bridge rule might
look like:
find cardiologist(maggie-smith)←

med-dir : cardiologist(maggie-smith)
where the patient would confirm what she already knows, i.e., the rule verifies that
Dr. Maggie Smith is actually listed in the directory.
Instead, a patient may in general intend to use a rule such as:

find cardiologist(N)←
med-dir : cardiologist(N)
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where the query to the medical directory will return in variable N the name (e.g.,
Maggie Smith) of a previously unknown cardiologist. Let us assume that N is instan-
tiated to maggie-smith which is the name of a context representing the cardiologist’s
personal assistant.

Similarly, a prospective student’s personal assistant will query universities about
the courses that they propose, where this information is new and will be obtained via
a bridge rule which is not ground. ut

Notice that for actual enrichment of a context’s knowledge one must allow value
invention, that is, a constant returned via application of a non-ground bridge rule may
not previously occur in the destination module; in this way, a module can “learn”
really new information through inter-context exchange.

Update Problem. Considering inputs from sensor networks as done in [12] is a
starting point to make MCSs evolve in time and to have contexts which update
their knowledge base and thus cope flexibly with a changing environment. However,
sources can be updated in many ways via the interaction with their environment. For
instance, agents are supposed to continuously modify themselves via sensing and
communication with other agents, but even a plain relational database can be modi-
fied by its users/administrators. Referring to the examples, a medical directory will be
updated periodically, and universities will occasionally change the set of courses that
they offer, update the fees and other features of interest to students. Where one might
adopt fictitious sensors (as suggested in relevant literature) in order to simulate many
kinds of updates, a more general update mechanism seems in order. Such mechanism
should assume that each context has its own update operators and its own modalities
of application. An MCS can be “parametric” w.r.t. contexts’ update operators as it is
parametric w.r.t. contexts’ logics and management functions.

Logical Omniscience Assumption and Bridge Rules Application Mechanisms. In
MCS, bridge rules are supposed to be applied whenever their body is entailed by the
current data state. In fact bridge rules are, in the original MCS formulation, a reac-
tive device where each bridge rule is applied whenever applicable. In reality, contexts
are in general not logical omniscient and will hardly compute their full set of conse-
quences beforehand. So, the set of bridge rules which are applicable at each stage is
not fully known. Thus, practical bridge rule application will presumably consist in an
attempt of application, performed by posing queries, corresponding to the elements
of the body of the bridge rule, to other contexts which are situated somewhere in the
nodes of a distributed system. The queried contexts will often determine the required
answer upon request. Each source will need time to compute and deliver the required
result and might even never be able to do so, in case of reasoning with limited re-
sources or of network failures. Moreover, contexts may want to apply bridge rules
only if and when their results are needed. So, a generalization of bridge-rule applica-
bility in order to make it proactive rather than reactive can indeed be useful. In our
working example, for instance, a patient might look for a cardiologist (by enabling
the bridge rule seen above) only if some health condition makes it necessary.
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Static Set of Bridge Rules. Equipping a context with a static set of bridge rules can be
a limitation; in fact, in such bridge rules all contexts to be queried are fully known in
advance. In contexts’ practical reasoning instead, it can become known only at “run-
time” which are the specific contexts to be queried in the situations that practically
arise. To enhance flexibility in this sense, we introduce Bridge Rules Patterns to make
bridge rules parametric w.r.t. the contexts to be queried; such patterns are meta-level
rule schemata where in place of contexts’ names we introduce special terms called
context designators. Bridge rule patterns can be specialized to actual bridge rules by
choosing which specific contexts (of a certain kind) should specifically be queried
in the situation at hand. This is a very important extension which avoid a designer’s
omniscience about how the system will evolve.

Example 2 After acquiring as seen above (Examples 1), the reference to a reliable
cardiologist (i.e., maggie-smith), the patient (say Mary) can get in contact with the
cardiologist, disclose her health condition C, and thus make an appointment for time T .
This, in our approach, can be made by taking a general bridge rule
make appointment(mary,T)←

condition(mary,C),
mycardiologist(c) : consultation needed(mary,C,T)

where mycardiologist(c) is a context designator, that is a placeholder intended to
denote a context not yet known. Such bridge rule pattern can be instantiated, at run-
time, to the specific bridge rule
make appointment(mary,T)←

condition(mary,C),
maggie-smith : consultation needed(mary,C,T)

ut

Static System Assumption. The definition of mMCS might realistically be extended
in order to encompass settings where the set of contexts changes over time. This to
take into account dynamic aspects such as momentarily disconnections of contexts or
the fact that components may freely either join or abandon the system or that inter-
context reachability might change over time.

Full System Knowledge Assumption and Unique Source Assumption. A context might
know the role of another context it wants to query (e.g., a medical directory, or di-
agnostic knowledge base) but not its “name” that could be, for instance, its URI or
anyway some kind of reference that allows for actually posing a query. In the body
of bridge rules, each literal mentions however a specific context (even for bridge
rule patterns, context designators must be instantiated to specific context names). We
enrich the MCS definition with a directory facility, where instead of context names
bridge rules may employ queries to the directory to obtain contexts with the required
role. Each “destination” context might have its own preferences among contexts with
the same role. We also introduce a structure in the system, by allowing to specify
reachability, i.e., which context can query which one. This corresponds to the nature
of many applications: a context can sometimes be not allowed to access all or some
of the others, either for a matter of security/privacy or for a matter of convenience.
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Often, information must be obtained via suitable mediation, while access to every
information source is not necessarily either allowed or desirable.

Uniform Knowledge Representation Format Assumption. Different contexts might
represent similar concepts in different ways: this aspect is taken into account in [17]
(and so it is not treated here), where ontological definitions can be exchanged among
contexts and a possible global ontology is also considered.

Equilibria Computation and Consistency Check Assumption. As mentioned earlier,
algorithms for computing equilibria are practically applicable only if open access to
contexts’ contents is granted. The same holds for local and global consistency check-
ing. However, the potential of MCSs is, in our view, that of modeling real distributed
systems where contexts in general keep their knowledge bases private. Therefore, in
practice, one will often just assume the existence of consistent equilibria. This prob-
lem is not treated here, but deserves due attention for devising interesting sufficient
conditions.

In the next sections we discuss each aspect and we introduce our proposals of
improvement. We devised the proposed extensions in the perspective of real applica-
tions of mMCSs. In view of such applications, we realized that issues related to the
concrete modalities of bridge-rule instantiation, activation, and execution are the first
ones that needed to be considered. We will, in fact, present the proposed enhance-
ments to the MCSs formalization in an incremental fashion; whenever we introduce
new definitions, they are formulated so as to be applicable in the setting specified by
the previous ones.

4 Grounded Knowledge Assumption

To the best of our knowledge, the problem of loosening the constraint of bridge-
rules groundedness has not been so far extensively treated in the literature and no
satisfactory solution exists. The issue of bridge-rule grounding has been discussed
in [4] for relational MCSs [30], which are a variant of MCSs where all the involved
logics are relational. In [4], however, grounding is performed over a carefully defined
finite domain, composed of constants only. Instead, we intend to consider any, even
infinite, domain.

In the rest of this section we first provide by examples an intuitive idea of how
grounding might be performed, step by step, along with the computation of equilibria.
Then, we provide a formalization of our ideas.

4.1 Intuition

The procedure for computing equilibria that we propose for the case of non-ground
bridge rules is, informally, the following.

(i) We consider a standard initial data state S0.
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(ii) We instantiate bridge rules over ground terms occurring in S0; we thus obtain an
initial bridge-rule grounding relative to S0.

(iii) We evaluate whether S0 is an equilibrium, i.e., if S0 coincides with the data
state S1 resulting from applicable bridge rules.

(iv) In case S0 is not an equilibrium, bridge rules can now be grounded w.r.t. terms
occurring in S1, and so on, until either an equilibrium is reached, or no more
applicable bridge rules are generated.

It is reasonable to establish the initial data state S0, from where to start the pro-
cedure, on the basis of a “raw” data state where each element consists of the set of
ground atoms obtained from the initial knowledge base of each context. That is, we
consider each context’s Herbrand Universe [39]: one takes functions, predicate sym-
bols and constants occurring in the context’s knowledge base and builds data state
items by constructing all possible ground atoms. By definition, a ground instance of
a context Ci’s knowledge base is in fact an element of Cni, i.e., it is a set of possi-
ble consequences, though in general it is not acceptable. An acceptable S0 can be
obtained from such “raw” data state by applying to each of its elements the relative
context’s acceptability function, that here we assume to return a single set.

Notice that starting the procedure from S0 (even when each element of S0 is a
finite set) does not guarantee neither the existence of a finite equilibrium, nor that an
equilibrium can be reached in a finite number of steps.

Before introducing two examples to clarify this point, let us require a minor mod-
ification in bridge-rule syntax that we will adopt in the rest of the paper; namely, we
assume the customary Prolog syntax and procedural semantics, where elements in
the body of a rule are proved/executed in left-to-right order.

Example 3 Consider an MCS composed of two contexts C1 and C2, both concern-
ing the representation of natural numbers. Assume such contexts to be characterized
respectively by the following knowledge bases and bridge rules (where C1 has no
bridge rule).
%kb1

nat(0).
%kb2

nat(succ(X))← nat(X).
%br2

nat(X)← (c1 : nat(X)).

The basic data state is S0 = ({nat(0)}, /0), where in fact C2’s initial data state is empty
because there is no constant occurring in kb2. The unique equilibrium is reached in
one step via the application of br2 which “communicates” fact nat(0) to C2. In fact,
due to the recursive rule, we have the equilibrium (S1,S2) where S1 = {nat(0)} and
S2 = {nat(0),nat(succ(0)),nat(succ(succ(0))), . . .}〉 I.e., S2 is an infinite set rep-
resenting all natural numbers. If we assume to add a third context C3 with empty
knowledge base and a bridge rule br3 defined as nat(X)← (c2 : nat(X)), then the
equilibrium would be (S1,S2,S3) with S3 = S2. There, in fact, br3 would be grounded
on the infinite domain of the terms occurring in S2, thus admitting an infinite number
of instances. ut
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Example 4 Consider a variation of the MCS in Example 3 where a context C1 “pro-
duces” the even natural numbers (starting from 0) and a context C2 produces the odd
ones. In this case kb2 is empty:
%kb1

nat(0).
%br1

nat(succ(X))← (c2 : nat(X)).
%br2

nat(succ(X))← (c1 : nat(X)).

We may notice that the contexts in the above example enlarge their knowledge
by means of mutual “cooperation”. Let us consider again, according to our proposed
method, the basic data state S0 = ({nat(0)}, /0). As stated above, bridge rules are
grounded on the terms occurring therein. S0 is not an equilibrium for the given
MCS. In fact, the bridge rule in br2, once grounded on the constant 0, is appli-
cable but not applied. The data set resulting from the application, namely, S′ =
({nat(0)},{nat(succ(0))}) is not an equilibrium either, because now the bridge rule
in br1 (grounded on succ(0)) is in turn applicable but not applied. We may go on, as
S′′ = ({nat(0),nat(succ(succ(0)))},{nat(succ(0))}) leaves the bridge rule in br2 to
be applied (grounded on succ(succ(0))), and so on. There is clearly a unique equilib-
rium that cannot however be reached within finite time, though at each step we have
a data state composed of finite sets. The unique equilibrium (reached after a denu-
merably infinite number of steps), is composed of two infinite sets, the former one
representing the even natural numbers (including zero) and the latter representing the
odd natural numbers. The equilibrium may be represented as:

E =
(
{nat(0),nat(succk(0)), k mod 2 = 0}, {nat(succk(0)), k mod 2 = 1}

)
ut

We have actually devised and applied an adaptation to non-ground bridge rules of
the operational characterization introduced in [8] for the grounded equilibrium of a
definite MCS. In fact, according to the conditions stated therein C1 and C2 are mono-
tonic and admit at each step a unique set of consequences and bridge-rule application
is not unfounded (cyclic).

In our more general setting however, the set of ground bridge rules associated to
given knowledge bases cannot be computed beforehand and the step-by-step compu-
tation must take contexts interactions into account.

Since reaching equilibria finitely may have advantages in practical cases, we show
below a suitable reformulation of the above example, that sets via a practical expe-
dient a bound on the number of steps. The equilibrium reached will be partial, in the
sense of representing a subset of natural numbers, but can be reached finitely and is
composed of finite sets.

Example 5 Consider the following reformulation of the MCS described in Exam-
ple 4. The knowledge bases and bridge rules now are:4

4 Recall that, we are assuming that whenever in some element the body of a bridge rule the context is
omitted, i.e., we have just p j instead of (c j : p j), then we require that p j is proved locally from the present
context’s knowledge base.
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%kb1
nat(0).
count(0).
threshold(t).

%br1
new(nat(succ(X))) :- count(C), threshold(T ),C < T,(c2 : nat(X)).

%kb2
count(0).
threshold(t).

%br2
new(nat(succ(X))) :- count(C), threshold(T ),C < T,(c1 : nat(X)).

In the new definition there is a counter (initialized to zero) and some threshold,
say t. We exploit a management function that suitably defines the operator new which
is now applied to bridge-rule results. A logic programming definition of such man-
agement function might be the following, where the counter is incremented and the
new natural number asserted. Notice that such definition is by no means not logical,
as we can shift to the “evolving logic programming” extension [2].

new(nat(Z)) :- assert(nat(Z)), increment(C).
increment(C) :- retract(count(C)),C1 is C+1, assert(count(C1)).
Consequently, bridge rules will now produce a result only until the counter reaches

the threshold, which guarantees the existence of a finite equilibrium. ut

4.2 Formalization

Below we formalize the procedure that we have empirically illustrated via the ex-
amples, so as to generalize to mMCS with non-ground bridge rules the operational
characterization of [8] for monotonic MCSs (i.e., those where each context’s knowl-
edge base admits a single set of consequences, which grows monotonically when
information is added to the context’s knowledge base). Following [8], for simplicity
we assume each bridge-rule body to include only positive literals, and the formula s
in its head o(s) to be an atom. So, we will be able to introduce the definition of
grounded equilibrium of grade κ . Preliminarily, in order to admit non-ground bridge
rules we have to specify how we obtain their ground instances and how to establish
applicability.

Definition 1 Let r ∈ bri be a non-ground bridge rule occurring in context Ci of a
given mMCS M with belief state S. A ground instance ρ of r w.r.t. S is obtained
by substituting every variable occurring in r (i.e., occurring either in the elements
(c j : p j) in the body of r or in its head o(s) or in both) via (ground) terms occurring
in S.

For an mMCS M, a data state S and a ground bridge rule ρ , let app|=g(ρ,S)
be a Boolean-valued function which checks, in the ground case, bridge-rule body
entailment w.r.t. S. Let us redefine bridge-rule applicability.

Definition 2 The set app(S) relative to ground bridge rules which are applicable in a
data state S of a given mMCS M = (C1, . . . ,C`) is now defined as follows.
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app(S) =
{

hd(ρ) | ρ is a ground instance w.r.t. S of some
bridge rule r ∈ bri,1≤ i≤ `, and app|=g(ρ,S) = true

}
We assume, analogously to [8], that a given mMCS is monotonic, which here

means that for each Ci the following properties hold:

(i) ACCi is monotonic w.r.t. additions to the context’s knowledge base, and
(ii) mngi is monotonic, i.e., it allows to only add formulas to Ci’s knowledge base.

Let, for a context Ci, the function ACC′i be a variation of ACCi which selects one
single set Ei among those generated by ACCi and let ACC′i be monotonic. Namely,
given a context Ci and a knowledge base k̂b ∈ KBLi , ACC′i(k̂b) = Ei where Ei ∈
ACCi(k̂b). Let, moreover, ∞ be the first infinite ordinal number isomorphic to the
natural numbers. We introduce the following definition:

Definition 3 Let M = (C1, . . . ,C`) be an mMCS with no negative literals in bridge-
rule bodies, and assume arbitrary choice of function ACC′i for each composing con-
text Ci. Let, for each 1 ≤ i ≤ `, gr(kbi) be the grounding of kbi w.r.t. the constants
occurring in any kb j, for 1≤ j ≤ `. A data state of grade κ is obtained as follows.

– For i≤ `, we let kb0
i = gr(kbi).

– For each α ≥ 0, we let Sα = (Sα
1 , . . . ,S

α
` ) with Sα

i = ACC′i(kbα
i ) and where, for

finite κ we have

kbα+1
i =

{
mngi(app(Sα),kbα

i ) if α < κ ,
kbα

i otherwise

while, if κ = ∞ we put kb
∞

i =
⋃

α≥0 kbα
i .

Example 6 The grade κ of a data state computed by the above formula takes the role
of the threshold used in Example 5. Referring, in fact, to the MCS of Example 4, by
setting κ = 1 we would compute S′, while for κ = 2 we would obtain S′′. ut

Differently from [8], the computation of a new data state element is provided here
according to mMCSs, and thus involves the application of the management function
to the present knowledge base so as to obtain a new one. Such data state element is
then the unique set of consequences of the new knowledge base, as computed by the
ACC′i function.

The result can be an equilibrium only if the specified grade is sufficient to account
for all potential bridge-rules applications. In the terminology of [8] it would then be
a grounded equilibrium, as it is computed iteratively and deterministically from the
contexts’ initial knowledge bases. We have the following.

Definition 4 Let M = (C1, . . . ,C`) be a monotonic mMCS with no negative literals in
bridge-rule bodies. A belief state S = (S1, . . . ,S`) is a grounded equilibrium of grade
κ of M iff ACC′i(mngi(app(S),kbκ

i )) = Si, for 1≤ i≤ `.

Proposition 1 Let M = (C1, . . . ,C`) be a monotonic mMCS with no negative literals
in bridge-rule bodies. A belief state S = (S1, . . . ,S`) is a grounded equilibrium of
grade ∞ (or simply ’a grounded equilibrium’) for M iff S is an equilibrium for M.
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Proof S is an equilibrium for M because it fulfills the definition by construction. In
fact, step-by-step all applicable bridge rules will have been applied, so S, obtained via
∞ steps, is stable w.r.t. bridge rule application. The converse is straightforward. ut

Notice that reaching a grounded equilibrium of grade ∞ does not always require
an infinite number of steps: the procedure of Definition 3 can reach a fixpoint in a
number δ of steps, where either δ = ∞ or δ is finite. In fact, the required grade for
obtaining an equilibrium would be κ =∞ in the former version of our example, where
in the latter version if setting threshold t we would have κ = t.

Several grounded equilibria may exist, depending upon the choice of ACC′i . We
can state the following relationship with [8]:

Proposition 2 Let M = (C1, . . . ,C`) be a definite MCS (in the sense of [8]), and let
S = (S1, . . . ,S`) be a grounded equilibrium for M according to their definition. Then,
S is a grounded equilibrium of the mMCS M’obtained by including in M the same
contexts as in M, and, for each context Ci, letting ACC′i = ACCi, and associating to
Ci a management function mngi that just adds to kbi every s such that o(s) ∈ app(S).

Proof As all the bridge rules in both M and M′ are ground, the procedure of Defi-
nition 3 and the procedure described on page 4 (below Definition 11) in [8] become
identical, as we added only two aspects, i.e., considering non-ground bridge rules,
and considering a management function, which are not applicable to M′. ut

In [8], where the authors consider ground bridge rules only, they are able to
transfer the concept of grounded equilibrium of grade ∞ of a monotonic MCS M
to its extensions, where an extension is defined below. Intuitively, an extension M′ of
(m)MCS M has the same number of contexts, each context in M′ has the same knowl-
edge base of the corresponding context in M, but, possibly, a wider set of bridge rules;
some of these bridge rules, however, extend those in M as they agree on the positive
bodies.

Definition 5 Let M = (C1, . . . ,C`) be a monotonic (m)MCS with no negative literals
in bridge-rule bodies. A monotonic (m)MCS M′ = (C′1, . . . ,C

′
`) is an extension of M

iff for each Ci = 〈ci,Li,kbi,bri,OPi,mngi〉, we have that C′i = 〈ci,Li,kbi,br′i,OPi,mngi〉
where ρ ∈ bri implies ∃ρ ′ ∈ br′i where body+(ρ) = body+(ρ ′) and body−(ρ ′) may
be nonempty. We call ρ and ρ ′ corresponding bridge rules.

In [8] it is stated that a grounded equilibrium S = (S1, . . . ,S`) of grade ∞ of a
definite MCS M is a grounded equilibrium of grade ∞ of any extension M′ of M that
can be obtained from M′ by: canceling all bridge rules where S does not imply the
negative body, and canceling the negative body of all remaining bridge rules. We may
notice that [8] proceeds from M′ to M via a reduction similar to the Gelfond-Lifschitz
reduction [32]. In our case, we assume to extend the procedure of Definition 3 by
dropping the assumption of the absence of negation in bridge-rule bodies. So, the
procedure will now be applicable to monotonic MCSs in general. Then, we have that:

Proposition 3 Let M =(C1, . . . ,C`) be a monotonic (m)MCS with no negative literals
in bridge-rule bodies, and let M′ be an extension of M. Let S = (S1, . . . ,S`) be a
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grounded equilibrium for M, reachable in δ steps. S is a grounded equilibrium for
M′ iff, if applying the procedure of Definition 3 to both M and M′, we have that
∀α > 0, ρ ∈ app(Sα) iff ρ ′ ∈ app(S′α), where ρ and ρ ′ are corresponding bridge
rules S and S′ are the data states at step α of M and M′, respectively.

Proof The result follows immediately from the fact that at each step corresponding
bridge rules are applied in M and M′ on the same knowledge bases, so at step ∞ the
same belief state will have been computed. A proof by induction is thus straightfor-
ward. ut

The extension of the above results to the case of general non-monotonic MCSs
will be subject of further research.

5 Update Problem: Update Operators and Timed Equilibria

Bridge rules as defined in mMCSs are basically a reactive device, as a bridge rule
is applied whenever applicable. In dynamic environments, however, a bridge rule in
general will not be applied only once, and it does not hold that an equilibrium, once
reached, lasts forever. In fact, in recent extensions to mMCS, contexts are able to
incorporate new data items coming from observations, so that a bridge rule can be,
in principle, re-evaluated upon new observations. For this purpose, two main ap-
proaches have been proposed for this type of mMCSs: so-called reactive [12] and
evolving [37] multi-context systems. A reactive MCS (rMCS) is an mMCS where the
system is supposed to be equipped with a set of sensors that can provide observations
from a set Obs. Bridge rules can refer now to a new type of atoms of the form o@s,
being o ∈ Obs an observation that can be provided by sensor s. A “run” of such sys-
tem starts from an equilibrium and consists in a sequence of equilibria induced by a
sequence of sets of observations. In an evolving MCS (eMCS), instead, there are spe-
cial observation contexts where the observations made over time may cause changes
in each context knowledge base. As for the representation of time, different solutions
have been proposed. For instance, [12] defines a special context whose belief sets on
a run specify a time sequence. Other possibilities assume an “objective” time pro-
vided by a particular sensor, or a special head predicate in bridge rules whose unique
role is adding timed information to a context.

However, in the general case of dynamic environments, contexts can be realisti-
cally supposed to be able to incorporate new data items in several ways, including
interaction with a user and with the environment. We thus intend to propose exten-
sions to explicitly take into account not only observations but, more generally, the
interaction of contexts with an external environment. Such an interaction needs not
to be limited to bridge rules, but can more generally occur as part of the context’s
reasoning/inference process. We do not claim that the interaction with an external en-
vironment cannot somehow be expressed via the existing approaches to MCSs which
evolve in time [12,37,36]; in fact, as mentioned above, this can be obtained by in-
troducing special kinds of contexts. However, in view of practical applications, we
design an explicit device to cope with this important issue.
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We proceed next to define timed MCS (tmMCS). In a tmMCS, the main new
feature is the idea of (update) action. For each context Ci, we define a set acti of
elementary actions, where each element π ∈ acti is the name of some action or op-
eration that can be performed to update context Ci. We allow a subset Obsi ⊆ acti
for observing sensor inputs as in [12]. A compound action (action, for short) Πi is a
set Πi ⊆ acti of elementary actions that can be simultaneously applied for context Ci.
The application of an action to a knowledge base is ruled by an update function:

Ui : KBi×2acti → 2KBi \{ /0},

so that kb′i ∈Ui(kbi,Πi) means that the “new” knowledge base kb′i is a possible result
of updating kbi with action Πi under function Ui. We thus assume Ui to encompass
all possible updates performed to a module (including, for instance, sensor inputs,
updates performed by a user, consequences of messages from other agents or changes
determined by the context’s self re-organization). Note that Ui(kbi,Πi) is (possibly)
non-deterministic, but never empty (some resulting kb′i is always specified). In some
cases, we may even leave the knowledge base unaltered, since it is admitted that
kbi ∈Ui(kbi,Πi). Notice, moreover, that update operations can be non-monotonic.

In order to allow arbitrary sequences of updates, we assume a linear time repre-
sented by a sequence of time points {tT}T≥0 indexed by natural numbers T ∈ N and
representing discrete states or instants in which the system is updated. The elapsed
time between each pair of states is some real quantity δ = tT+1− tT > 0. Given T ∈N
and context Ci, we write kbi[T ] and Πi[T ] to respectively stand for the knowledge base
content at instant T and the action performed to update Ci from instant T to T+1. We
define the actions vector at time T as Π [T ] = (Π1[T ], . . . ,Π`[T ]). Finally, Si[T ] de-
notes the set of beliefs for context Ci at instant T whereas, accordingly, S[T ] denotes
the belief state (S1[T ], . . . ,S`[T ]). S[T ] can be indicated simply as S whenever T does
not matter.

Definition 6 (timed context) Let Ci = 〈ci,Li,kbi,bri,OPi,mngi〉 be a context in an
mMCS. The corresponding timed context w.r.t. an initial belief state S is defined as:
– Ci[0] = 〈ci,Li,kbi[0],bri,OPi,mngi,acti,Ui〉
– Ci[T+1] = 〈ci,Li,kbi[T+1],bri,OPi,mngi,acti,Ui〉, for T ≥ 0

where

– kbi[0] := kbi and S[0] := S,
– kbi[T+1]:=mngi(app(S[T ]),kb′) and kb′ ∈Ui(kbi[T ],Πi[T ]),

with, for T ≥ 0, S[T +1] = (S1[T +1], . . . ,S`[T +1]), and, for each i= 1, . . . , `, Si[T +
1] ∈ ACCi(mngi(app(S[T ]),kbi[T ])).

Definition 7 (timed mMCS and timed data state) We let a tmMCS at time T be
M[T ] = {C1[T ], . . . ,C`[T ]} and its timed data state is S[T ] = (S1[T ], . . . ,S`[T ]) as
defined above.

The initial timed belief state S[0] can be an equilibrium, according to original
mMCS definition. Later on, however, the transition from a timed belief state to the
next one, and consequently the definition of an equilibrium, is determined both by
the update operators and by the application of bridge rules. Therefore we have:
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Definition 8 (timed equilibrium) A timed belief state of tmMCS M at time T+1 is a
timed equilibrium whenever, for 1≤ i≤ `, it holds that Si[T+1]∈ACCi(mngi(app(S[T+
1]),kbi[T+1])).

The meaning is that a timed equilibrium is now a data state which encompasses
bridge rules applicability on the updated contexts’ knowledge bases. As seen in Def-
inition 6, applicability is checked on belief state S[T ], but bridge rules are applied
(and their results incorporated by the management function) on the knowledge base
resulting from the update. The enhancement w.r.t. [12] is that the management func-
tion keeps its original role concerning bridge rules, while the update operator copes
with updates, however and wherever performed. So, we relax the limitation that each
rule involving an update should be a bridge rule, and that updates should consist of
(the combination and elaboration of) simple atoms occurring in bridge bodies. Our
approach, indeed, allows update operators to consider and incorporate any piece of
knowledge; for instance, an update can encompass table creation and removal in a
context which is a relational database or addition of machine-learning results in a
context which collects and processes big data. In addition, we make time explicit
thus showing the timed evolution of contexts and equilibria, while in [12] such an
evolution is implicit in the notion of system run.

A very important recent proposal to introducing time in mMCS is that of Stream-
ing MCS (sMCS) [25]. The sMCS approach equips MCS with data streams and mod-
els the time needed to transfer data among contexts, and computation time at contexts.
The aim is to model the asynchronous behavior that may arises in realistic MCS ap-
plications. In sMCS, bridge rules can employ window atoms to obtain ’snapshots’
of input streams from other contexts. Semantically, “feedback equilibria” extend the
notion of MCS equilibria to the asynchronous setting, allowing local stability in sys-
tem “runs” to be enforced, overcoming potentially infinite loops. To define window
atoms the authors exploit the LARS framework [5], which allows to define “win-
dow functions” to specify time-based windows (of size k) out of a data stream S. A
Window atom α are expressed on a plain atom A and can specify that A is true at
some time instant or sometimes/always within a time window. Window atoms may
appear in bridge rules: a literal ci : α in the body of some bridge rule, where α is a
window atom involving atom A, means that the “destination” context (the context to
which the bridge rule belongs) is enabled to observe A in context ci during given time
window. This models in a natural way the access to sensors, i.e., cases where ci is a
fictitious context representing a sensor, whose outcomes are by definition observable.
However, window atoms may concern other kinds of contexts, which are available to
grant observability of their belief state. The sMCS approach also consider a very im-
portant aspect, namely that knowledge exchange between context is not immediate
(as in the basic, rather ideal, MCS definition) but instead takes a time, that is sup-
posed to be bounded, where bounds associated to the different contexts are known
in advance. So, the approach considers the time that a context will take to evaluate
bridge rules and to compute the management function. Thus, ‘runs’ of an sMCS will
consider that each context’s knowledge base will actually be updated according to
these time estimations. The sMCS proposal is very relevant and orthogonal to ours.
We in fact intend as future work to devise an integration of sMCS with our approach.
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In the next section we consider aspects not presently covered in sMCS, i.e: how
to activate bridge rule evaluation only when needed, and how to cope with the case
where the time taken by knowledge interchange between contexts is not known in
advance.

6 Static Set of Bridge Rules: Bridge-Rules Patterns

In the original MCS definition, each context is equipped with a static set of bridge
rules, a choice that in tmMCSs can be a limitation. As mentioned, in fact, contexts to
be queried are not necessarily fully known in advance; rather, it can become known
only at “run-time” which are the specific contexts to be queried in the situations that
practically arise. For instance, in [21] we have proposed an Agent Computational
Environment (ACE), that is actually a tmMCS including an agent, to model a personal
assistant-agent assisting a prospective college student; the student has to understand
to which universities she could send an application (given the subjects of interest, the
available budget for applications and then for tuition, and other preferences), where
to perform the tests, where to enroll among the universities that have accepted the
application. So, universities, test centers etc. have to be retrieved dynamically (as
external contexts) and then suitable bridge rules to interact with such contexts must
be generated and executed; in our approach, such bridge rules are obtained exactly by
instantiating bridge rules patterns. See Section 7 below for a generalization of mMCS
and tmMCS to dynamic systems, whose definition in term of composing contexts can
change in time.

Thus, below we generalize and formalize for mMCS and tmMCS the enhanced
form of bridge rules proposed in [22] for logical agents. In particular, we replace
context names in bridge-rule bodies with special terms, called context designators,
which are intended to denote a specific kind of context.

Example 7 Consider a literal such as doctorRoss :prescription(disease,P) asking
family doctor, specifically Dr. Ross, for a prescription related to a certain disease,
might become family doctor(d) :prescription(disease,P) where the doctor to be
consulted is not explicitly specified. Each context designator must be substituted by
a context name prior to bridge-rule activation; in the example, a doctor’s name to be
associated and substituted to the context designators family doctor(d) (which, there-
fore, acts as a placeholder) must be dynamically identified; the advantage is, for in-
stance, to be able to flexibly consult the physician who is on duty at the actual time
of the inquiry. ut

In what follows we formalize what intuitively described in the previous example.

Definition 9 Let Ci be a context of a (t)mMCS. A context designator m(k) is a term
where m and k are symbols of the signature of Li not occurring in kbi or in bri.

A bridge-rule pattern φ is an expression of the form:

s← (C1:p1), . . . ,(C j:p j),not (C j+1:p j+1), . . . ,not (Cm:pm)

where each Cd can be either a constant or a context designator.
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New bridge rules can thus be obtained and applied by replacing, in a bridge-rule
pattern, context designators via actual contexts names. So, contexts will now evolve
also in the sense that they may increase their set of bridge rules by exploiting bridge-
rule patterns:

Definition 10 Given a (t)mMCS, each of the timed composing contexts Ci, 1≤ i≤ `,
is defined, at time 0, as Ci[0] = 〈ci,Li,kbi[0],bri,brpi,OPi,mngi,acti,Ui〉, where brpi
is a set of bridge-rule patterns, and all the other elements are as in Definition 6.

Definition 11 (rule instance) An instance of the bridge-rule pattern φ ∈ brpi, for
1 ≤ i ≤ `, occurring in a (t)mMCS, is a bridge rule r obtained by substituting every
context designator occurring in φ by a context name c ∈ {c1, . . . ,c`}.

The context names to replace a context designator must be established by suitable
reasoning in context’s knowledge base, this by providing a suitable definition of a
distinguished predicate subsi that we assume to occur in the signature of Li.

Definition 12 Given a (t)mMCS M, any composing context Ci, for 1 ≤ i ≤ `, and
a timed data state S[T ] of M, a valid instance of a bridge-rule pattern φ ∈ brpi is
a bridge rule r̂ obtained by substituting every context designator m(k) in φ with a
context name c ∈ {c1, . . . ,c`} such that Si[T ] |= subsi(m(k),c).

Let vinst(brpi)[T ] denote the set of valid instances of bridge rule patterns that can be
obtained at time T (for Ci). The set of bridge rules associated with a context increases
in time with the addition of new ones which are obtained as valid instances of bridge-
rule patterns.

Definition 13 Given a tmMCS, each of the timed composing contexts Ci, 1≤ i≤ `,
is defined, at time T+1, as:

Ci[T+1] = 〈ci,Li,kbi[T+1],bri[T+1],brpi,OPi,mngi,acti,Ui〉

with bri[T+1]=bri[T ]∪vinst(brpi)[T ], bri[0] = bri, and all the rest is defined as done
in Definition 6.

All the other previously-introduced notions (namely, equilibria, bridge-rule ap-
plicability, etc.) remain unchanged. That instantiation of bridge-rule patterns corre-
sponds to specializing bridge rules with respect to the context which is deemed more
suitable for acquiring some specific information at a certain stage of a context’s op-
eration. This evaluation is performed via the predicate subsi(m(k),c) that can be de-
fined so as to take several factors into account, among which, for instance, trust and
preferences.

A solution that might seem alternative though equivalent to ours could be that of
defining “classical” bridge rules where each rule has a special element in the body
acting as a ’guard’ to establish if the rule should be actually applied. However, this
alternative approach might reveal inappropriate. Let us reconsider our working ex-
amples. Initially, the student does not know which are the universities of interest, as
this will be the result of a reasoning process and of knowledge exchange with other
contexts; the student may even not know which universities exist. So, in the alterna-
tive solution it would be necessary to define one bridge rule for each university in
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the world, where the rule has a guard to ’enable’ the rule in case it should be finally
applied as the student concluded to be interested: this is unfeasible if the student does
not know all universities in advance, and it is clearly unpractical. A similar argument
applies to our second example: doctors can retire or die, or start a new practice, or be
initially unknown to the patient; so, they can hardly be all listed in advance. The same
holds for many other classes of knowledge sources that can be modeled as contexts.
Our solution is in many cases more practical and compact. It is unprecedented in the
literature and adds actual expressive power.

This enhancement enables us to pursue the direction of dynamic (t)mMCS, where
contexts can either join or leave the system during its operation. Such an extension
has been in fact advocated since [10]. The meaning is that the set of contexts which
compose an mMCS may be different at different times. Here, one can see the useful-
ness of having a constant acting as the context name; in fact, bridge-rule definition
does not strictly depend upon the composition of the mMCS, as it would be by using
integer numbers. Rather, the applicability of a bridge rule depends on the presence
in the system of contexts with the names indicated in the bridge-rule definition. Not
only can contexts be added or removed, but they can be substituted by new “versions”
with the same name.

7 Static System Assumption and Unique Source Assumption: Dynamic (Timed)
mMCSs (dtmMCS) and Multi-Source Option

As mentioned, in general, a heterogeneous collection of distributed sources will not
necessarily remain static in time. New contexts can be added to the system, or can
be removed, or can be momentarily unavailable due to network problems. Moreover,
a context may be known by the others only via the role(s) it assumes or the services
which it provides within the system. Although not explicitly specified in the original
MCS definition, context names occurring in bridge-rule bodies must represent all
the necessary information for reaching and querying a context, e.g., names might
be URIs.

It is however useful for a context to be able to refer to other contexts via their
roles, without necessarily being explicitly aware of their names. Also, a context which
joins an MCS will not necessarily make itself visible to every other contexts: rather,
there might be specific authorizations involved. These aspects may be modeled by
means of the following extensions.

Definition 14 A dynamic managed (timed) Multi-Context System (d(t)mMCS) at
time T is a (t)mMCS augmented with the two special contexts Dir and Reach, which
have no associated bridge rules, bridge-rule patterns, and update operator, and where:

– Dir is a directory which contains the list of the contexts, namely C1, . . . ,C`, par-
ticipating in the system at time T where, for each Ci, its name is associated with
its roles. We assume Dir to admit queries of the form ’role@Dir’, returning the
name of some context with role ’role’, where ’role’ is assumed to be a constant.

– Reach contains a directed graph determining which other contexts are reachable
from each context Ci. For simplicity, we may see Reach as composed of couples
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of the form (Cr,Cs) meaning that context Cs is (directly or indirectly) reachable
from context Cr.

A d(t)mMCS is a more structured system w.r.t. MCS. Via Dir, contexts can ac-
cess sources of knowledge without knowing them in advance, via a centralized sys-
tem facility listing available contexts, with their role. In practice, contexts joining a
d(t)mMCS will be allowed to register to Dir specifying their role, where this registra-
tion can be optional. Via Reach, the system assumes a structure that may correspond
to the nature the applications, where a context can sometimes be not allowed to access
all the others, either for a matter of security or for a matter of convenience. Often, in-
formation must be obtained via suitable mediation, while access to every information
source is not necessarily either allowed or desirable. For instance, a patient’s relatives
can ask the doctors about the patient’s conditions and prognosis, but they are not al-
lowed (unless explicitly authorized by the patient) to access medical documentation
directly. Students can see their data and records, but not those of other students.

For now, let us assume that a query role@Dir = c where c ∈ {C1, . . . ,C`}, i.e.,
returns a unique result. The definition of timed data state remains unchanged. Bridge
rule syntax must instead be extended accordingly:

Definition 15 Given a d(t)mMCS (at time T if timed) M[T ], each (non-ground)
bridge rule r in the composing contexts has the form:

s← (C1 : p1), . . . ,(C j : p j), not (C j+1 : p j+1), . . . ,not (Cm : pm).

where for 1 ≤ k ≤ m the expression Ck is either a context name, or an expression
rolek@Dir.

Bridge-rule grounding and applicability must also be revised. In fact, for checking
bridge rule applicability: (i) each expression rolek@Dir must be substituted by its
result and (ii) every context occurring in bridge rule body must be reachable from the
context where the bridge rule occurs.

Definition 16 Let M be a d(t)mMCS (at time T if timed) and S be a (timed) data state
for M. Let r be a bridge rule in the form specified in Definition 15. The pre-ground
version r′ of r is obtained by substituting each expression rolek@Dir occurring in the
body of r with its result ck obtained from Dir.

Notice that r′ is a bridge rule in “standard” form, and that r and r′ have the same
head, where their body differ since in r′ all context names are specified explicitly.

Definition 17 Let r′ be a pre-ground version of a bridge rule r occurring in context Ĉ
of d(t)mMCS M with (timed) data state S. Let ρ be a ground instance w.r.t. S of r′. We
have now hd(ρ) ∈ app(S) if ρ fulfills the conditions for applicability w.r.t. S and, in
addition, for each context C̃ occurring in the body of ρ we have that (Ĉ,C̃) ∈ Reach.

The definition of equilibria is basically unchanged, save the extended bridge-rule
applicability. However, suitable update operators (that we do not discuss here) will
be defined for both Dir and Reach, to keep both the directory and the reachability
graph up-to-date with respect to the actual system state. The question may arise of
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where such updates might come from. This will in general depend upon the applica-
tion at hand: the contexts might themselves generate an update when joining/leaving
a system, or some kind of monitor (that might be one of the composing contexts, pre-
sumably however equipped with reactive, proactive and reasoning capabilities) might
take care of such task. Thus, the system as a whole will have a “policy” that defines
reachability. Notice, in fact, that Reach provides structure to the system in a global
way: each context indeed belongs to the sub-MCS of its reachable contexts. This
corresponds to the structure of many applications and introduces a notion similar to
“views” in databases: a context can sometimes be not allowed to access all the oth-
ers, either for a matter of security or for a matter of convenience. Often, information
must be obtained via suitable mediation, while access to every information source
is not necessarily allowed or desirable. Reachability can evolve in time according to
system’s global policies.

Via Dir contexts are categorized, independently of their names, into, e.g., univer-
sities, doctors, etc. So, a context can query the right ones via their role. However, there
might sometimes be the case where a specific context is not able to return a required
answer, while another context with the same role instead would. More generally, we
may admit a query role@Dir to return not just one, but possibly several results, rep-
resenting the set of contexts which, in the given d(t)mMCS, have the specified role.
So, the extension that we propose in what follows can be called a multi-source option.
In particular, for d(t)mMCS M[T ], composed at time T of contexts C1, . . . ,C`, the ex-
pression rolek@Dir occurring in bridge rule r ∈ brs will now denote some nonempty
set SCk ⊆ ({C1, . . . ,C`}\{Cs}), indicating the contexts with the required role (where
Cs is excluded as a context would not in this case intend to query itself). Technically,
there will be now several pre-ground versions of a bridge rule, which differ relative
to the contexts occurring in their body.

Definition 18 Let M be a d(t)mMCS (at time T ) and S be a (timed) data state for M.
Let r ∈ brs be a bridge rule in the form specified in Definition 15 occurring in con-
text Cs. A pre-ground version r′ of r is obtained by substituting each expression
rolek@Dir occurring in the body of r with c ∈ SCk.

Bridge-rule applicability is still as specified in Definition 17 and the definition of
equilibria is also basically unchanged.

In practice, one may consider to implement the multi-source option in bridge-rule
run-time application by choosing an order for querying the contexts with a certain
role as returned by the directory. The evaluation would proceed to the next one in
case the answer is not returned within a time-out, or if the answer is under some
respect unsatisfactory (according to the management function).

A further refinement might consist in considering, among the contexts returned by
role@Dir, only the preferred ones. For instance, among medical specialist a patient
might prefer the ones who practice nearer to patient’s home, or who have the best
ratings according to other patients’ feedback.

Definition 19 (preferred source selection) Given a query role@Dir with result SC,
a preference criterion P returns a (nonempty) ordered subset SCP ⊆ SC.
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Different preference criteria can be defined according to several factors such as
trust, reliability, fast answer, and others. To this aim we assume a predicate

prfsi(role@Dir,SC,SCP)

to be defined in each context’s knowledge base in order to select a subset SCP of a
collection of contexts SC provided by the query role@Dir.

Example 8 In this example, the patient intends to take an appointment with a cardi-
ologist, but she has no prior information on whom to consult, and she has no medical
directory available. So, she asks the general directory about cardiologists. The di-
rectory will in general return a list of names. The second rule defines a preference
criterion to filter the elements of such list. The predicate closest(Site,Sites,Closest)
determines, among the sites in the list Sites, the one which is closest to Site. This is
done by exploiting distance(Loc1,Loc2,Dist) that specifies the distance among two
locations. Hence, the cardiologist is chosen whose medical clinic is the closest to
patient’s home. Then, the patient will take an appointment with the selected cardiolo-
gist C on day D at time T . (Here we exploited an aggregate to evaluate the minimum
among a set of values, and adopted a syntax reminiscent of that of Answer Set Pro-
gramming [9].)
take cardiological visit appointment(C,D,T)←

cardiologist@Dir : take appointment(C,D,T).

prfs(cardiologist@Dir,CS, [Closest])← closest(home,CS,Closest).

closest(Site,Locs,Closest)←
distance(Site,Closest,Dist),
Dist = #min{X : distance(Loc,C′,X),member(L,Locs)}.

distance(Site1,Site2,Dist)← . . .
ut

Different existing approaches to preferences in logic programming might be ap-
plied to the present setting: see, among many, [12] and the references therein, [6,13]
and [18–20]. The definition of a context will now be as follows.

Definition 20 A context Ci included in a d(t)mMCS (except for Dir and Reach) is de-
fined (at time T ), as Ci[T ] = 〈ci,Li,kbi[T ],bri[T ],brpi,OPi,mngi,acti,Ui,Pi〉 where
all elements are as defined before for (t)mMCS, and Pi is a preference criterion as
specified in Definition 19.

Preferences have been exploited in MCS extensions in [28] and [38] in a very
different way with respect to what is done here, to cope with relevant issue. Both the
above-mentioned approaches are however orthogonal to ours, where the preference
criterion is associated to each context, and determines which other contexts to query
given a present situation. [38] aims to reconcile the different contexts’ preferences
about some common issue (for instance, mentioning from their first example where
they apparently consider contexts as agents, whether to drink red or white wine if
going to restaurant together). [28] copes with the situation where some constraint is
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violated in some context depending upon other contexts’ results communicated via
bridge rules.

More precisely, [28] observes that “As the contexts of an MCS are typically au-
tonomous and host knowledge bases that are inherited legacy systems, it may happen
that the information exchange leads to unforeseen conclusions and in particular to
inconsistency; to anticipate and handle all such situations at design time is difficult
if not impossible, especially if sufficient details about the knowledge bases are lack-
ing. Inconsistency of an MCS means that it has no model”, i.e., no equilibrium. To
solve the problem, they propose to define consistency-restoring rules based upon user
preferences, specified in any suitable formalism (though in their examples they adopt
CP-Nets [7]). This in order to choose among possible repairs, called “diagnoses”,
intended as modifications to bridge rules that might restore consistency. Such rules
might be included into a special context to be added to given MCS. The goal of [38]
instead is “to allow each agent (context) to express its preferences and to provide an
acceptable semantics for MCS with preferences”. To this aim, to define contexts they
adopt “Ranked logics”, where a partial order among acceptable belief sets is defined.

8 Logical Omniscience Assumption and Bridge Rules Application Mechanisms

In an implemented mMCS, as remarked in [4], “...computing equilibria and answer-
ing queries on top is not a viable solution.” So, they assume a given MCS to admit
an equilibrium, and define a query-answering procedure based upon some syntac-
tic restriction on bridge-rule form, and involving the application and a concept of
“unfolding” of positive atoms in bridge-rule bodies w.r.t. their definition in the “des-
tination” context. Still, they assume an open system, where every context’s contents
are visible to others (save some possible restrictions). We assume instead contexts
to be opaque, i.e., that contexts’ contents are accessible from the outside only via
queries.

Realistically therefore, the grounding of literals in bridge rule bodies w.r.t. the
present data state will most presumably be performed at run-time, whenever a bridge
rule is actually applied. Such grounding, and thus the bridge-rule result, can be ob-
tained by “executing” or “invoking” literals in the body (i.e., querying contexts) left-
to-right. In practice, we allow bridge rules to have negative literals in their body. To
this aim, we introduce a syntactic limitation in the form of non-ground bridge rules
very common in logic programming approaches. Namely, we assume that (i) every
variable occurring in the head of a non-ground bridge rule also occurs in some pos-
itive literal of its body; and (ii) in the body of each rule, positive literals occur (in a
left-to-right order) before negative literals.

So, at run-time variables in a bridge rule will be incrementally and coherently
instantiated via results returned by contexts. Clearly, asynchronous application of
bridge rules determines evolving equilibria.

As mentioned, we believe that bridge-rule application should not necessarily be
reactive but rather, according to a context’s own logic, other modalities of applica-
tion may exist. For instance, a doctor will be consulted not whenever the doctor is
available, but only if the patient is in need. Or, an application to some institution is
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sent not just when all the needed documentation is available, but only if and when the
potential applicant should choose to do that. Thus, in our approach the bridge rules
that consult the doctor or issue the application remain in general “passive”, unless
they are explicitly triggered by suitable conditions. Moreover, the results returned by
a bridge rule are not necessarily processed immediately, but only if and when the re-
ceiving context will have the wish and the need to take such results into account. For
instance, the outcome of medical analyses will be considered only when a specialist
is available to examine them. So, in our approach we make bridge-rule application
proactive (i.e., performed upon specific conditions) and we detach bridge-rule appli-
cation and the processing of the management function.

In the rest of this section we formalize the aspects that we have just discussed.
Below, when referring to tmMCS we implicitly possibly refer to their timed dynamic
version according to the definitions introduced in previous section. We are now able
to formalize the rule instantiation and application mechanism, via a suitable notion
of potential applicability.

A slight variation of the definition of bridge-rule grounding is required, as a gen-
eralization of Definition 1.

Definition 21 Let r ∈ bri be a non-ground bridge rule in a context Ci of a given
tmMCS M with (timed) belief state S[T ]. A ground instance ρ of r w.r.t. S[T ] is
obtained by substituting every variable occurring in r with ground terms occurring
in S[T ].

By a “ground bridge rule” we implicitly mean a ground instance of a bridge rule w.r.t.
a timed data state. We now redefine bridge-rule applicability, by first introducing
proactive activation. For each context Ci, let

Hi[T ] = {s| there exists rule ρ ∈ bri with head hd(ρ) = s at time T}. (3)

We introduce a timed triggering function, tri[T] : KBi→ 2Hi[T ], which specifies (via
their heads) which bridge rules are triggered at time T , and so, by performing some
reasoning over the present knowledge base contents. Since Hi[T ] can be in general
an infinite set, tri[T](·) may itself return an infinite set. However, in practical cases, it
will presumably return a finite set of rules to be applied at time T .

Definition 22 A rule ρ ∈ bri is triggered at time T iff hd(ρ) ∈ tri[T ](kbi[T ]).

Example 9 The following rules specify a simple bridge rule and its triggering condi-
tion. Hence, the first rule is activated whenever the body of the second rules is satis-
fied. Namely, one is allowed to proceed in finding a clinic only if there is a diagnosis
indicating that an operation is actually needed.

find clinic(H,P,D)←
patient(P), operation(H), disease(D), ...

tr(find clinic(H,P,D))←
diagnosis(medical specialist(M),patient(P), disease(D), needs(operation(H)).

ut
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Let grtri[T ] be the set of all ground instances of bridge rules which have been
triggered at time T , i.e., ρ ∈ grtri[T ] iff ρ is a ground instance w.r.t. S[T ] of some
non-ground r such that hd(ρ) ∈ tri[T ](kbi[T ]).

For a tmMCS M, data state S[T ] and a ground bridge rule ρ , let S[T ] |= body(ρ)
represent that the rule body holds in belief state S[T ].

Definition 23 The set app(S[T ]) relative to ground bridge rules which are applicable
in a timed data state S[T ] of a given tmMCS M[T ] = {C1[T ], . . . ,C`[T ]} is defined as:

app(S[T ]) = {hd(ρ) | ∃T ′ ≤ T such that ρ ∈ grtri[T ′] and S[T ] |= body(ρ)}.

By the definition of app(·), a (ground instance of) a bridge rule can be triggered
at a time T ′, but can then become applicable at some later time T ≥ T ′. Thus, any
bridge rule which has been triggered remains in predicate for applicability, which will
occur whenever its body is entailed by some future data state. One alternative solution
that may seem equivalent to the proposed one is that of adding a “guard” additional
positive subgoal in a bridge-rule body, to be proved within the context itself. Such
additional literal would have the role of enabling bridge-rule application. However,
in our proposal a context is committed to actually apply bridge rules which have been
triggered as soon as they will (possibly) be applicable while an additional subgoal
should be re-tried at each stage and, if non-trivial reasoning is involved, this may be
unnecessary costly.

The definition of timed equilibria remains unchanged, apart from the modified
bridge-rule applicability. However, the added (practical) expressiveness is remark-
able as a context in the new formulation is not just the passive recipient of new in-
formation, but it can reason about which bridge rules to potentially apply at each
stage.

As mentioned, for practical applications it may be useful to allow the grounding
of literals in bridge-rule bodies to be computed at run-time, whenever a bridge rule
is actually applied. Because of the adoption of a left-to-right execution and in virtue
of the assumptions (i)-(ii) seen earlier, the grounding of a bridge-rule is obtained by
“invoking” literals in its body so as to obtain the grounding of positive literals first,
to be extended later to negative ones.

Each positive literal (c j : p) in the body of a bridge rule may fail (i.e., c j will
return a negative answer), if none of the instances of p given the partial instantiation
computed so far is entailed by c j’s present data state. Otherwise, the literal succeeds
and the other ones are (possibly) instantiated accordingly. Negative literals not (c j : p)
make sense only if p is ground at the time of invocation, and succeed if p is not
entailed by c j’s present data state. In case either some literal fails or a non-ground
negative literal is found, the overall bridge rule evaluation fails without returning
results. Otherwise, the evaluation succeeds, and the result can be elaborated by the
management function of the “destination” context.

For modeling such a run-time procedural behavior, we introduce potential appli-
cability. Note that, since literals in bridge-rule bodies are ordered left to right as they
appear in the rule definition, we can refer to the first, second, etc., positive/negative
literal.
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Definition 24 A ground bridge rule ρ ∈ grtri[T ′] for some T ′, of the form (1) with h
positive literals A1, . . . ,Ah in its body is potentially applicable to grade k ≤ h at time
T ≥ T ′ iff given a reduced version ρ ′ of the rule of the form s← A1, . . . ,Ak we have
S[T ] |= body(ρ ′).

Hence, a triggered bridge rule ρ is potentially applicable to grade k at time T if
the timed belief state at time T entails its first k positive literals. Plainly, we have:

Lemma 1 A ground bridge rule ρ ∈ grtri[T ′] for some T ′, of the form (1) with h
positive literals A1, . . . ,Ah in its body which is potentially applicable to grade k ≤ h
at time T is also potentially applicable at time T to grade k′, 1≤ k′ < k.

Proof This comes from the fact that if S[T ] |= body(ρ ′) with ρ ′ of the form s←
A1, . . . ,Ak, then it will hold that S[T ] |= body(ρ ′′) with ρ ′′ of the form s← A1, . . . ,A′k.
This because entailing a conjunction implies entailing any sub-conjunction. ut

Proposition 4 A ground bridge rule ρ is potentially applicable to grade k at time Tk
iff for every k′ such that 1 ≤ k′ ≤ k there exists Tk′ ≤ Tk such that ρ is potentially
applicable to grade k′ at time Tk′ .

Proof This is a plain consequence of the above lemma if Tk′ = Tk. ut

It will most often be the case that a bridge-rule body will become potentially
applicable to a higher and a higher grade as time passes. I.e., often for some k′ it will
be Tk′ < Tk.

Proposition 5 Let ρ ∈ grtri[T ′] be a ground bridge rule, for some T ′, of the form (1)
which is potentially applicable to grade h (or simply “potentially applicable”) at
time T ; then, hd(ρ) ∈ app(S[T ]) iff for every negative literal not (ck:p) in the body,
h+1≤ k ≤ m, p 6∈ Sk[T ].

Proof The result is obtained trivially from the definition of bridge-rule applicability
in a data state, here S[T ], which requires the positive body to be entailed and the
negative body not to be entailed. ut

As the contexts composing a tmMCS may be non-monotonic, a bridge rule ρ can
become potentially applicable at some time and remain so without being applicable,
but can become applicable at a later time if the atoms occurring in negative literals
are no longer entailed by the belief state at that time.

Notice that, in fact, in a practical distributed setting, literals in the body may
succeed/fail at different times, depending on the various context update times, and
upon network delay. Let us therefore assume that the success of a positive literal
A (resp. negative literal not A) is annotated with the time-stamp when such success
occurs, of the form A[T ] (resp. of the form not A[T ]). So, for any bridge rule ρ ∈
grtri[T ′] of the form (1) which is triggered at some time and then executed later, by
the expression

s[Ts]← A1[T1], . . . ,Ah[Th],not Ah+1[Th+1], . . . ,not Am[Tm]
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we mean that the rule has been executed left-to-right where each literal A[T ]/not A[T ]
has succeeded at time T and the result has been processed (via the management func-
tion) by the destination context (i.e., the one where the bridge rule occurs) at time Ts.
Clearly, we have T1 ≤ T2 ≤ ...≤ Tm ≤ Ts. The above expression is called the run-time
version of rule ρ . It is successful if all literals succeed; otherwise it is failed.

In many practical cases we are able to assume a certain degree of persistence in
the system, i.e., that a literal which succeeds at a time Tr would then still succeed (if
re-invoked) at every subsequent time Tq with Tr ≤ Tq≤ Ts (“local persistence assump-
tion” for rule ρ). This corresponds to assuming that during the execution of a bridge-
rule no changes in the involved contexts occur that would invalidate the bridge-rule
result before actual completion; so, this would enforce what we call the “coherent”
execution of a bridge rule. This assumption may sometimes be problematic in prac-
tice, but in a distributed system such as a tmMCS we cannot realistically assume the
execution to be instantaneous. The assumption of persistence can be considered as
reasonable whenever the time amount required by the execution of a bridge rule is
less than the average system change rate with respect to the involved belief elements.
This is the usual condition for artificial intelligence systems to be adequate w.r.t. the
environment where they are situated, rather that being “brittle”. There are possible
ways of enforcing the assumption. For instance, the contexts involved in a bridge
rule execution might commit to keep the involved belief elements untouched until the
destination context sends an “ack” to signal the completion of rule execution. This
or other strategies to ensure coherent execution are deferred to the implementation of
tmMCS. Under this assumption we have:

Theorem 1 Given a successful run-time version of a ground bridge rule ρ ∈ grtri(T̂ ),
for some T̂ , of the form s[Ts] ← A1[T1], . . . ,Ah[Th],not Ah+1[Th+1], . . . , not Am[Tm].
Then, hd(ρ) ∈ app(S[Ts]) and there exists T ≤ Tm such that hd(ρ) ∈ app(S[T ]).
Moreover, for each i ≤ j there exists T ′i ≤ Ti and Ti−1 ≤ T ′i if i > 1 such that ρ is
potentially applicable to grade i at time T ′i .

Proof (Sketch). Thanks to the persistence of the system, putting T ′i = Ti, for each
i ≤ j, suffices to prove the first property, and putting T = Tm suffices for the second
one. The third one follows in a straightforward way. ut

The relevance of the above theorem is because, in practice, the execution involves
a non-ground rule r ∈ tri[T̂ ](kbi[T̂ ]) whose rule ρ mentioned therein is a ground
instance. Then, successful left-to-right execution of literals in the body of r will lead
to dynamically generate at run-time a successful run-time version of ρ . Specifically,
the execution of each non-ground positive literal in the body of r will generate a
partial instantiation which is propagated to the rest of the bridge-rule body.

9 Case Study

In this section we provide an example to illustrate the new features. We refer to Ex-
ample 2 in [12] where it is supposed that a user, Bob, suffering from dementia, is able
to live at home thanks to an assisted living system, modeled by means of an rMCS.
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The system is in fact able to constantly track Bob’s position, and to detect and take
care of emergencies (such as a sudden illness, but also Bob’s forgetting the stove on,
and the like), on the basis of the data provided by sensors suitably installed in Bob’s
flat.

We generalize the rMCS to an F&K which is able to detect changes in Bob’s
health and is capable to notice anomalous behavior which might signify an impaired
state. The inputs to the system can be provided by means of sensors, and by record-
ing and monitoring Bob’s activities via suitable telemedicine appliances: by adopting
ubiquitous sensing technologies, such appliances since long (cf., e.g., [35]) include
several kinds of smart devices such as, e.g., beds that monitor sleep, chairs that mon-
itor breathing and pulse, video cameras that monitor general wellbeing, and more.
We assume that the overall F&K system can attend to several patients. Each patient,
among which Bob, is in care of a personalized assistant/monitoring agent (PMA) par-
ticipating in the F&K. In [35] it is in fact remarked that, without such an integrated
system, sophisticated telemedicine appliances are “little more than emergency alarm
systems”. A PMA might be incarnated, in different use-cases, in a chatterbot/avatar
on TV or on the mobile phone, in a smart device, or even in a social/care robot. In our
view, a PMA should be able to “transmigrate” from one form to another one accord-
ing to the situation which a patient is experimenting at a certain stage of her/his activ-
ities, so that a PMA will never desert “her” patient. The patient’s PMA (in this case
Bob’s), is assumed below to be modeled as a context included in an mMCS where
the PMA is in particular an agent defined in any agent-oriented logic language [16].
As said, this agent will be adequately situated and connected to the patient.

Bob’s PMA pmabob might for instance, in case of slight variations of, e.g., blood
pressure or blood coagulation, re-adjust the quantity of medicament by consulting
a treatment knowledge base. In case of more relevant symptoms, the agent might
consult either Bob’s physician or a specialist, depending upon the relative importance
of symptoms. In case of an emergency, for instance a hemorrhage, immediate help
is asked for. Clearly, the example is over-simplified, and we do not aim at medical
accuracy.

Following [12], in the example we assume that present “objective” time is made
available to each context as now(T), where the current value of T is entered into the
system by a particular sensor. As previously specified, literals in bridge-rule bodies
with no indication of a context are to be proved locally to the context to which the
bridge rule belongs.

The following bridge rule associated to each patient’s PMA, and thus also to
pmabob, is maybe the most crucial as it is able to ask for immediate help. The last lit-
eral in the body concerns a context emergency center, which is supposed to be an in-
teractive component for emergency management able to send, for instance, an ambu-
lance or a helicopter for transportation to the hospital. The last literal in bridge-body
will succeed whenever the emergency center context has received and processed the
request, which is sent in case severe symptoms have been detected. Those symptoms
and the time when the request is issued are communicated to the emergency cen-
ter together with the patient’s data (here, for simplicity, just a patient’s identification
code). The bridge rule head is processed by the management function so as to simply
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add to the PMA’s knowledge base the record of the fact that help has been required
at time T for set of severe symptoms S.

help asked(bob,S,T,T1,Th,H)←
now(T),detected symptoms(S,T1),T1≤ T,
patientid(bob,Bid), emergency center : urgent help(Bid,S,T,Th,H)

The emergency center is provided with Bob’s patient’s id Bid and returns the time
T h and mean H by which the emergency will be coped with (e.g., an ambulance by 15
minutes). In order to ensure application of the rule only in case of a real emergency, it
will be triggered (by adding its head to trpmabob [T ]) only upon specific conditions, e.g.,
if symptoms have occurred that can be considered to be severe for Bob’s particular
health conditions and a physician is not already present or promptly available. Upon
bridge-rule application, the management function will record the (ground) request
for help help asked(bob,S,T,T1,Th,H) that has been issued; this allows for instance
the PMA to check whether the promised assistance will actually arrive in time and
possibly to minister palliative treatment in the meanwhile.

The following bridge rule, potentially crucial for cardiopathic patients, will be
triggered by in case the blood coagulation value detected at time T is anomalous; this
implies that the quantity of anti-coagulant which Bob takes to treat his heart disease
must be rearranged accordingly. The correct quantity Q is obtained by the ATC (Anti-
Coagulant Center) knowledge base according to the last blood coagulation value V
and its variation D from previous records.

quantity(anticoagulant,Q)←
coagulation val(V,D),patientid(bob,Bid), atc : quantity(Bid,V,D,Q)

In case a patient’s health state is not really critical but is anyway altered, a physi-
cian must be consulted. However, in case, for example, of a simple flu the family
doctor suffices, while if there are symptoms that might be related to a more serious
condition then a specialist (e.g., a cardiologist) should be consulted. Thus, there will
be a bridge-rule pattern of the following form, where a physician can be consulted
for condition C (where C is either symptom or a list of symptoms). Again, the man-
agement function will record the request having been sent; the last literal in the body
will succeed, when the rule is dynamically executed, as soon as the doctor receives
the request.

call physician(bob,T)←
now(T),condition(bob,T,C),
patientid(bob,Bid), mydoctor(d) : consultation needed(Bid,C,T)

The physician, represented by the context designator mydoctor(d), should how-
ever be determined according to C. This can be done by suitably augmenting the
definition of the distinguished predicate subspmi bob, for instance, as follows. The no-
tation ’ ’ indicates a “don’t care” variable, as time is not taken into account here.

subspmi bob(mydoctor(d),F)← family doctor(F),condition(bob, , fever)
subspmi bob(mydoctor(d),F)← family doctor(F),condition(bob, ,headache)
subspmi bob(mydoctor(d),G)← my cardiologist(G),condition(bob, ,chestpain)
my neurologist(G),condition(bob, , [dizziness,swoon])
. . .
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Thus, a valid instance of the bridge-rule pattern will be generated according to
the patient’s need, as evaluated by the patient’s PMI. The resulting bridge rule will
then be immediately executed. So for instance, if Bob has chest pain and the cardi-
ologist who has been following him is Dr. House, then the bridge rule below will be
constructed and triggered:

call physician(bob,T)←
now(T),condition(bob,T,chest pain),
patientid(bob,Bid),drHouse : consultation needed(Bid,chest pain,T)

As a further generalization, the PMA might also try to retrieve a doctor (for in-
stance, a dermatologist, assuming that Bob has never consulted one in recent times,
and so there is no record in the PMA’s knowledge base) via the system’s directory; in
this case subspmi bob, would include a rule such as:

subspmi bob(mydoctor(d),F)← dermatologist@Dir,condition(bob, ,eczema)
Suitable preferences might be specified, stating for instance that a dermatologist

who is an expert in allergic problems is preferred (if any can be found), and in case
more than one can be located, the doctor who has the medical office nearer to Bob’s
home is preferred. So we might state:

Ppmi bob = {expert(dermatology,allergy),near home(BobAddress)}
Such specification presumes that the outcome provided by the Directory is suit-

ably processed by means of a fragment of a program present in contexts’ specifica-
tion, in line with what shown in Example 8.

10 Complexity

We briefly discuss the complexity issues related to the proposed approach. In general,
the property that we may wish to check is whether a specific belief of our interest will
eventually occur at some stage in one (or all) timed equilibria of a given mMCS. The
formal definition is the following.

Definition 25 The problem Q∃ (respectively Q∀), consists in deciding whether, for
a given mMCS M under a sequence Π = Π [1],Π [2], . . . ,Π [t] of update actions per-
formed at time instants 1,2, . . . , t, and for a context Ci of M and a belief pi for Ci, it
holds that pi ∈ Si[t ′] for some (respectively for all) timed equilibria S[t ′] at time t ′ ≤ t.

We resort, like [12], to context complexity as introduced in [27]. One has first to
consider a projected belief state Ŝ[t], which includes in the element Ŝi[t] the belief
bi one wants to query, and also includes for every element Ŝ j[t] the beliefs that con-
tribute to bridge-rule applications which may affect pi (see [4] for an algorithm which
computes such sets of beliefs for rMCSs). Then, the context complexity for Ci is the
complexity of establishing whether the element Ŝi[t] of such projected belief state is
a subset of the corresponding element Ŝi[t] of some timed equilibrium at time t.

Definition 26 The system context complexity of M is a (smallest) upper bound for
the context complexity classes of its component contexts.



34 Pedro Cabalar et al.

Thus, the system context complexity depends upon the logics of the contexts
in M. The problems Q∃ and Q∀ are however undecidable for infinite update se-
quences, because contexts’ logics can in general simulate a Turing Machine and thus
such problems reduce to the halting problem. Actual complexity results can how-
ever be obtained under some restrictions. In particular, we assume that all contexts
Ci’s knowledge bases and belief states are finite at any stage, all update functions Ui,
management functions mngi and triggering functions tri are computable in polyno-
mial time, and that the set of bridge-rule patterns is empty and all bridge rules are
ground. then we can state the following.

Theorem 2 For finite update sequences, the system context complexity determines
the complexity of membership of Q∃ and, complementarily, the complexity of Q∀.
Hardness holds if it holds for the system context complexity.

Proof A projected belief state can be guessed for each stage T ∈ N by a non-
deterministic Turing machine. Then, the inclusion of each such projected belief state
Ŝ[T ] in some (all) timed equilibria S[T ] at that stage can be established by an ora-
cle under the system’s context complexity and, if the answer is positive, it must be
checked whether pi ∈ Ŝi[T ]; if not, subsequent updates must be performed (in poly-
nomial time) over Ŝ[T ], and the two checks must be repeated at each stage; this until
either pi is found or time T is reached, thus obtaining either a positive or a negative
answer to the Q∃ problem.

The complexity of consistency checking for an mMCS M, i.e., the complexity of
deciding whether it has some equilibrium, has been discussed in [10] and remains
the same for many variants of (m)MCS, including our own, as it depends on context
complexity. Some cases are shown in tables reported in [10,12,36].

Reconsidering bridge-rule patterns and non-ground bridge rules we observe that
by assuming that subsi can be computed in polynomial time and produces a finite
number of substitutions for each context designator, and given a set of bridge-rule
patterns of a certain cardinality (size) ĉ, the size of the set of its valid instances is
in general single exponential in ĉ. The same holds in principle for the grounding of
bridge rules. However, in our setting we assume that bridge-rule are executed and
grounded in a Prolog-like fashion: therefore, the computational burden for grounding
is consequently smaller.

11 Concluding Remarks

In this paper we have proposed extensions to MCSs, aimed at practical application
of such systems. We have outlined a number of aspects that could be improved, and
we have then specified and formalized possible improvements. The proposed mod-
ifications are incremental (though they might be employed separately), and in fact
each definition is presented as an extension of previous ones. Thus, the final result
is an overall improved MCS formalization coping with all previously emphasized
problematic aspects. Notice that, given a dtmMCS at time t, the system enjoys all
the properties of the corresponding mMCS, i.e., the mMCS obtained by including
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the same contexts (except Dir and Reach), each with the associated bridge rules (ne-
glecting bridge rules patterns), and where each expression of the form role@Dir has
been substituted by a context name according to Dir and Reach, and to the prefer-
ences.

The enhanced customizable bridge rules that we have formalized here have been
successfully experimented (though in a preliminary embryonic version) in a signifi-
cant case-study, reported in [15]. We intend to employ the proposed features in the
implementation, that will start in the near future, of an F&K Cyber-Physical Sys-
tem and in the activities of the DIGFORASP COST Action on Digital Forensics.
This project will allow us to perform practical experiments in order to assess the per-
formance of this kind of systems (as in fact, as seen, not much can be said about
complexity) and to identify possible limitations and/or further aspects that can be
subjected to improvements.
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