
Safety Preserving Transformations for
General Answer Set Programs

Pedro Cabalar1∗, David Pearce2∗, and Agustı́n Valverde3?

1 Universidade da Coruña
cabalar@udc.es

2 Universidad Politécnica de Madrid, Spain
david.pearce@upm.es

3 Universidad de Málaga, Málaga, Spain
a valverde@ctima.uma.es

Abstract. Many answer set solvers deal with programs with variables by requir-
ing a safety condition on rules: any variable in a rule must appear in its positive
body. This idea of safety has recently been extended to cover more general kinds
of rules or first-order formulas that might be accepted by existing or future gen-
eration ASP systems [4, 12, 7]. In this paper we continue the study of the gener-
alised safety concept recently proposed in [7]. In particular, we show that safety
is preserved under a major subset of the transformations that reduce universal
theories to disjunctive rules in ASP.

1 Introduction

1.1 Extensions of answer set semantics

Answer set programming (ASP) has become established as a vibrant new sub-field of
logic programming and knowledge representation. There are now several rival imple-
mentations of ASP, many different kinds of language extensions, and a growing cat-
alogue of practical applications.4 While ASP systems continue to eliminate variables
from programs by means of a grounding process, there is currently much interest in
issues involving first order languages and programs. One important line of work in this
direction concerns extending the basic language of disjunctive programs to embrace
more general kinds of first order formulas.

Answer set semantics can be defined for general logical formulas by regarding an-
swer sets or stable models as minimal models in a non-classical logic called here-and-
there. This was shown for propositional theories in [16] and for first order theories
in [19–21]. Subsequently, equivalent characterisations of answer sets using alternative
logical frameworks were provided by [15, 8] in the propositional case and in [9] for
first-order logic. However the former approach to answer set semantics remains in our

? Partially supported by the MEC (now MICINN) projects TIN2006-15455-(C01,C02,C03) and
CSD2007-00022, Junta de Andalucia project P6-FQM-02049 and Xunta de Galicia project
INCITE08-PXIB105159PR.

4 The recent LPNMR conferences provide a good source of references, eg [3, 2].

view the most natural and intuitive one. A key point in its favour is that here-and-there
logic precisely captures the robust notion of strong equivalence for theories or pro-
grams under answer set semantics [13, 14]. That is to say, under answer set semantics
one theory can be replaced by another in any context without loss if and only if the
theories are equivalent in the logic of here-and-there. We denote this logic by HT in
the propositional and by QHT in the quantified, first order case.

Besides ordinary disjunctive rules and general first order formulas, certain interme-
diate classes of formulas are also of special interest in ASP. Examples are general dis-
junctive rules where negation ‘¬’ is allowed in the heads as well as the bodies of rules,
and rules with nested expressions where the rule body and head can be any compound
expression involving ∧,∨,¬ [15]. Recently [4] has studied a syntactically restricted
subclass of the latter programs, called normal form nested or NFN programs.

Following these extensions of answer set semantics to more general syntactic classes
of formulas, one further line of research in ASP has been to study program transforma-
tions that reduce a program from a more expressive syntactic class to one belonging to
a simpler class. Already [15] showed how nested programs could be transformed into
equivalent general disjunctive programs. [6] later showed that any propositional theory
is strongly equivalent to a general disjunctive program in the same vocabulary, while
[5] provided a complete set of transformations that effectively carries out this reduction.

In the first order case, the situation is briefly described as follows. As usual a first
order sentence is said to be in prenex form if it has the following shape, for some n ≥ 0:

Q1x1 . . . Qnxnψ (1)

where Qi is ∀ or ∃ and ψ is quantifier-free. A sentence is said to be universal if it is
in prenex form and all quantifiers are universal. A universal theory is a set of universal
sentences. In [20] it is shown that in the logic QHT every sentence is logically equiva-
lent to a sentence in prenex form. Without loss of generality we can therefore focus on
sentences in prenex form. Since the matrix ψ in a prenex form is quantifier-free, we can
apply equivalences from propositional logic to convert ψ into a special reduced form
using the transformations described in [5]. They allow us to convert ψ into a logically
equivalent general disjunctive rule. In this paper we shall focus on universal theories
so that the transformations are all of a type that reduce (1) to a logic program of this
general type.5

1.2 Safe formulas

The aim of this paper is to re-examine the transformations described in [5] from the
point of view of safety. This fundamental concept in ASP is applied to rules of ordi-
nary logic programs in the following way. A rule is said to be safe if each variable
in it appears in the positive body of the rule. Many ASP implementations impose this
condition by accepting only safe rules. There are three main properties of safe rules
that we should distinguish. The first is that the answer sets of safe rules do not contain

5 We postpone to future work the study of transformations that apply to an arbitrary prenex
sentence or other kind of sentences involving existential quantifiers.

2

unnamed individuals. This condition is already fulfilled by formulas that we call semi-
safe. Secondly there is the property usually called domain independence which says
that grounding a program with respect to any superset of the program’s constants will
not change the class of answer sets. The third property satisfied by safe formulas is that
the collection of their answer sets is first order definable. Like the other properties, this
one is relevant for computational purposes, being exploited for instance by the method
of loop formulas.

Recently, the concept of safety has been extended to more general formulas, for
example to NFN programs in [4] and to arbitrary first-order formulas in [12]. Our own
approach also covers arbitrary formulas and is described in [7]. It generalises the safety
concept from [12] by re-classifying some kinds of formulas as safe that are unsafe ac-
cording to [12]. At the same time, our concept still satisfies the three mentioned desider-
ata for safe formulas.

It is important to notice that safety is defined at the level of single formulas and is an
inherently syntactical condition. It is therefore unreasonable to expect that the safety of
a formula will be promulgated to arbitrary equivalent formulas. In particular safety may
be gained or lost by removing or adding some redundant subformulas. For instance, a
rule like p → q(x) is unsafe and in principle, may easily have different stable models
depending on the domain we use for grounding (just add a fact p). However, if it is
included in any program containing a constraint like p → ⊥, the unsafe rule becomes
irrelevant. Similarly, with nested expressions, any safe rule F → Gmay become unsafe
by a simple addition of a QHT tautology or inconsistency, as in F → G ∨ (p(x) ∧
¬p(x)).

On the other hand, if we start with a general expression that is safe and apply cer-
tain kinds of logical re-writing steps such as those used in [5] to simplify formulas and
reduce them to sets of general disjunctive rules, it might be reasonable to expect that
an adequate concept of safety should be preserved under the transformations. In other
words, while we cannot replace a safe formula by any arbitrary formula logically equiv-
alent to it without losing safety, we can transform it into a possibly simpler expression
while still maintaining safety. This is the problem that we shall study in the remainder
of the paper.

The main result we establish is that when applied to universal sentences all but one
of the transformation rules from [5] preserves safety. This means that a large class of
safe first order formulas can be converted into strongly equivalent general disjunctive
programs each of whose rules is safe. This collection includes the important class of all
programs with nested expressions. While studying this problem we also found a slight
generalisation of the safety concept from [7] which we apply here for the first time. The
usual properties of safe formulas remain true for this revised concept.

2 Logical Background

In this paper we restrict attention to function-free first order languages L = 〈C,P 〉 built
over a set of constant symbols,C, and a set of predicate symbols, P . We assume a single
negation symbol, ‘¬’, together with the usual connectives and quantifiers, ∧,∨,→,∃,∀.
We shall also assume that L contains the constants > and ⊥ and, where convenient, we

3

regard ¬ϕ as an abbreviation for ϕ → ⊥. In other respects we follow the treatment
of [21]. The sets of L-formulas, L-sentences and atomic L-sentences are defined in the
usual way. The set of (free) variables of a formula ϕ will be denoted as VARS(ϕ).

We work in a non-classical logic called Quantified Here-and-There Logic with static
domains and decidable equality. For reasons of space we give here just a short summary.
A complete axiomatisation and more detailed description of this logic can be found
in [14] where the logic is denoted by SQHT=. In terms of satisfiability and validity
this logic is equivalent to the logic previously introduced in [20]. To simplify notation
we drop the labels for static domains and equality and refer to this logic simply as
quantified here-and-there, QHT.

The semantics of QHT is given in terms of intuitionistic Kripke models, see [23],
with two notable exceptions. One concerns equality: we regard equality as decidable
and as satisfying the axiom ∀x∀y((x = y) ∨ ¬(x = y)). Furthermore, we suppose a
logic with constant or static domains; in other words within a given Kripke model the
same set of individuals populates each world. In addition, QHT is complete for very
simple Kripke models, those possessing just two worlds, sometimes labelled h (“here”)
and t (“there”), ordered by h ≤ t.

We use the following notation. If D is a non-empty set, we denote by At(D,P) the
set of ground atomic sentences of 〈D,P 〉. By an L-interpretation I over a set D we
mean a subset of At(D,P). A QHT(L)-structure can therefore be regarded as a tuple
M = 〈(D,σ), Ih, It〉 . where Ih, It are L-interpretations over D such that Ih ⊆ It
and σ : C ∪ D → D is a mapping, called the assignment, such that σ(d) = d for all
d ∈ D. Evidently, 〈(D,σ), Ih〉 and 〈(D,σ), It〉 are classical L-structures. Given an
interpretation we let σ|C denote the restriction of the assignment σ to constants in C.

Truth of a sentence in a model is defined as follows:M |= ϕ iffM, w |= ϕ for each
w ∈ {h, t}. In a modelM we also use the symbols H and T , possibly with subscripts,
to denote the interpretations Ih and It respectively; so, an L-structure may be written in
the form 〈U,H, T 〉, where U = (D, ν). A structure 〈U,H, T 〉 is called total if H = T ,
whence it is equivalent to a classical structure.

An answer semantics for arbitrary first-order formulas can be defined using the
quantified variant of equilibrium logic [16, ?] that we denote by QEL. As in the propo-
sitional case, this is based on a suitable notion of minimal model as follows.

Definition 1 ([19, 20]). Let Γ be a set of L-sentences. An equilibrium model or answer
set of Γ is a total modelM = 〈(D,σ), T, T 〉 of Γ such that there is no model of Γ of
the form 〈(D,σ), H, T 〉 where H is a proper subset of T .

An equivalent characterisation of stable model or answer set for a finite set of first-order
formulas is given in [9].

The study of strong equivalence for logic programs and nonmonotonic theories was
initiated in [13]. It has since become an important tool in ASP as a basis for program
transformation and optimisation. In equilibrium logic we say that two (first-order) the-
ories Π1 and Π2 are strongly equivalent if and only if for any theory Π , Π1 ∪ Π and
Π2 ∪Π have the same equilibrium models [14, 21]. Under this definition we have:

Theorem 1 ([14, 21]). Two (first-order) theories Π1 and Π2 are strongly equivalent if
and only if they are equivalent in QHT.

4

Below we shall treat reductions that transform a formula into a logically equivalent set
of formulas. These transformations therefore preserve strong equivalence.

3 Safety

We work with a concept of restricted variable that was introduced in [11, 12]. To every
quantifier-free formula ϕ the set RV(ϕ) of its restricted variables is defined as follows:

– If ϕ is a non-equality atom: RV(ϕ) = VARS(ϕ);
– RV(ϕ1 ∧ ϕ2) = RV(ϕ1) ∪ RV(ϕ2);
– RV(ϕ1 ∨ ϕ2) = RV(ϕ1) ∩ RV(ϕ2);
– For the rest of cases: RV(⊥) = RV(ϕ1 → ϕ2) = RV(t1 = t2) = ∅.

As in [12], we define a concept of semi-safety of a prenex form sentence ϕ in terms
of the semi-safety of all its variable occurrences.6 Formally, this is done by defining
an operator NSS that collects the variables that have non-semi-safe occurrences in a
formula ϕ.

Definition 2 (NSS and semi-safety).

1. If ϕ is an atom, NSS(ϕ) = VARS(ϕ).
2. NSS(⊥) = ∅.
3. NSS(ϕ1 ∧ ϕ2) = NSS(ϕ1 ∨ ϕ2) = NSS(ϕ2) ∪NSS(ϕ1).
4. NSS(ϕ1 → ϕ2) = NSS(ϕ2) r RV(ϕ1).

A sentence ϕ is said to be semi-safe if NSS(ϕ) = ∅. ut

In other words, a variable x is semi-safe in ϕ if every occurrence is inside some
subformula α → β such that, either x is restricted in α or x is semi-safe in β. Let us
remark that any negated formula is semi-safse, because NSS(¬ϕ) = ∅.

Example 1. Suppose that if x requests to y some item z and y is not a subprocess of x
that has not item z then y rejects x’s request and x gets unattended. We can represent
this with the following rule with nested expressions:

request(x, y, z) ∧ ¬(subproc(x, y) ∧ ¬has(y, z))→ ignore(y, x) ∧ unatt(x) (2)

ut

The formula (2) is semi-safe: all variables x, y and z occur in an implication (the
main one) whose variables are restricted in the antecedent, RV(request(x, y, z) ∧
¬(subproc(x, y) ∧ ¬has(y, z))) = RV(request(x, y, z)) = {x, y, z}.

The following results establish the main property of semi-safe formulas: their equi-
librium models only refer to constants in the original language.

6 Notice that while we study the effect of program transformations on universal sentences, safety
and semi-safety are actually defined for arbitrary prenex sentences, so we give the general
definition here.

5

Proposition 1. If ϕ is semi-safe, and 〈(D,σ), T, T 〉 |= ϕ, then 〈(D,σ), T |C , T 〉 |= ϕ.

Theorem 2. If ϕ is semi-safe, and 〈(D,σ), T, T 〉 is an equilibrium model of ϕ, then
T |C = T .

The concept of safety relies on semi-safety plus an additional condition on variable
occurrences. As a technical device we can define this condition using Kleene’s three-
valued logic [10]. Given a three-valued interpretation ν : Atoms → {0, 1/2, 1}, we
extend it to evaluate arbitrary formulas ν(ϕ) as follows:

ν(ϕ ∧ ψ) = min(ν(ϕ), ν(ψ)) ν(⊥) = 0
ν(ϕ ∨ ψ) = max(ν(ϕ), ν(ψ)) ν(ϕ→ ψ) = max(1− ν(ϕ), ν(ψ))

from which we can derive ν(¬ϕ) = ν(ϕ→ ⊥) = 1− ν(ϕ) and ν(>) = ν(¬⊥) = 1.

Definition 3 (νx operator). Given any quantifier-free formula ϕ and any variable x,
we define the three-valued interpretation so that for any atom A:

νx(A) def=
{

0 if x ∈ VARS(A)
1/2 otherwise

Intuitively, νx(ϕ) fixes all atoms containing the variable x to 0 (falsity) leaving
all the rest undefined and then evaluates ϕ using Kleene’s three-valued operators, that
is nothing else but exploiting the defined values 1 (true) and 0 (false) as much as
possible. For instance, νx(p(x) → q(x)) would informally correspond to νx(0 →
0) = max(1 − 0, 0) = 1 whereas νx(p(x) ∨ r(y) → q(x)) = νx(0 ∨ 1/2 → 0) =
max(1−max(0, 1/2), 0) = 1/2.

Definition 4 (Weakly-restricted variable). An occurrence of a variable x in Qx ϕ is
weakly-restricted if it occurs in a subformula ψ of ϕ such that:

– Q = ∀, ψ is positive and νx(ψ) = 1
– Q = ∀, ψ is negative and νx(ψ) = 0
– Q = ∃, ψ is positive and νx(ψ) = 0
– Q = ∃, ψ is negative and νx(ψ) = 1

In all cases, we further say that ψ makes the ocurrence weakly restricted in ϕ.

Definition 5 (safety). A semi-safe sentence is said to be safe if all its positive occur-
rences of universally quantified variables, and all its negative occurrences of existen-
tially quantified variables are weakly restricted.

For instance, notice that (2) introduced in Example 1 is safe. All variables are uni-
versally quantified and all (positive) occurrences of x, y and z occur in a positive sub-
formula, (2) itself, for which νx((2)) = νy((2)) = νz((2)) = 1.

Theorem 3 establish the main property of safe formulas. The grounding over C of
a sentence ϕ, denoted by GrC(ϕ), is defined recursively: the operator does not modify
ground formulas, commutes with propositional connectives and

GrC(∀xϕ(x)) =
∧

c∈C

GrCϕ(c) GrC(∃xϕ(x)) =
∨

c∈C

GrCϕ(c)

6

Theorem 3. Let ϕ be a safe prenex formula, then: 〈(D,σ), T, T 〉 is an equilibrium
model of ϕ if and only if it is an equilibrium model of GrC(ϕ).

Notice that, although in [7] Theorems 2 and 3 were established under a slightly different
safety concept, it is easy to see that they continue to hold for the revised concept used
here.

4 Negation Normal Form

The transformations introduced in [5] are top-down processes that rely on the successive
application of several rewriting rules that operate on sets (conjunctions) of implications.
A rewriting takes place whenever one of those implications does not yet have the form
of a (non-nested) program rule.

Two sets of transformations are described next. A formula is said to be in negation
normal form (NNF) when negation is only applied to literals. As a first step, we describe
a set of rules that move negations inwards until a NNF is obtained:

¬> ⇐⇒ ⊥ (N1)
¬⊥ ⇐⇒ > (N2)

¬¬¬α⇐⇒ ¬α (N3)
¬(α ∧ β)⇐⇒ ¬α ∨ ¬β (N4)
¬(α ∨ β)⇐⇒ ¬α ∧ ¬β (N5)
¬(α→ β)⇐⇒ ¬¬α ∧ ¬β (N6)

Lemma 1. For any pair γ ⇐⇒ γ′ in transformations (N1)-(N6) we have:

1. NSS(γ) = NSS(γ′).
2. RV(γ) = RV(γ′).

Proof. Both properties are trivial, because for every transformation the application of
the operators on both sides returns the empty set. ut

By an inductive application of this lemma, we immediatelly conclude that NNF
transformations preserve the semi-safe property, as stated below:

Proposition 2. For any sentence ϕ and for every pair γ ⇐⇒ γ′ in transformations
(N1)-(N6) we have that NSS(ϕ) = NSS(ϕ[γ/γ′]). ut

So, if ϕ′ is an NNF formula obtained from ϕ by the application of the rules (N1)-
(N6), then ϕ′ is semi-safe if and only if ϕ is semi-safe. We prove now that the NNF
conversion also preserves safety. To this aim, we first provide a pair of properties.

Observation 1 For any pair γ ⇐⇒ γ′ in transformations (N1)-(N6), if ψ is a subfor-
mula of α or β, then the sign of ψ in γ is equal to the sign in γ′. ut

Lemma 2. For any pair γ ⇐⇒ γ′ in transformations (N1)-(N6) we have νx(γ) =
νx(γ′) and thus, νx(ψ) = νx(ψ[γ/γ′]) for any formula ψ.

7

Proof. It can be easily checked that, for each pair, γ ⇐⇒ γ′, formulas γ and γ′ are
semantically equivalent in Kleene’s three-valued logic, that is ν(γ) = ν(γ′) for any
three-valued interpretation ν. ut

Theorem 4. Consider a semi-safe universal sentence ∀x1 . . . ∀xnϕ and any pair γ ⇐⇒
γ′ in transformations (N1)-(N6) such that γ is a subformula of ϕ: if xi is safe in ϕ then
it is also safe in ϕ[γ/γ′]. Therefore, if ϕ is safe and ϕ′ is an NNF formula obtained from
ϕ by applying the transformations (N1)-(N6), then ϕ′ is also safe.

Proof. To prove the result, we must analyse every occurrence of every variable in
ϕ[γ/γ′] to check if it is made weakly-restricted. It is important to note that each one
of these occurrences corresponds in a natural way to a specific occurrence of the same
variable in the formula ϕ, because the transformations do not modify either the number
or the relative situation of the variables. Note also that, by Observation 1, the trans-
formation does not modify the sign of the variable occurrences. We proceed with the
proof, distinguishing several cases.

Since the formula is universal, let us consider a positive occurrence of xi and ψ the
subformula of ϕ making the ocurrence weakly-restricted.

– If the occurrence is outside γ and γ is not a subformula of ψ, then ψ directly makes
the corresponding ocurrence weakly-restricted in ϕ[γ/γ′].

– If γ is a subformula of ψ, then ψ[γ/γ′] makes the ocurrence weakly-restricted in
ϕ[γ/γ′], because νx(ψ) = νx(ψ[γ/γ′]) (by Lemma 2) and the sign of ψ in ϕ is
equal to the sign of ψ[γ/γ′] in ϕ[γ/γ′].

– If ψ is a strict subformula of γ, then we need to analyse every rule. For (N1), (N2)
and (N3) the result is trivial. For rules (N4), (N5) and (N6), if ψ is subformula of
α or β, then ψ makes the ocurrence weakly restricted in ϕ[γ/γ′], because the rule
preserves the sign of subformulas of α and β.

– If ψ = α ∧ β then ψ′ = ¬α ∨ ¬β makes the corresponding ocurrence weakly
restricted in ϕ[γ/γ′], because the sign of ψ′ is the opposite of the sign of ψ and
νx(¬α ∨ ¬β) = νx(¬(α ∧ β))

– If ψ = α ∨ β then ψ′ = ¬α ∧ ¬β makes the corresponding ocurrence weakly
restricted in ϕ[γ/γ′], because the sign of ψ′ is the opposite of the sign of ψ and
νx(¬α ∧ ¬β) = νx(¬(α ∨ β))

– If ψ = α → β then ψ′ = ¬¬α ∧ ¬β makes the corresponding ocurrence weakly
restricted in ϕ[γ/γ′], because the sign of ψ′ is the opposite of the sign of ψ and
νx(¬¬α ∧ ¬β) = νx(¬(α→ β)). ut

Following with Example 1, after applying the NNF transformations, we obtain the
safe rule:

request(x, y, z) ∧ (¬subproc(x, y) ∨ ¬¬has(y, z))→ ignore(y, x) ∧ unatt(x) (3)

ut

5 Transformations with implications

In the second set of transformations, as in [5] we deal with sets (conjunctions) of im-
plications (the empty conjunction corresponds to >). Each step replaces one of the

8

implications by new implications to be included in the set. If ϕ is the (matrix of the)
original formula, the initial set of implications is the singleton {> → ϕ}. Without loss
of generality, we assume that any implication α→ β to be replaced has been previously
transformed into NNF. Furthermore, we always consider that α is a conjunction and β
a disjunction (if not, we just take α∧> or β∨⊥, respectively), and we implicitly apply
commutativity of conjunction and disjunction as needed.

Left side rules:

> ∧ α→ β ⇐⇒ { α→ β } (L1)
⊥ ∧ α→ β ⇐⇒ ∅ (L2)

¬¬ϕ ∧ α→ β ⇐⇒ { α→ ¬ϕ ∨ β } (L3)

(ϕ ∨ ψ) ∧ α→ β ⇐⇒
{
ϕ ∧ α→ β
ψ ∧ α→ β

}
(L4)

(ϕ→ ψ) ∧ α→ β ⇐⇒

¬ϕ ∧ α→ β
ψ ∧ α→ β

α→ ϕ ∨ ¬ψ ∨ β

 (L5)

Right side rules

α→ ⊥∨ β ⇐⇒ { α→ β } (R1)
α→ >∨ β ⇐⇒ ∅ (R2)

α→ ¬¬ϕ ∨ β ⇐⇒ { ¬ϕ ∧ α→ β } (R3)

α→ (ϕ ∧ ψ) ∨ β ⇐⇒
{
α→ ϕ ∨ β
α→ ψ ∨ β

}
(R4)

α→ (ϕ→ ψ) ∨ β ⇐⇒
{

ϕ ∧ α→ ψ ∨ β
¬ψ ∧ α→ ¬ϕ ∨ β

}
(R5)

Theorem 5. NSS(γ) = NSS(γ′) for any transformation of the form γ ⇐⇒ γ′ in (L1)-
(L4), (R1)-(R5), where γ′ is the conjunction of the resulting formulas. Therefore, if γ is
semi-safe, then γ′ is also semi-safe.

Proof. We prove case by case:

(L1) Trivially, RV(⊥ ∧ α) = RV(α) and thus,

NSS(>∧α→ β) = NSS(β) r RV(>∧α) = NSS(β) r RV(α) = NSS(α→ β)

(R1) Trivially, NSS(> ∨ β) = NSS(β) and thus,

NSS(α→ ⊥∨ β) = NSS(⊥∨ β) r RV(α) = NSS(β) r RV(α) = NSS(α→ β)

9

(L3) In the equality (∗) of the following sequence, we use that RV(¬¬ϕ) = ∅ =
NSS(¬ϕ):

NSS(¬¬ϕ ∧ α→ β) = NSS(β) r RV(¬¬ϕ ∧ α)
= NSS(β) r (RV(¬¬ϕ) ∪ RV(α))
= (NSS(¬ϕ) ∪NSS(β)) r RV(α) (∗)
= (NSS(¬ϕ ∨ β)) r RV(α)
= NSS(α→ ¬ϕ ∨ β)

(R3) In the equality (∗) of the following sequence, we use that RV(¬¬ϕ) = ∅ =
NSS(¬ϕ):

NSS(α→ ¬¬ϕ ∨ β) = NSS(¬¬ϕ ∨ β) r RV(α)
= (NSS(¬¬ϕ) ∪NSS(β)) r RV(α)
= NSS(β) r (RV(¬ϕ) ∪ RV(α)) (∗)
= NSS(β) r (RV(¬ϕ ∧ α))
= NSS(¬ϕ ∧ α→ β)

(L4) The main steps are properties of naive set theory

NSS((ϕ ∨ ψ) ∧ α→ β) = NSS(β) r RV((ϕ ∨ ψ) ∧ α)
= NSS(β) r ((RV(ϕ) ∩ RV(ψ)) ∪ RV(α))
= NSS(β) r ((RV(ϕ) ∪ RV(α)) ∩ (RV(ψ) ∪ RV(α)))

= NSS(β) ∩ ((RV(ϕ) ∪ RV(α)) ∩ (RV(ψ) ∪ RV(α))){

= NSS(β) ∩ ((RV(ϕ) ∪ RV(α)){ ∪ (RV(ψ) ∪ RV(α)){)

= (NSS(β) ∩ (RV(ϕ) ∪ RV(α)){) ∪ (NSS(β) ∩ (RV(ψ) ∪ RV(α)){)
= NSS(ϕ ∧ α)→ β) ∪NSS(ψ ∧ α→ β)

(R4) The main steps are properties of naive set theory

NSS(α→ (ϕ ∧ ψ) ∨ β) = NSS((ϕ ∧ ψ) ∨ β) ∩ RV(α){

= (NSS(ϕ) ∪NSS(ψ) ∪NSS(β)) ∩ RV(α){

= (NSS(ϕ) ∪NSS(β) ∪NSS(ψ) ∪NSS(β)) ∩ RV(α){

= ((NSS(ϕ) ∪NSS(β)) ∩ RV(α){) ∪ ((NSS(ψ) ∪NSS(β)) ∩ RV(α){)
= NSS(α→ ϕ ∨ β) ∪NSS(α→ ψ ∨ β)

10

(R5) In the equality (∗) of the following sequence, we use that RV(¬ϕ) = ∅ = RV(¬ψ):

NSS(α→ (ϕ→ ψ) ∨ β) = (NSS(ϕ→ ψ) ∪NSS(β)) ∩ RV(α){

= ((NSS(ψ) ∩ RV(ϕ){) ∪NSS(β)) ∩ RV(α){

= (NSS(ψ) ∪NSS(β)) ∩ (RV(ϕ){ ∪NSS(β)) ∩ RV(α){

= (NSS(ψ) ∪NSS(β)) ∩ ((RV(ϕ){ ∩ RV(α){) ∪ (NSS(β) ∩ RV(α){))

= ((NSS(ψ) ∪NSS(β)) ∩ (RV(ϕ){ ∩ RV(α){))∪

∪ ((NSS(ψ) ∪NSS(β)) ∩ (NSS(β) ∩ RV(α){))

= NSS(ϕ ∧ α→ ψ ∨ β) ∪ (NSS(β) ∩ RV(α){)

= NSS(ϕ ∧ α→ ψ ∨ β) ∪ ((NSS(¬ϕ) ∪NSS(β)) ∩ (RV(α) ∪ RV(¬ψ)){)
= NSS(ϕ ∧ α→ ψ ∨ β) ∪NSS(¬ψ ∧ α→ ¬ϕ ∨ β)

ut

It is important to note that (L5) does not preserve semi-safety. If (ϕ→ ψ)∧α→ β
is semi-safe then, although we can easily see that the two first rules resulting from (L5)
are semi-safe:

∅ = NSS((ϕ→ ψ) ∧ α→ β) = NSS(β) r RV((ϕ→ ψ) ∧ α)
= NSS(β) r RV(α)
= NSS(β) r (RV(¬ϕ) ∪ RV(α))
= NSS(¬ϕ ∧ α→ β)

∅ = NSS((ϕ→ ψ) ∧ α→ β) = NSS(β) r RV(α)
⊇ NSS(β) r (RV(ψ) ∪ RV(α))
= NSS(ψ ∧ α→ β)

the third rule α → ϕ ∨ ¬ψ ∨ β , in the general case, is not semi-safe. As a counterex-
ample, take the formula

(p(x)→ q)→ ¬r(x) (4)

This formula is semi-safe and in fact, is safe. However, after applying (L5) to (4), we
get the implication > → p(x) ∨ ¬q ∨ ¬r(x), which is not semi-safe (in particular,
the first of occurrence of x is not semi-safe) and thus, is not safe either. As we will
see next, our definition of safety is indeed preserved for all transformations involving
nested expressions (N1)-(N6), (L1)-(L4), (R1)-(R4), but fails for some cases dealing
with nested implications.

Lemma 3. For any pair γ ⇐⇒ γ′ in transformations (L1)-(L5), (R1)-(R5) we have
νx(γ) = νx(γ′) and thus, νx(ψ) = νx(ψ[γ/γ′]) for any formula ψ.

11

Proof. Again, the result follows from semantic equivalences in Kleene’s logic. ut

Theorem 6. Consider a semi-safe sentence ∀x1 . . . ∀xnγ and a pair γ ⇐⇒ γ′ in trans-
formations (L1)-(L4), (R1)-(R5): if xi is safe in γ then it is also safe in γ′.

Proof. The proof is similar to that for Theorem 4. To prove the result, we must analyse
each occurrence of every variable in γ′ to check if it is made weakly restricted. Again,
each of these occurrences corresponds, in a natural way, to a specific occurrence of
the same variable in the formula ϕ, although an occurrence in γ may correspond to
up to three occurrences in γ′. Also, it is easy to check now that the transformation
does not modify the sign of the occurrences of the variables and that, in any pair in
transformations (L1)-(L5), (R1)-(R5), if δ is a subformula of α, β, ϕ or ψ, then the sign
of δ in γ is equal to the sign of the corresponding occurrence of δ in γ′.

Since the sentence is universal, if δ is a subformula that makes weakly restricted an
ocurrence of xi then we only need to analyse the cases in which δ is a strict subformula
of γ, because the proof for the other situations is the same as for Theorem 4. Finally,
for (L1), (L2), (L3), (R1), (R2) and (R3) the result is trivial.

(L4) If δ = ϕ ∨ ψ, then νx(ϕ ∨ ψ) = ⊥ and thus νx(ϕ) = νx(ψ) = ⊥; therefore, ϕ
makes weakly restricted the corresponding ocurrence of xi in ϕ ∧ α → β and ψ
makes weakly restricted the corresponding ocurrence of xi in ψ ∧ α→ β.
If δ = (ϕ ∨ ψ) ∧ α, then νx((ϕ ∨ ψ) ∧ α) = ⊥ and either νx(ϕ ∨ ψ) = ⊥ or
νx(α) = ⊥; both cases reduce to some of the previous cases.

(R4) If δ = ϕ ∧ ψ, then νx(ϕ ∧ ψ) = > and thus νx(ϕ) = νx(ψ) = >; therefore, ϕ
makes weakly restricted the corresponding ocurrence of xi in α → ϕ ∨ β and ψ
makes weakly restricted the corresponding ocurrence of xi in α→ ψ ∨ β.
If δ = (ϕ ∧ ψ) ∨ β, then νx((ϕ ∨ ψ) ∧ α) = > and either νx(ϕ ∧ ψ) = > or
νx(α) = >; both cases reduce to some of the previous cases.

(R5) If δ = ϕ → ψ, then νx(ϕ → ψ) = > and either νx(ϕ) = ⊥ or νx(ψ) = >. In
both cases, νx(ϕ ∧ α→ ψ ∨ β) = νx(¬ψ ∧ α→ ¬ϕ ∨ β) = > and the complete
formulas make the corresponding occurrences weakly restricted.

This result shows that transformations (L1)-(L4) and (R1)-(R4) plus (N1)-(N6),
which allow unfolding rules with nested expressions, preserve safety. If we apply these
transformations to our running example (3) we obtain the four rules:

request(x, y, z) ∧ ¬subproc(x, y)→ ignore(y, x)
request(x, y, z) ∧ ¬subproc(x, y)→ unatt(x)

request(x, y, z)→ ignore(y, x) ∨ ¬has(y, z)
request(x, y, z)→ unatt(x) ∨ ¬has(y, z)

all of them safe.
In the case of nested implications, although for (L5) we do not obtain a positive

result, we can still establish a sufficient condition for preserving safety, as follows.

Theorem 7. Consider a semi-safe sentence ∀x1 . . . ∀xnϕ, the pair γ ⇐⇒ γ′ in trans-
formation (L5) and suppose that α → ϕ is semi-safe. Then, if xi is safe in ϕ then it is
also safe in ϕ[γ/γ′].

12

Proof. Semi-safety of rules (¬ϕ ∧ α → β) and (ψ ∧ α → β) was proved before. As
for (α→ ϕ ∨ ¬ψ ∨ β), we get:

NSS(α→ ϕ ∨ ¬ψ ∨ β) = (NSS(β) ∪NSS(ϕ) ∪NSS(¬ψ)) r RV(α)
= (NSS(β) ∪NSS(ϕ)) r RV(α)

but as α→ ϕ is semi-safe, NSS(ϕ) r RV(α) = ∅ and we obtain:

= NSS(β) r RV(α)
= NSS((ϕ→ ψ) ∧ α→ β) = ∅

ut

To see how this sufficient condition can be applied, let us consider a variation of
(4) where we include in the antecedent an additional atom dom(x) (possibly fixing the
“domain” of x):

(p(x)→ q) ∧ dom(x)→ ¬r(x)

This formula is still safe and, furthermore, the implication dom(x) → p(x) is semi-
safe. Thus, the result of applying (L5) yields the three rules:

¬p(x) ∧ dom(x)→ ¬r(x) (5)
q ∧ dom(x)→ ¬r(x) (6)

dom(x)→ p(x) ∨ ¬q ∨ ¬r(x) (7)

that are now safe.

5.1 Discussion

Taken together, the transformations (N1)-(N6), (L1)-(L5), (R1)-R(5), are sufficient to
reduce a universal sentence in prenex form with matrix ϕ into a prenex formula whose
matrix, say ϕ′, has the form of a general disjunctive program rule of shape α → β,
where α is a conjunction of literals and β is a disjunction of literals. The resulting
transformation therefore has the form of a logic program allowing negation in the heads
of rules. As we saw, all transformations preserve the property of safety, except (L5),
where safety preservation can be ensured, but at the cost of an additional condition. On
the other hand, removing nested occurrences of implication in the heads of rules does
not affect safety.

Quantifier-free formulas of the form α→ β where α, β do not contain occurrences
of implication, other than in the form ‘→ ⊥’, are known in ASP as rules with nested ex-
pressions and a set of such rules is called a nested program, [15]. Taken together, there-
fore, (N1)-(N6), (L1)-(L4), (R1)-R(4), are sufficient to transform any nested program
into a fully equivalent general disjunctive program, preserving the safety of formulas in
each case.

13

6 Related Work and Conclusions

We have defined a safety condition on first order formulas and identified a syntactic
class of formulas that can be transformed via rewriting rules that preserve strong equiv-
alence and safety. This syntactic class contains eg. all nested logic programs.

While the condition of safety is in general highly relevant for computational pur-
poses, it should be noted that here we have been concerned with logical issues rather
than matters of computation and implementation. In fact, while the transformations we
have studied do not introduce any new terms into the language, they are also in general
not polynomial in size. Polynomial reductions of nested programs have been studied
in [17, 18] and polynomial reductions of arbitrary propositional formulas to logic pro-
grams are discussed in [5]. These transformations may lend themselves to a more effi-
cient implementation of the reductions, but they introduce new predicates. In so doing,
safety may be lost. In [4] a restricted subclass of nested programs is identified, called
normal form nested or NFN. A concept of safety for NFN rules is proposed in [4] along
with a polynomial algorithm for reducing them to disjunctive programs that can be pro-
cessed by the DLV system. This reduction method introduces new predicates and other
auxiliary devices. It does preserve safety, however [4] does not prove the correctness
of the reduction, something that in our case of equivalence preserving transformations
is easy to establish. Evidently, our safety concept is also much more widely applicable
than that of [4].

It is perhaps worth to mention that, although our concept of safety is weaker than
that of [12], that is, it allows classifying more formulas as safe, it is also more robust
with respect to transformations. For instance, a nested expression fact like ¬(p(x) ∧
¬q(x)) is classified as safe both under our definition and the one in [12], whereas the
result after applying transformation (N4) to transform it into NNF, ¬p(x) ∨ ¬¬q(x)
preserves our concept of safety, while becomes unsafe under [12].

There remain several directions for further study. One is the search for an improved
concept of safety along with a complete set of transformations that preserve this prop-
erty. Another is the investigation of algorithms for a more efficient reduction of general
formulas to logic programs while preserving safety. Another topic is the study of trans-
formations on existential sentences and arbitrary formulas involving existential quanti-
fiers.

References

1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. CUP,
Cambridge (2002)

2. Baral, C., Brewka, G. and Schliof, J. (Eds), Proc. of the 9th International Conference on
Logic Programming and Non Monotonic Reasoning (LPNMR 2007), Springer LNAI 4483,
2007.

3. Baral, C., Greco, G., Leone, N. and Teracine, G. (Eds), Proc. of the 8th International Confer-
ence on Logic Programming and Non Monotonic Reasoning (LPNMR 2005), Springer LNAI
3662, 2005.

4. Bria, A., Faber, W. and Leone, N. Normal Form Nested Programs. S. Hölldobler et al (eds),
JELIA 2008, Springer LNAI 5293, pp. 76–88, 2008.

14

5. Cabalar, P., Pearce, D., Valverde, A.: Reducing Propositional Theories in Equilibrium Logic
to Logic Programs. In: Bento, C. et al (eds) EPIA 05, LNAI 3808, pp. 4-17 Springer, 2005.

6. Cabalar, P. and Ferraris, P.: Propositional Theories are Strongly Equivalent to Logic Pro-
grams, Theory and Practice of Logic Programming 7 (6), pp. 745-759, 2007.

7. Cabalar, P., Pearce, D., Valverde, A.: A Revised Concept of Safety for General An-
swer Set Programs (extended version). Technical Report http://www.ia.urjc.es/
˜dpearce.

8. Ferraris, P.: Answer Sets for Propositional Theories In Proc. of the 8th International Confer-
ence on Logic Programming and Non Monotonic Reasoning (LPNMR 2005), Springer LNAI
3662, pp. 119-131, 2005.

9. Ferraris, P., Lee, J., Lifschitz, V.: A New Perspective on Stable Models. In: Veloso, M. (ed)
20th International Joint Conference on Artificial Intelligence, IJCAI 2007, pp. 372-379.

10. Klenne, S. C., Introduction to Metamathematics, North-Holland, Amsterdam, 1952.
11. Lee, J., Lifschitz, V., Palla, R.: A Reductive Semantics for Counting and Choice in Answer

Set Programming. In: Proceedings AAAI 2008, pp. 472-479.
12. J. Lee, V. Lifschitz and R. Palla. Safe formulas in the general theory of stable models.

(Preliminary report). in Proceedings of ICLP-08, Springer, LNCS, 2008.
13. V. Lifschitz, D. Pearce, and A. Valverde. Strongly equivalent logic programs. ACM Trans-

actions on Computational Logic, 2:526–541, 2001.
14. Lifschitz, V., Pearce, D.and Valverde, A. A Characterization of Strong Equivalence for Logic

Programs with Variables. In Proc. of LPNMR 2007, Springer LNAI 4483, pp. 188-200.
15. Lifschitz, V., Tang, L. and Turner, H. Nested Expressions in Logic Programs. Annals of

Mathematics and Artificial Intelligence, 25(3-4): 369-389, 1999.
16. D. Pearce. A New Logical Characterisation of Stable Models and Answer Sets. In Proc. of

NMELP 96, 1997.
17. D. Pearce, H. Tompits and S. Woltran. Encodings for equilibrium logic and logic programs

with nested expressions. In Proc. of EPIA 2001, Springer LNAI 2258, pp. 306-320.
18. D. Pearce, H. Tompits and S. Woltran. Chatacterising equilibrium logic and nested logic

programs: reductions and complexity. Technical Report GIA 2007-01-12, Universidad Rey
Juan Carlos, 2007; to appear in Theory and Practice of Logic programming.

19. Pearce, D. and Valverde, A. Towards a first order equilibrium logic for nonmonotonic rea-
soning. In Proc. of JELIA 2004, Springer LNAI 3229, pp. 147-160.

20. Pearce, D. and Valverde, A. A First-Order Nonmonotonic Extension of Constructive Logic.
Studia Logica 80:321-346, 2005.

21. Pearce, D. and Valverde, A. Quantified Equilibrium Logic. Tech. report, Univ. Rey Juan
Carlos, 2006. http : //www.matap.uma.es/investigacion/tr/ma0602.pdf .

22. Pearce, D. and Valverde, A. Quantified Equilibrium Logic and Foundations for Answer Set
Programs. Proc. ICLP 08, Springer, LNCS, 2008.

23. van Dalen, D. Logic and Structure. Springer, 2004.

15

