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Abstract In this paper we provide an introductory ex-

planation of the underlying semantics of Answer Set

Programming in terms of Equilibrium Logic. Rather

than a thorough formal presentation of this formalism

and its properties, we emphasize the intuitive meaning

of its main logical definitions, explaining their effect

on some example programs. We also overview some of

the main extensions and relations to other logical ap-

proaches.

Keywords Answer Set Programming · Equilibrium
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1 Introduction

ASP is a rule-based paradigm sharing the same syntax

as Prolog but with a different reading. Take a rule of

the form:

smoke :- fire. (1)

ASP uses a bottom-up reading of (1): “smoke is pro-

duced by fire.” That is, whenever fire belongs to our
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Universidad Politécnica de Madrid, SPAIN
E-mail: david.pearce@upm.es

Agust́ın Valverde
University of Málaga, SPAIN
E-mail: a valverde@ctima.uma.es

current set of beliefs or certain facts, smoke must also

be included in that set too. On the contrary, Prolog’s

top-down reading could be informally stated as “to ob-

tain smoke, we need fire.” That is, the rule describes a

procedure to get smoke as a goal which consists in pur-

suing fire as a new goal. Regardless of the application

direction, it seems clear that rules have a conditional

form with a right-hand condition (body) and a left-hand

consequent (head) that in our example (1) respectively

correspond to fire and smoke. Thus, a straightfor-

ward logical formalisation would be understanding (1)

as the implication fire → smoke in classical proposi-

tional logic. This guarantees, for instance, that if we add

fire as a program fact, we will get smoke as a conclusion

(by application of modus ponens). So, the “operational”

aspect of rule (1) can be captured by classical implica-

tion. However, classical logical semantics is not enough

to cover the intuitive meaning of a program rule. If our

program just contains rule (1), it is clear that fire is

not satisfied, since no rule can yield that atom, and

so, smoke is not obtained either. However, implication

fire → smoke, which amounts to the classically equiva-

lent disjunction ¬fire ∨ smoke, has three classical mod-

els: ∅ (both atoms false), {smoke} and {fire, smoke}.
Note that the two last models seem to consider situ-

ations in which smoke or fire could be arbitrarily as-

sumed as true, even though the program provides no

way to prove them. An important observation is that

∅ happens to be the smallest model (with respect to

set inclusion). This model is interesting because, some-

how, it reflects the principle of not adding arbitrary
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true atoms that we are not forced to believe, and it co-

incides with the expected meaning for a program just

containing (1). The existence of a least classical model

is, in fact, guaranteed for logic programs without nega-

tion (or disjunction), so-called positive logic programs,

and so, it was adopted as the main semantics (van Em-

den and Kowalski, 1976) for logic programming until

the introduction of negation. However, when negation

came into play, classical logic was revealed to be insuffi-

cient again, even under the premise of minimal models

selection. Suppose we have a program Π1 consisting of

the rules:

fill :- empty, not fire. (2)

empty. (3)

where (2) means that we always fill our gas tank if

it is empty and there is no evidence on fire, and (3)

says that the tank is empty indeed. As before, fire can-

not be proved (it is not head of any rule) and so, the

condition of (2) is satisfied, producing fill as a result.

The straightforward logical translation of (2) is empty∧
¬fire → fill that, in combination with fact (3), produces

three models: T1 = {empty ,fill}, T2 = {empty ,fire}
and T3 = {empty ,fire,fill}. Unfortunately, there is no

least classical model any more: both T1 (the expected

model) and T2 are minimal with respect to set inclu-

sion. After all, the previous implication is classically

equivalent to empty → fire ∨ fill which does not cap-

ture the directional behaviour of rule (2). The undesired

minimal model T2 is assuming fire to be true, although

there is no way to prove that fact in the program. So,

apparently, classical logic is too weak for capturing the

meaning of logic programs in the sense that it provides

the expected model(s), but also accepts other models

(like T2 and T3) in which some atoms are abitrarily

assumed to be true but not “justified by the program.”

Suppose we had a way to classify true atoms distin-

guishing between those just being an assumption (clas-

sical model T ) and those being also justified by pro-

gram rules. In our intended models, the set of justified

atoms should precisely coincide with the set of assumed

ones in T . As an example, suppose our assumed atoms

are T3 = {empty ,fire, smoke}. Any justification should

include empty because of fact (3). However, rule (2)

seems to be unapplicable, because we are currently as-

suming that fire is possibly true, fire ∈ T3, and so ‘not

fire’ is not acceptable – there is some (weak) evidence

about fire. As a result, atom fill is not necessarily jus-

tified and we can only derive {empty}, which is strictly

smaller than our initial assumption T3. Something sim-

ilar happens for assumption T2 = {empty ,fire}. If we

take classical model T1 = {empty ,fill} instead as an

initial assumption, then the body of rule (2) becomes

applicable, since no evidence on fire can be found, that

is, fire 6∈ T1. As a result, the justified atoms are now

{empty ,fill} = T1 and the classical model T1 becomes

the unique intended (stable) model of the program.

The method we have just used with the example can

be seen as an informal description of the original defi-

nition of the stable models semantics (Gelfond and Lif-

schitz, 1988). This definition consisted of classical logic

reinforced with an extra-logical program transformation

(for interpreting negation) and then using application

of rules to obtain the actually derived or justified infor-

mation.

In the rest of the paper we show how it is possible

to provide an equivalent definition that exclusively re-

sorts to logical concepts but using a different underlying

formalism, weaker than classical logic.

2 The logical point of view

2.1 Rule Satisfaction

At the basis of ASP is the computation of stable models

or answer sets. Programs comprise rules that from now

on we will regard as logical formulas. For instance a

disjunctive rule may be written in the form

K1 ∨ . . . ∨Kk ← L1, . . . Lm,not Lm+1, . . . ,not Ln (4)

where the Li and Kj are atomic formulas in predicate

calculus. As we saw in the previous section, implication

← is sometimes written :- when in textual form. In the

logical semantics of ASP we will follow standard prac-

tice and assume that rules are variable-free or ground

and that a program is replaced by its ground version

where all rules have been uniformly instantiated. As a

logical formula (4)) corresponds to

L1 ∧ . . .∧Lm ∧¬Lm+1 ∧ . . .∧¬Ln → K1 ∨ . . .∨Kk (5)

If k = 1 the rule is called normal. If k = 0 the rule

is a constraint and we regard it as the formula

L1 ∧ . . . ∧ Lm ∧ ¬Lm+1 ∧ . . . ∧ ¬Ln → ⊥ (6)

where ⊥ is the symbol for logical falsity. As before the

antecedent L1 ∧ . . . ∧ Lm ∧ ¬Lm+1 ∧ . . . ∧ ¬Ln of the



Answer Set Programming from a Logical Point of View 3

implication will be called the body of the rule, while the

consequent K1 ∨ . . . ∨Kk is the rule head.

Following our introductory discussion we will ap-

proach the logical semantics of ASP by considering a

second kind of truth that is in a sense weaker than cer-

tainty. This truth value corresponds to “not false but

not provably true” and is a first approximation to the

idea of “true by default”. On this basis propositions can

have three truth values, they may be certain or true in

the strong sense, false, or not false but nevertheless true

in a weaker or less certain sense.

What does it mean to say that a rule is satisfied? In

the setting of classical (propositional) logic the rule (5)

is satisfied as long as K1 ∨ . . . ∨ Kk is true whenever

the body L1 ∧ . . . ∧ Lm ∧ ¬Lm+1 ∧ . . . ∧ ¬Ln is true.

Regarding a classical model as a set of atoms T , this

means that T trivially satisfies (5) if any one or more

of L1, . . . Lm, . . . ,¬Lm+1, . . . ,¬Ln is not true in T . But

now in the presence of our third truth-value, satisfac-

tion of a rule becomes more complex. Take:

empty ∧ ¬fire → fill (7)

corresponding to the logical notation of the simple rule (2).

Suppose that fill were false, ¬fire were certain and

empty were only true in the weaker sense. Then we

would have to say that the rule is not satisfied despite

the fact that its antecedent is not certain. To be sat-

isfied we would expect fill to be at least weakly true,

given that empty is. In other words, to see whether (7)

is satisfied we have to check two conditions: that fill is

certain whenever empty and ¬fire are certain, and also

that fill is at least weakly true if fill is weakly true and

¬fire is also true.1

To account for this extra condition on rule satisfac-

tion, we need an extended concept of model that reflects

both kinds of truth. A convenient representation is to

consider a pair of sets of ground atoms, 〈H,T 〉, where

H represents the certain atoms and T contains in ad-

dition to atoms in H also all those that are true only

in the weaker sense2. In other words, T is our “initial

assumption” while the subset H contains those atoms

from T currently considered as justified. Let At be the

collection of all atomic formulas in our given language.

1 Notice that ¬fire is, read as “we have no evidence on fire,”
is either certain (when indeed fire is false) or false (when some
evidence exists, ie , fire is certain or weakly true).
2 These sets are informally known as “here” and “there”.

The reader familar with possible worlds semantics may think
of them as the atoms verified at two worlds, ‘here’ and ‘there’.

Then H ⊆ T ⊆ At and all atoms in At\T are consid-

ered false in this model. A pair 〈H,T 〉 as above is called

an HT-interpretation and said to be total when H = T

(that is, when all assumptions are justified).

As we did for atoms, formulas can also be considered

to be false, to be true by default or to be certain. We

will use a satisfaction relation 〈H,T 〉 |= ϕ to represent

that 〈H,T 〉 makes formula ϕ to be certain or justified.

Sometimes, however, we may happen that this relation

does not hold 〈H,T 〉 6|= ϕ while in classical logic sat-

isfaction T |= ϕ using the assumptions in T is true.

Then, we may say that the formula is just weakly satis-

fied. Finally, when ϕ is not even classically satisfied by

T , T 6|= ϕ, we can guarantee that the formula is false.

Formally, the fact that an interpretation 〈H,T 〉 satisfies

a formula ϕ (or makes it certain), written 〈H,T 〉 |= ϕ,

is recursively defined as follows:

– 〈H,T 〉 6|= ⊥
– 〈H,T 〉 |= p iff p ∈ H
– 〈H,T 〉 |= ϕ ∧ ψ iff 〈H,T 〉 |= ϕ and 〈H,T 〉 |= ψ

– 〈H,T 〉 |= ϕ ∨ ψ iff 〈H,T 〉 |= ϕ or 〈H,T 〉 |= ψ

– 〈H,T 〉 |= ϕ → ψ iff both (i) T |= ϕ implies T |= ψ

and (ii) 〈H,T 〉 |= ϕ implies 〈H,T 〉 |= ψ

By abuse of notation, we use ‘|=’ both for classical and

for HT-satisfaction: the ambiguity is resolved by the

form of the left interpretation (a single set T for classi-

cal and a pair 〈H,T 〉 for HT). We say that an interpre-

tation 〈H,T 〉 is a model of a theory (set of formulas) Γ

iff 〈H,T 〉 |= ϕ for all ϕ ∈ Γ . We say that a propositional

theory Γ entails some formula ϕ, written Γ |= ϕ, if any

model of Γ is also a model of ϕ. These definitions cor-

respond to the so-called logic of Here-and-There (Heyt-

ing, 1930), stronger than intuitionistic logic but weaker

than classical logic.

As we can see, everything is pretty standard except-

ing for the interpretation of implication, which imposes

a stronger condition than in classical logic. In order to

satisfy 〈H,T 〉 |= ϕ→ ψ, the standard condition would

be (ii), that is, if the antecedent is certain, then the con-

sequent must be certain too. In our case, however, we

additionally require (i) which informally means that, if

the antecedent is just true by default, then the conse-

quent must also be so. Satisfaction of negation ¬ϕ is

not included above because it can be defined in terms

of implication as the formula ϕ→ ⊥. Using that abbre-

viation and after some analysis, it can be proved that

〈H,T 〉 |= ¬ϕ amounts to T 6|= ϕ, that is, ¬ϕ is certain

when ϕ is false.
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It is not difficult to see that, for total interpreta-

tions, 〈T, T 〉 |= ϕ amounts to classical satisfaction T |=
ϕ. An interesting property that can be proved from the

definition of satisfaction is that 〈H,T 〉 |= ϕ implies

T |= ϕ for any arbitrary formula ϕ. In other words,

if an interpretation 〈H,T 〉 makes ϕ certain, then it

is also (classically) true for the set of assumptions T .

This somehow generalises the condition H ⊆ T (any-

thing certain is also assumed true) to the case of ar-

bitrary formulas. If we apply this property to our pro-

gram example Π1, this means that any of its models

〈H,T 〉 |= Π must satisfy T |= Π as well. As we saw,

we have only three possibilities for the latter, T1, T2
and T3. On the other hand, the program fact (3) fixes

empty ∈ H. Now, take assumption T1 = {empty ,fill}.
The only model we get is 〈T1, T1〉 because the other

possible subset H = {empty} of T1 does not satisfy (2):

empty is certain, fire is false, so we should get fill . Take

T2 instead. Apart from 〈T2, T2〉, in this case we also get

a model 〈H,T2〉 with H = {empty}. In such a case,

fire is only assumed true, but not certain. As a result,

the rule is satisfied because its condition ¬fire is false

(we have some evidence on fire) and so 〈{empty}, T2〉
becomes a model. This is a clear evidence that our

initial assumption adding fire is not necessarily cer-

tain when we check the program rules. In the case of

T3 = {empty ,fire,fill} we have a similar situation. In-

terpretations with H = {empty}, H = {empty ,fire} or

H = {empty ,fill} are also models. Note that in all of

them, the only atom that is always certain is empty ,

pointing out again that fire or fill are not necessarily

certain (cannot be proved using the program rules).

We can now easily read off the truth conditions for

a rule like (5) in an HT-model. But we have achieved

more than this. Satisfaction is now inductively defined

for all ground formulas and so we have a semantics that

covers program rules that include arbitrary nestings of

the logical operators. This, as we shall see, will be useful

later on for understanding other kinds of ASP construc-

tions.

2.2 Stable models are equilibrium models

From the logical point of view, it is now an easy task to

define a stable model. The intuition is that we will be in-

terested in cases where anything assumed true in set T

eventually becomes necessarily certain, ie ,H = T is the

only possibility for assumption T . As defined in (Pearce,

1997), given a ground, disjunctive program Π, a model

〈H,T 〉 |= Π is an equilibrium model of Π, if (i) H = T ;

(ii) for any model 〈H ′, T 〉 with H ′ ⊂ H, 〈H ′, T 〉 6|= Π.

(i) means that 〈H,T 〉 (or simply 〈T, T 〉) is a total model

with no uncertainty, while (ii) is a minimality condition

saying that Π has no ‘lesser’ model keeping T fixed as

the set of non-false atoms. When 〈T, T 〉 is an equilib-

rium model of program Π, we say that T alone is a

stable model or answer set of Π. We can apply the

same definitions to any arbitrary propositional theory.

Back to our example, the only stable model of Π1

is the expected T1 = {empty ,fill}. This is because for

the other two classical models T2 = {empty ,fire} and

T3 = {empty ,fill ,fire} we could see in the previous sec-

tion that there were smaller sets H ′ that formed pos-

sible models of the program such as 〈{empty}, T2〉 or

〈{empty}, T3〉. In the case of T1, however, the only ob-

tained model is 〈T1, T1〉 and no smaller H ⊂ T1 can be

used to form a model.

We can also capture the stable model semantics in

terms of theory or program completions. The intuitive

idea is also based on checking derivability of arbitrary

assumptions, but relies this time on a syntactic (fix-

point) definition. Given any propositional theory Γ , let

Cn(Γ ) denote all its conclusions using the logic of HT.

Formally, Cn(Γ )
def
= {ϕ | Γ |= ϕ in HT}. Now, assume

we have some program or theory Π. We can think about

each potential stable model of Π in terms of the set of

formulas Γ that we could derive from it. Suppose we

assume that some set of formulas Γ is a potential can-

didate for being (the conclusions of) a stable model.

We cannot directly add Γ to Π, because this would

transform any assumption ϕ ∈ Γ into an immediately

certain or derivable formula. However, we can add in-

stead the negation ¬ϕ of any ϕ 6∈ Γ since there is no

evidence of ϕ in our current assumption Γ . A set of

formulas Γ is said to be a completion of a theory Π iff:

Cn(Π ∪ {¬ϕ : ϕ 6∈ Γ}) = Γ. (8)

In other words, if we collect the negation of all for-

mulas not in the assumption Γ and we add them as

hypotheses to Π, the information we can derive (using

HT consequence) eventually coincides with the initial

assumption Γ . Each completion is the set of formulas

true in a stable model, and each stable model corre-

sponds in this way to one completion. Obviously, there

may be different assumptions Γ that satisfy the fixpoint

condition (8) or none at all, in the same way there may

be different stable models of a program, or none at all
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either. Condition (8) can be relaxed by just ranging

ϕ on literals (that is, any atom p or its negation ¬p)
not belonging to Γ , and we still get the same result.

Moreover, if Π is a disjunctive logic program, then it

suffices to let ϕ range over atoms (Pearce, 1999). These

properties continue to hold if we replace Cn by weaker

consequence relations, such as that of intuitionistic or

other intermediate logics contained in HT. 3

2.3 Program equivalence

A central logical concept in the analysis of programs

is that of program equivalence. In a weak sense, two

programs, Π1 and Π2 are equivalent if they have the

same answer sets. However, since we are in a setting

of nonmonotonic semantics, this kind of equivalence is

not robust. It does not give us a logical replacement

theorem allowing us to substitute one program for an-

other in any context: adding new rules or new facts

to such weakly equivalent programs may result in their

becoming non-equivalent. To understand this subtle dif-

ference, consider a program Π2 containing the facts

empty and fill . The unique stable model of Π2 is ob-

viously T1 = {empty ,fill} and thus coincides with the

only stable model of Π1. However, they do not seem

to capture an interchangeable piece of knowledge. This

becomes clear when we add new information like, for

instance, if we are told that fire is detected around the

gas station. Program Π1 ∪ {fire} will have the unique

stable model {empty ,fire} since rule (2) is not applica-

ble any more, whereas program Π2∪{fire} will produce

the unique stable model {empty ,fill ,fire}, since in that

case, filling the tank is unconditional.

Research in ASP has explored stronger concepts of

equivalence, where substitutability in specific contexts

is supported. Two programs, Π1 and Π2 are said to

be strongly equivalent, if, for any program, Π, Π1 ∪Π
and Π2 ∪Π have the same answer sets; in other words

they are interchangeable without semantic loss in any

context. Strong equivalence has a simple, logical char-

acterisation: programs are strongly equivalent if and

only if they have the same HT-models (Lifschitz et al,

2001). Since the logic HT of here-and-there has a sound

and complete proof theory, there is a calculus provid-

ing a simple logical test for strong equivalence. This can

3 See (Cabalar et al, 2017a) for more detailed information
and references.

be applied in program analysis, for example to replace

complex rules by equivalent but simpler ones.4

An important property, first shown by (Cabalar and

Ferraris, 2007), is that any arbitrary propositional the-

ory is strongly equivalent to a general form of logic pro-

gram, whose rules are of the type:

L1 ∧ . . . ∧ Lm ∧ ¬Lm+1 ∧ . . . ∧ ¬Ln →
→ K1 ∨ . . . ∨Kk ∨ ¬Kk+1 ∨ . . . ∨ ¬Kj

(atomic L,K). In other words a disjunctive program

allowing negation in the rule heads. How to construct

an equivalent general program is studied in (Cabalar

et al, 2005). As a simple example, the formula empty ∨
offer → (¬fire → fill ∧ pay) is strongly equivalent to

the logic program:

empty ∧ ¬fire → fill

offer ∧ ¬fire → fill

empty ∧ ¬fire → pay

offer ∧ ¬fire → pay

2.4 Aggregates in ASP

Logical formalisations can be useful to analyse typical

constructs in ASP that provide more flexibility than

plain propositional programs, such as aggregate opera-

tors, which are applied to sets of values. As an exam-

ple, suppose we want to specify that a person authoring

more than n books is considered to be a writer. For sim-

plicity, assume that our logic program only talks about

some fixed person and that we write the rule

count{X : b(X)} ≥ n→ writer (9)

so that b(X) means that the author wrote some bookX.

Different semantics for ASP aggregates have been pro-

posed in the literature, many of them relying on syntac-

tic transformations. An interesting alternative proposed

in (Ferraris, 2011) is simply translating an aggregate as

a logical formula interpreted in HT. Going on with our

example, suppose that n = 2 and that our program

domain includes book constant names h (Hamlet), o

(Othello) and m (Macbeth). Without entering into de-

tail, Ferraris’ translation of (9) produces the formula:

(h ∨ o ∨m) ∧ (h→ o ∨m)

∧(o→ h ∨m) ∧ (m→ h ∨ o)→ writer (10)

4 Using HT-logic we can only test the equivalence of ground
rules and programs. In practice it makes sense to apply a
first-order, quantified version of HT that captures the strong
equivalence of programs with variables. For details, see (Lif-
schitz et al, 2007; Mints, 2010).
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The antecedent of this formula requires that we author

some book (h ∨ o ∨m) and that if we authored any of

them, we also write, at least, one of the other two. As

we can see, an interesting feature in this translation is

that, in its general case, it makes use of nested impli-

cations, something not considered before in traditional

logic programming, but perfectly possible once we have

a general semantics for arbitrary theories provided by

HT and Equilibrium Logic. In our particular example,

formula (10) can be rewritten (under HT-equivalence)

as the more readable logic program:

h ∧ o → writer

h ∧m → writer

o ∧m → writer

One valuable feature of logical encodings is that

they sometimes allow analysing different semantic al-

ternatives using a same formal language. For instance,

one of the most recent alternative semantics for aggre-

gates, proposed by Gelfond and Zhang (2014), has been

recently proved (Cabalar et al, 2017b) to correspond

to a different translation into HT formulas. Under this

translation, our example rule (9) corresponds, instead,

to the rules:

h ∧ o ∧ ¬m → writer

h ∧m ∧ ¬o → writer

o ∧m ∧ ¬h→ writer

h ∧m ∧ o → writer

that are classically equivalent to Ferraris’ translation,

but not HT-equivalent in the general case. Once the

two semantics are captured as logical formulas in HT,

studying their relationship amounts to a logical analysis

that has allowed, for instance, proving some correspon-

dence results in (Cabalar et al, 2017b).

To illustrate a difference between the two semantics,

suppose we had instead the rule

count{X : b(X)} ≥ n→ b(a) (11)

meaning that if we write at least n books we also write

an autobiography a. Obviously, the autobiography is

also a book, and so, the aggregate contains a kind of

self-reference. Now, suppose that n = 0, that is, any

number of books can be accepted, including no one.

Ferraris’ HT-translation for (11) corresponds to:

> → b(a) (12)

as it considers the aggregate as tautological, and so,

if we only have rule (11), we get that the only stable

model is {b(a)}. On the other hand, Gelfond-Zhang’s

HT-translation would correspond to:

b(a) ∨ ¬b(a)→ b(a)

where the antecedent is not an HT-tautology. In fact,

this formula is strongly equivalent to the logic program:

b(a)→ b(a)

¬b(a)→ b(a)

where the first rule is a tautology, but the second one

forms a well-known negative loop that produces no sta-

ble model (if no other rules are added). As we can see,

Gelfond-Zhang’s semantics considers, in this way, that

rule (11) is somehow paradoxical or ill-formed: for es-

tablishing the aggregate value, we depend on the con-

clusion b(a) that in its turn depends on the aggregate

again.

3 Extensions

3.1 Strong negation

One of the simplest extension of the basic language of

ASP is the addition of a second negation operator to

represent explicit falsity. The most appropriate name

for this is strong negation. It was introduced into logic

programming independently by (Pearce and Wagner,

1991, 1990) and (Gelfond and Lifschitz, 1990). In logi-

cal terms strong negation, symbolised by ‘∼’, validates

these characteristic formulas:

N1. ∼ (α→ β)↔ α ∧ ∼β
N2. ∼(α ∧ β)↔ ∼α∨ ∼ β
N3. ∼(α ∨ β)↔ ∼α ∧ ∼β
N4. ∼ ∼α↔ α

N5. ∼¬α↔ α

N6. (for atomic α) ∼α→ ¬α
Here ‘α ↔ β’ abbreviates (α → β) ∧ (β → α)) and we

suppose that ¬α as before is equivalent to α→ ⊥.

Despite its simplicity, strong negation has often been

misunderstood.5 It was introduced into logic by David

Nelson (Nelson, 1949). Later N1–N6 were proposed

by (Vorob’ev, 1952a,b) to provide an axiom system for

strong negation. If added to intuitionistic logic or its ex-

tensions (ie any superintuitionistic logic) these axioms

result in a conservative extension of that logic.

5 It is slightly unfortunate that (Gelfond and Lifschitz,
1990) called it “classical” negation.
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Answer set programs with strong negation comprise

rules like (5) in the disjunctive case, where now L,K

range over strong or objective literals, ie. atoms possi-

bly prefixed by strong negation. The semantics of HT-

models is essentially as before, except that a model

〈H,T 〉 now comprises sets of objective literals, where

H ⊆ T and T does not contain any inconsistent pairs

(A,∼A) of atoms. Additional clauses govern the satis-

faction of formulas in strong negation, models while the

equilibrium condition defining answer sets is the same

as before (Pearce, 1997).

In the logical semantics of answer sets it is impor-

tant to make clear the different behaviours of ‘¬’ and

‘∼’. For instance while the law of double negation holds

for strong but not intuitionistic negation:

` ∼∼α↔ α

6` ¬¬α↔ α

the property of contraposition holds for weak but not

for strong negation:

α→ β ` ¬β → ¬α
α→ β 6` ∼β → ∼α
Notice that a program rule such as ¬B → A has ¬A→
¬¬B as its contrapositive.

The fact that strong negation appears in program

rules directly before atoms is not a genuine restriction.

Any arbitrary formula in a logic with strong negation

is equivalent to one where all occurrences of ‘∼’ are

driven-in to stand before atoms. The Vorob’ev axioms

show how to perform the transformation.

There is another feature of strong negation that

makes it attractive from a computational point of view.

Programs with strong negation can be reduced to or-

dinary programs in an extended language by replacing

any strongly negated atom ∼p by a new symbol, say p′

and adding the formula p′ → ¬p. This reduction tech-

nique was first used by Gurevich (Gurevich, 1977) for

first-order logic and later independently rediscovered

by (Gelfond and Lifschitz, 1990) in their treatment of

logic programs.

3.2 Hybrid systems

Answer set programming can be combined with other

forms of knowledge representation and reasoning, and

some such hybrid systems have been implemented and

are in practical use. In some case, hybrid approaches

lend themselves to treatment from a logical perspective

by extending the logical framework that we have been

discussing so far. An early and conceptually convincing

approach to combining answer set semantics with other

systems was proposed by Riccardo Rosati (Rosati, 2005,

2006), in particular in the form DL+ log. This work is

directed at combining logic programs with ontologies

formulated in description logics. However, Rosati’s se-

mantics can be applied to conjoin programs with other

kinds of data and knowledge structures – including first-

order theories – that receive a classical interpretation. A

key feature is that in such a hybrid system some terms

and relations may appear both within, say, an ontology

or knowledge base, and also within a set of program

rules. The meaning of such terms has therefore to be

determined both from the role they play in the knowl-

edge structure and from their interpretation within the

logic program. From a logical point of view, the former

is essentially classical and monotonic while the latter is

nonclassical and nonmonotonic.

Rosati’s semantics is somewhat complicated, and for

details we refer to the papers just mentioned. However,

in the framework of first-order equilibrium logic there

is an equivalent and simpler characterisation. It suffices

to take the equilibrium models of the conjunction of

the two components of the hybrid system, say a first-

order theory T and a logic program Π, but to add the

excluded middle, R(x) ∨ ¬R(x), for those relations R

that belong to the classical theory.6 For details, see (de

Bruijn et al, 2010).

Another approach to combining ontologies and rules

under stable model semantics is that of description logic

programs (dl-programs) proposed by (Eiter et al, 2004).

This can also be captured in a logical framework, but

with a more far-reaching extension of the basic lan-

guage. In this case programs comprise so-called dl-rules

that may include special dl-atoms in the rule body.

These atoms refer to external relations belonging to

a description logic program or ontology and are thus

evaluated externally. Their stable model semantics can

also be characterised within equilibrium logic, extended

in a suitable way to accommodate the dl-atoms (Fink

and Pearce, 2010).

6 Notice that the meaning of such a relation is still co-
determined by the two components T and Π because nor-
mally not all models of T will be able to be enriched into
equilibrium models of T ∪Π.
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3.3 Temporal theories

Many applications of ASP involve temporal reasoning

in dynamic domains and solve different kinds of prob-

lems such as temporal simulation, temporal explana-

tion, planning or even online execution of reactive sys-

tems with applications in robotics. An immediate choice

to cover these features from a logical point of view

was extending Equilibrium Logic to cope with modal

temporal operators from Linear-Time Temporal Logic

(LTL) (Kamp, 1968) such as ©α (“α holds at next

state”), 2α (“α always holds from now on”) or 3α (“α

holds at some point from now on”). This was proposed

in (Cabalar and Pérez, 2007), receiving the name of

Temporal Equilibrium Logic (TEL). The semantics of

TEL is defined starting from a temporal extension of

HT, we call THT. Given a finite propositional signature

At, an LTL-interpretation T is an infinite sequence of

sets of atoms, T0, T1, . . . with Ti ⊆ At for all i ≥ 0.

Given two LTL-interpretations H,T we define H ≤ T

as: Hi ⊆ Ti for all i ≥ 0. A THT-interpretation M

for At is a pair of LTL-interpretations 〈H,T〉 satisfy-

ing H ≤ T. A THT-interpretation is said to be total

when H = T. Given an interpretation M = 〈H,T〉, we

recursively define when M satisfies a temporal formula

ϕ at some state i ∈ N as:

– M, i |= p iff p ∈ Hi with p an atom

– ∧,∨,⊥,→ as in the propositional case of HT, using

H and T instead of H and T

– M, i |=© ϕ iff M, i+1 |= ϕ

– M, i |= 2ϕ iff for all k ≥ i s.t. M, k |= ϕ

– M, i |= 3ϕ iff for some k ≥ i such that M, k |= ϕ.

An interpretation M is a temporal equilibrium model

of a theory Γ if it is a total model of Γ , that is, M =

〈T,T〉 |= Γ , and there is no H < T such that 〈H,T〉 |=
Γ . An LTL-interpretation T is a temporal stable model

(TS-model) of a theory Γ iff 〈T,T〉 is a temporal equi-

librium model of Γ . For a recent survey on TEL contain-

ing more results and bibliography, see (Cabalar, 2015).

3.4 Other extensions

As is clear from the temporal extension of ASP, a posi-

tive feature of the logical perspective on answer set pro-

gramming is that it suggests how new logical constructs

and operators can be added to the basic language of

programs. Aside from the temporal extension of the

language, we can mention also the extension of first-

order equilibrium logic for dealing with evaluable func-

tions proposed in (Cabalar, 2011), which directly incor-

porates the study of partial functions in intuitionistic

logic made by (Scott, 1979) to the case of HT and equi-

librium models. Another example is Epistemic Equilib-

rium Logic due to (Fariñas del Cerro et al, 2015), which

starts from modal extensions of intuitionistic logic to

provide a fully logical, alternative semantics to so-called

epistemic specifications originally proposed by Gelfond

(1991). This extension allows one to include expressions

like Kp (resp. Mp) in rule bodies to stand for “atom p

holds in any (resp. some) stable model of this program.”

4 Other logical perspectives

Not surprisingly answer set programming can be viewed

from other logical perspectives. For instance from the

very early days of stable model semantics there was a

strong interest in relating stable models to other non-

monotonic formalisms, such as default and autoepis-

temic logics. It turns out that several of these alter-

native logical views derive directly from our here-and-

there perspective in virtue of reduction or embedding

techniques between logical systems, some of which are

well-known and predate ASP by many years. Without

going into too many technical details, let us briefly re-

view two such methods: one involves a reduction to

second-order logic, the other a translation or transla-

tions into modal logics.

4.1 Reductions to second-order logic

In this logical perspective we deal with QBFs or quanti-

fied boolean formulas. For a full description of QBFs and

their the semantics, see eg (Kleine Büning et al, 1995).

Suppose that our ASP language is without strong nega-

tion and that V is the set of propositional variables or

atoms. Denote by V ′ the disjoint alphabet V ′ = {p′ :

p ∈ V }. For any formula ϕ with variables from V , let

ϕ′ be the result of replacing each variable p ∈ V by p′.

If V = {p1, . . . , pn} and U = {q1, . . . , qn} are indexed

sets of atoms, then let V ≤ U abbreviate
∧n
i=1(pi → qi),

and V < U abbreviate (V ≤ U)&¬(U ≤ V ). For any

formula ϕ with variables from V let ϕ∗ be a translation

defined recursively as follows.

1. if ϕ is an atom or ⊥, then ϕ∗ = ϕ;
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2. if ϕ = (ϕ1 ◦ϕ2), for ◦ ∈ {∧,∨}, then ϕ∗ = ϕ1
∗ ◦ϕ2

∗;

3. if ϕ = (ϕ1 → ϕ2), then ϕ∗ = (ϕ1
∗ → ϕ2

∗) ∧ (ϕ′1 →
ϕ′2).

Suppose that ϕ is a formula with atoms in V and

that H,T ⊆ V are interpretations. Then it can be

shown (Pearce et al, 2001) that 〈H,T 〉 is an HT-model

of ϕ if and only if H ∪ T ′ is a (classical) model of

(V ≤ V ′) ∧ ϕ∗.
The primed formulas in ϕ∗ play the role of formu-

las evaluated in the ‘T ’ component of the HT-model

while unprimed formulas correspond to those evaluated

at ‘H’. The property V ≤ V ′ expresses the requirement

that truth persists from ‘H’ to ‘T ’.

Again suppose that ϕ is a formula with atoms in V .

Then, 〈T, T 〉 is an equilibrium model of ϕ if and only

T ′ is a model of

ϕ′ ∧ ¬∃V
(
(V < V ′) ∧ ϕ∗

)
. (13)

Formula (13) is a QBF. These formulas generalise

ordinary propositional formulas by allowing quantifica-

tion over propositional variables. Informally, a QBF of

the form ∀p ∃q Φ states that for all truth assignments of

p there is a truth assignment of q such that Φ is true.

QBFs can also be used to express properties such as

whether a theory has an equilibrium model or whether

a formula is an equilibrium consequence of a given the-

ory, ie true in all equilibrium or stable models.

The presence of efficient QBF-solvers means that

these encodings can be used as a basis for implement-

ing equilibrium logic. More importantly, the complex-

ity classes associated with QBFs of different kinds are

well-understood, and so QBF-reductions provide useful

information about the complexity of the various rea-

soning tasks being encoded.

The table below summarises some complexity re-

sults obtained by analysing the quantifier order of the

different QBF encodings. Each row associates a com-

plexity class for a decision problem with respect to dis-

junctive logic programs in the left column and propo-

sitional theories in HT-logic, in the right column. In

each case the decision problem is complete for the class

in question. From top to bottom the decision problems

are: existence of an HT-model, existence of an equilib-

rium model, whether a formula is an equilibrium conse-

quence of a theory or program, and lastly the problems

of checking (weak) equivalence and strong equivalence.7

LPs Theories

model existence NP NP

equil model existence ΣP
2 ΣP

2

equil consequence ΠP
2 ΠP

2

equivalence ΠP
2 ΠP

2

strong equivalence coNP coNP

Notice that there is no increase of complexity when

moving from (disjunctive) logic programs to general

programs or arbitrary (propositional) theories.

The above reduction can also be applied in a straight-

forward manner to first-order theories, thereby obtain-

ing for them a characterisation of stable or equilibrium

models in second-order logic (Ferraris et al, 2007).

4.2 Modal embeddings

It is well-known that Heyting’s intutionistic logic H can

be embedded into the modal logic S4 using a transla-

tion first proposed by (Gödel, 1933) and later studied in

more depth by (McKinsey and Tarski, 1948). There are

different variants of the Gödel-McKinsey-Tarski trans-

lation. One version merely consists in prefixing each

subformula of H by a necessity operator ‘2’; let us de-

note this translation by τ . Then we have

`H ϕ⇔ `S4 τ(ϕ), (14)

(where ` with subscripts denotes theoremhood).

From the mid-1970s logicians began to study a sec-

ond translation, this time from modal logics to modal

logics, showing how reflexive logics8 could be embedded

into non-reflexive ones. This is known as the splitting

translation, which we may denote by the superscript

operator ‘+’. The effect is to replace each occurrence of

2 by 2+ where 2+ϕ abbreviates ϕ∧2ϕ, leaving other

formulas unchanged.

Applying the splitting translation to S4 for example

yields an embedding into a model logic known as wK4

7 The main references are as follows. For the complexity of
satisfiability in many-valued logics such as HT, see (Mundici,
1987). For the complexity of reasoning tasks associated with
disjunctive logic programs, see (Eiter and Gottlob, 1995).
For the strong equivalence of logic programs, see (Pearce
et al, 2001) and also independently some results of (Lin,
2002) and (Turner, 2003). For the full details of the reduction
method sketched here, see (Pearce et al, 2001, 2009).
8 Ie. logics captured semantically by possible worlds frames

with a reflexive accessibility relation
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that has a natural topological interpretation (Esakia,

1976, 2004). While extensions of S4 have often been

studied as epistemic logics of knowledge, extensions of

wK4 may be considered as candidates for doxastic log-

ics of belief. Among them is the well-known KD45.

The translations τ and + continue to be applicable

not just to the base logics H and S4, but to their ex-

tensions as well, yielding new embeddings into stronger

modal logics. A modal companion of HT-logic (ie. a

modal logic into which HT can be embedding via τ)

is SW59 a weakening of the logic S5. Via the splitting

translation, SW5 in turn can be embedded into KD45.

It transpires that these embeddings can be lifted to the

nonmonotonic case. Regarding equilibrium logic as the

nonmonotonic extension of HT, let us add a star ∗ to de-

note the nonmonotonic versions of modal logics. Then

we have the following commuting diagram:

EL
τ // SW5∗

+ // KD45∗

HT

OO

τ // SW5

OO

+ // KD45

OO

H

OO

τ // S4

OO

+ // wK4f

OO

Here the right arrows indicate embeddings while the

solid upward arrows indicate logical extensions (strength-

enings). The broken upward arrows denote nonmono-

tonic extensions. Note that KD45∗ is none other than

autoepistemic logic. In the early days of stable model

semantics several different formal embeddings into non-

monotonic modal logics were discovered by (Gelfond
and Lifschitz, 1988; Przymusinski, 1991; Lifschitz and

Schwarz, 1993; Marek and Truszczynski, 1993b; Chen,

1993) and others. These were established in a piecemeal

and ad hoc manner. However, with hindsight we can see

that they can be systematically derived in a straight-

forward way from the diagram above using τ and +;

details can be found in (Pearce and Uridia, 2008).

5 Some literature and concluding remarks

HT-logic was first described by (Heyting, 1930) in his

formal analysis of intuitionistic logic. Although he used

HT primarily as a technical device, interest in this logic

9 See (Marek and Truszczynski, 1993a).

quickly grew. It appeared again in (Gödel, 1932) as a

3-valued logic, and was analysed in depth in a work of

 Lukasiewicz presented in 1938 ( Lukasiewicz, 1941). He

provided the first axiomatisation of HT, as an extension

of intuitionistic logic, and showed that disjunction is de-

finable in the logic. Later the logic was studied in Rus-

sia by (Smetanich, 1960) and in Japan by (Umezawa,

1959; Hosoi, 1966). (Umezawa, 1959) provided a sim-

pler axiom scheme, and completeness of this was shown

by (Hosoi, 1966). Although the logic has various names,

the term “here-and-there” became common, probably

from the 1960s when its semantics became well-under-

stood in the setting of possible worlds. Among quanti-

fied versions of HT we can mention (Ono, 1983; Pearce

and Valverde, 2004; Mints, 2010).

Equilibrium logic was presented as a nonmonotonic

extension of HT in (Pearce, 1997). It is described in

much more detail in (Pearce, 2006). First-order ver-

sions can be found in (Pearce and Valverde, 2004, 2005).

A variant designed to incorporate intensional functions

into the ASP language can be found in (Cabalar et al,

2014). As we have seen in Section 2.4, the logical trans-

lation of aggregate operators involves conjunctions or

disjunctions of expressions whose length depends on the

size of the program domain. When this domain is in-

finite, propositional conjunction and disjunctions need

to be extended to the infinitary case. The correspond-

ing Infinitary Equilibrium Logic is studied in (Harrison

et al, 2017).
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Cabalar P, Pérez G (2007) Temporal equilibrium logic:

a first approach. In: Proc. of the 11th International

Conference on Computer Aided Systems Theory,

(EUROCAST’07). LNCS (4739), pp 241–248

Cabalar P, Pearce D, Valverde A (2005) Reducing

propositional theories in equilibrium logic to logic



Answer Set Programming from a Logical Point of View 11

programs. In: EPIA, Springer, Lecture Notes in Com-

puter Science, vol 3808, pp 4–17
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