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Abstract

In this paper we solve the following open problem: we prove
that equivalence in the logic of Temporal Here-and-There
(THT) is not only a sufficient, but also a necessary condition
for strong equivalence of two Temporal Equilibrium Logic
(TEL) theories. This result has allowed constructing a tool,
ABSTEM, that can be used to check different types of equiv-
alence between two arbitrary temporal theories. More impor-
tantly, when the theories are not THT-equivalent, the system
provides a context theory that makes them behave differently,
together with a Büchi automaton showing the temporal stable
models that arise from that difference.

Introduction
With the consolidation of Answer Set Programming
(ASP) (Brewka, Eiter, and Truszczyński 2011) as a success-
ful paradigm for practical knowledge representation, many
examples and benchmarks formalising dynamic scenarios
became available. ASP usually treats time as an integer in-
dex restricting all reasoning tasks to finite narratives. As a
piece of example, consider an extremely simple ASP pro-
gram where a fluent p represents that a switch is on and q
represents that it is off. Moreover, suppose we have free-
dom to add p arbitrarily at any moment and that either p or
q holds initially. A typical ASP representation could be:

p(0) ∨ q(0) (1)
p(I+1) ← p(I), not q(I+1), sit(I) (2)
q(I+1) ← q(I), not p(I+1), sit(I) (3)

p(I) ∨ not p(I) ← sit(I) (4)

where (1) is the initial state, (2) and (3) are the inertia rules
and (4) is a choice rule for p at any situation. Predicate sit
would have a finite domain 0 . . . n for some constant n ≥ 0.
Planning for a goal like p ∧ ¬q implies including two con-
straints for the last situation, ⊥ ← not p(n) and ⊥ ← q(n),
and go increasing n until a solution is found. This strat-
egy falls short for many temporal reasoning problems that
involve dealing with infinite time such as proving the non-
existence of a plan or checking the satisfaction of temporal
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properties of a given dynamic system. For instance, ques-
tions such as “is there a reachable state in which both p and
q are false?” or “can we show that whenever p is true it will
remain so forever?” can be answered by an analytical in-
spection of our simple program, but cannot be solved in an
automated way.

To overcome these limitations, (Aguado et al. 2013) pro-
posed a temporal extension of Equilibrium Logic (Pearce
1996), the best-known logical formalisation of ASP. This
extension, which received the name of Temporal Equilib-
rium Logic (TEL), is defined as follows. First, it extends
the monotonic basis of Equilibrium Logic, the intermediate
logic of Here-and-There (HT) (Heyting 1930), by introduc-
ing the full syntax of the well-known Linear-time Temporal
Logic (LTL) (Pnueli 1977). The result of this combination
is called Temporal Here-and-There (THT). Then, a selec-
tion criterion on THT models is imposed, obtaining non-
monotonicity in this way. As a result, TEL constitutes a
full non-monotonic temporal logic that allows a proper def-
inition of temporal stable models for any arbitrary theory in
the syntax of LTL. For instance, the ASP program (1)-(4)
would be represented in TEL as:

p ∨ q (5)
�(p ∧ ¬© q →©p) (6)
�(q ∧ ¬© p→©q) (7)

�(p ∨ ¬p) (8)

where, as usual in LTL, ‘�’ stands for “always” and ‘©’
stands for “next.” Checking whether p and q can be eventu-
ally false would correspond to look for a plan satisfying:

¬♦(¬p ∧ ¬q)→ ⊥ (9)

with ‘♦’ meaning “eventually.” Similarly, to test whether p
remains true after becoming true we would add:

�(p→ �p)→ ⊥ (10)

and check that, indeed, no temporal stable model exists.
In the past years, several interesting results about TEL

were obtained – see survey (Aguado et al. 2013) – but a few
important questions about TEL remained unsolved. One of
them has to do with the property of strong equivalence in
TEL. In any Non-Monotonic Reasoning approach, we say
that Γ1 and Γ2 are strongly equivalent when, for any ar-
bitrary theory Γ, both Γ1 ∪ Γ and Γ2 ∪ Γ have the same



selected models (stable models in ASP). (Lifschitz, Pearce,
and Valverde 2001) proved that checking equivalence in the
logic of HT is a necessary and sufficient condition for strong
equivalence in Equilibrium Logic, that is, Γ1 and Γ2 are
strongly equivalent iff Γ1 ≡HT Γ2. A pair of strong equiva-
lence checkers are, for instance, (Valverde 2004) and (Chen,
Lin, and Li 2005). This result for propositional HT was ex-
tended to arbitrary first-order theories in (Lifschitz, Pearce,
and Valverde 2007). It must be noticed that one direction
of this result, the sufficient condition, is actually trivial. As
HT is monotonic, Γ1 ≡HT Γ2 implies Γ1 ∪ Γ ≡HT Γ2 ∪ Γ
and so, their selected models will also coincide. The real
significant result is the opposite direction, namely, that HT-
equivalence is also a necessary condition for strong equiv-
alence, as it shows that HT is strong enough as a mono-
tonic basis for Equilibrium Logic. In the case of TEL,
(Aguado et al. 2008) implemented a prototype checker and
used it on some examples exploiting the trivial direction,
i.e., that THT-equivalence is obviously a sufficient condition
for strong equivalence in TEL. However, during the past six
years, the question whether THT-equivalence was also nec-
essary or not remained unanswered.

In this paper we adapt a result from (Lifschitz, Pearce,
and Valverde 2007) to prove that indeed THT-equivalence
is a necessary condition for TEL strong equivalence and
use this proof, combined with previous theoretical results,
to construct a tool, ABSTEM1, that allows the formal study
of arbitrary temporal theories in different ways. First, it
implements the technique in (Cabalar and Demri 2011) to
compute the temporal stable models of an arbitrary theory
Γ, displaying them as a Büchi automaton. Second, given
two theories Γ1 and Γ2, it allows checking different types
of equivalence: LTL-equivalence, weak equivalence (coin-
cidence in temporal stable models) and THT-equivalence
which, as said before, corresponds to strong equivalence.

The rest of the paper is organised as follows. In the next
section we recall the basic definitions of TEL. After that, we
overview the automata-based techniques from (Cabalar and
Demri 2011). The next section contains the main theorem.
This is followed by an explanation of the implementation
together with a practical example. Finally, we include some
conclusions.

Temporal Equilibrium Logic
We begin defining the (monotonic) logic of THT as follows.
The syntax is defined as in propositional LTL. A temporal
formula ϕ can be expressed following the grammar shown
below:

ϕ ::= ⊥ | p | α ∧ β | α ∨ β | α→ β | ©α | α U β | αR β

where p is an atom of some finite signature At, and α and β
are temporal formulas in their turn.

The formula α U β stands for “α until β” whereas αR β
is read as “α release β” and is the dual of “until.” De-
rived operators such as � (“always”) and ♦ (“at some future
time”) are defined as �ϕ def

= ⊥R ϕ and ♦ϕ
def
= > U ϕ. Other

1http://kr.irlab.org/?q=abstem

usual propositional operators are defined as follows: ¬ϕ def
=

ϕ→ ⊥, > def
= ¬⊥ and ϕ↔ ψ

def
= (ϕ→ ψ) ∧ (ψ → ϕ).

Given a finite propositional signature At, an LTL-
interpretation T is an infinite sequence of sets of atoms,
T0, T1, . . . with Ti ⊆ At for all i ≥ 0. Given two LTL-
interpretations H,T we define H ≤ T as: Hi ⊆ Ti for
all i ≥ 0. A THT-interpretation M for At is a pair of
LTL-interpretations 〈H,T〉 satisfying H ≤ T. A THT-
interpretation is said to be total when H = T.

Definition 1 (Satisfaction) We define when an interpreta-
tion M = 〈H,T〉 satisfies a formula ϕ at a state i ≥ 0,
written M, i |= ϕ, recursively as follows:

1.M, i |= p iff p ∈ Hi, with p an atom.
2. ∧,∨,⊥ as usual
3.M, i |= ϕ→ ψ iff for all x ∈ {H,T},

〈x,T〉, i 6|= ϕ or 〈x,T〉, i |= ψ.
4.M, i |=© ϕ iff M, i+1 |= ϕ
5.M, i |= ϕ U ψ iff ∃k ≥ i such that M, k |= ψ and

∀j ∈ {i, . . . , k-1},M, j |= ϕ.
6.M, i |= ϕR ψ iff ∀k ≥ i such that M, k 6|= ψ then

∃j ∈ {i, . . . , k-1},M, j |= ϕ. �

We say that 〈H,T〉 is a model of a theory Γ, written
〈H,T〉 |= Γ, iff 〈H,T〉, 0 |= α for all formulas α ∈ Γ.
It is easy to see that restricting the study to total interpreta-
tions, THT-satisfaction collapses to LTL-satisfaction, i.e.:

Proposition 1 (from (Aguado et al. 2013)) 〈T,T〉, i |= ϕ
in THT iff T, i |= ϕ in LTL.

An interpretation M is a temporal equilibrium model of a
theory Γ if it is a total model of Γ, that is, M = 〈T,T〉 |= Γ,
and there is no H < T such that 〈H,T〉 |= Γ. An LTL-
interpretation T is a temporal stable model (TS-model) of
a theory Γ iff 〈T,T〉 is a temporal equilibrium model of Γ.
By Proposition 1 it is easy to see that any TS-model of a
temporal theory Γ is also an LTL-model of Γ.

As happens in LTL, the set of TS-models of a theory Γ can
be captured by a Büchi automaton (Büchi 1962), a kind of
ω-automaton (that is, a finite automaton that accepts words
of infinite length). In this case, the alphabet of the automa-
ton would be the set of states (classical propositional inter-
pretations) and the acceptance condition is that a word (a
sequence of states) is accepted iff it corresponds to a run of
the automaton that visits some acceptance state an infinite
number of times. As an example, Figure 1 shows the TS-
models for the theory (5)-(8) which coincide with sequences
of states of the forms {q}∗{p}ω or {q}ω .

Computing Temporal Stable Models of
Arbitrary Theories

Based on the techniques introduced in (Cabalar and Demri
2011), the tool ABSTEM constitutes the first implementation
capable of computing TS-models for arbitrary temporal for-
mulas, without syntactic restrictions. The method obtains
the TS-models of a formula ϕ by performing several op-
erations on a pair of automata derived from ϕ. The first
automaton, denoted as Aϕ, accepts the total THT-models
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Figure 1: Temporal stable models of theory (5)-(8).

〈T,T〉 of ϕ. By Proposition 1 this simply amounts to com-
pute the LTL models T of ϕ using an automata construc-
tion method for LTL. The second automaton, denoted as
Aϕ′′ , accepts the non-total THT-models 〈H,T〉 of ϕ. The
final set of TS-models is obtained from the composition
Aϕ ∩h(Aϕ′′) where h(Aϕ′′) filters out the H component of
non-total models, h(Aϕ′′) is the complementary of h(Aϕ′′)
and finally ∩ denotes the automata product.

The computation of Aϕ′′ is done exploiting a translation
of THT into LTL first presented in (Aguado et al. 2008)
and directly extrapolating the translation of HT into clas-
sical logic in (Pearce, Tompits, and Woltran 2001). It uses
an extended signature {p′ | p ∈ At} so that p′ represents the
truth of p in H while p is used for T. The translation of ϕ,
written ϕ∗, is recursively defined as follows:

• (p)∗
def
= p′, for any atom p ∈ At

• (α→ β)∗
def
= (α→ β) ∧ (α∗ → β∗)

being homomorphic for the rest of logical connectives. To
impose the restriction H < T we further include the axiom:( ∧

p∈At

�(p′ → p)

)
∧
( ∨

p∈At

♦(¬p′ ∧ p)
)

(Ax1)

Automaton Aϕ′′ is built from formula ϕ′′ def
= ϕ∗ ∧ (Ax1).

The operation h(Aϕ′′) returns a new automaton that results
from removing the atoms p′ from transitions in Aϕ′′ . This
captures the T-components of non-total models; in this way,
its complementary automaton h(Aϕ′′) accepts the T se-
quences that do not form a non-total model, but perhaps they
are not models either. Thus, the final product Aϕ ∩ h(A′′ϕ)
captures those T such that 〈T,T〉 is a total model of ϕ and
no non-total model 〈H,T〉 can be formed.

Temporal Strong Equivalence
For simplicity, we assume finite theories and we indistinctly
represent them as the conjunction of their formulas.
Theorem 1 (Sufficient condition (Aguado et al. 2008))
If two temporal formulas α and β are THT-equivalent then
they are strongly equivalent in TEL. �

To prove the other direction, namely, that THT-
equivalence is also a necessary condition for strong equiv-
alence, we begin defining γ0 as the conjunction of all for-
mulas �(p ∨ ¬p) for all atoms p ∈ At.

Proposition 2 Let 〈H,T〉 be a THT interpretation for sig-
nature At. If 〈H,T〉 |= γ0 then H = T.

Corollary 1 For any formula α for signature At, the LTL-
models of α ∧ γ0 coincide with its TS-models. �

Lemma 1 Let α and β be two LTL-equivalent formulas and
let γ = (β → γ0). Then, the following conditions are equiv-
alent:

(i) There exists some H < T such that 〈H,T〉 6|= α→ β;
(ii) T is TS-model of β ∧ γ but not TS-model of α ∧ γ. �

Theorem 2 (Main theorem: necessary condition) If two
temporal formulas α and β are strongly equivalent in TEL
then they are THT-equivalent. �

Proof We will prove that if α and β are not THT-equivalent
then there is some context formula γ for which α∧γ and β∧
γ have different TS-models. Assume first that α and β have
different total models, i.e., different LTL-models. Then, the
LTL-models of α ∧ γ0 and β ∧ γ0 also differ (since γ0 is an
LTL tautology). But by Corollary 1, LTL-models of these
theories are exactly their TS-models, and so, they also differ.

Suppose now that α and β are LTL-equivalent but not
THT-equivalent. Then, there is some THT-countermodel
〈H,T〉 of either (α → β) or (β → α), and given LTL-
equivalence of α and β, the countermodel is non-total, H <
T. Without loss of generality, assume 〈H,T〉 6|= α → β.
By Lemma 1, taking the formula γ = (β → γ0), we get that
T is TS-model of β ∧ γ but not TS-model of α ∧ γ. �

Algorithm 1 StrongEquivalenceTest(α, β)
Require: Two propositional temporal formulas α, β.
Ensure: If α and β are THT-equivalent, it returns true.

Otherwise, it returns a triple 〈γ,A1, A2〉.
A1 := ltl to Büchi(α ∧ ¬β)
A2 := ltl to Büchi(β ∧ ¬α)
if A1 6= ∅ or A2 6= ∅ then

return 〈γ0, A1, A2〉
end if
A=ltl to Büchi(¬(α→ β)∗ ∧ (Ax1))
if A 6= ∅ then

A2 := h(A)
return 〈(β → γ0), ∅, A2〉

end if
A=ltl to Büchi(¬(β → α)∗ ∧ (Ax1))
if A 6= ∅ then

A1 := h(A)
return 〈(α→ γ0), A1, ∅〉

end if
return true

Implementation and a practical example
The procedure for checking strong equivalence in ABSTEM
is shown in Algorithm 1. It takes two arbitrary propositional
temporal formulas α and β and returns either true, if they
are strongly equivalent, or a triple with a formula γ and two



automata A1, A2 otherwise2. The meaning of this informa-
tion is that A1 captures TS-models of α ∧ γ that are not TS-
models of β ∧ γ and, analogously, A2 captures TS-models
of β ∧ γ that are not TS-models of α ∧ γ. The procedure
uses an auxiliary routine ltl to Büchi(ϕ) to obtain a Büchi
automaton from an LTL-formula ϕ.

As an example of use, let β1 be our “switch” domain
(5)-(8) plus the rule �(¬p → q) trying to capture the idea
that, when no information on p is available, q becomes true.
This new rule is actually a new default for q that interacts
with inertia rules (6),(7) destroying somehow their effect.
Using ABSTEM to check the TS-models of β1 we obtain
the automaton in Figure 2(a) which corresponds to arbi-
trary sequences formed with states {p} and {q}. This set
of TS-models actually coincides with what one would ex-
pect from a formula of the form �(p ∨ q) since, as happens
in ASP, truth minimality converts the disjunction into an ex-
clusive or. So, we may conjecture that β1 is equivalent to
α1 = �(p ∨ q). Using ABSTEM we can check that, in fact,
α1 and β1 have the same TS-models and, furthermore, they
are also LTL-equivalent. However, α1 and β1 are not THT-
equivalent and so, they are not strongly equivalent. The an-
swer displayed this time by ABSTEM is negative and shows
the context formula γ1 = β1 → γ0 plus a file containing the
automaton in Figure 2(b). This automaton captures all the
TS-models of β1 ∧ γ1 that are not TS-models of α1 ∧ γ1.

S0start

{q}, {p}

(a) TS-models of
α1 and β1.

S0start

S1

S2

{q},{p}
{p, q}

{p}, {q}, {p, q}

{q},{p}

{p, q}

(b) TS-models of β1 ∧ γ1 not of α1 ∧ γ1.

Figure 2: Temporal stable models related to α1 and β1.

Conclusions
In this paper we have adapted (Lifschitz, Pearce, and
Valverde 2007) to the temporal case, to prove that equiva-
lence in the logic of Temporal Here-and-There (THT), is not
only a sufficient but also a necessary condition for strong
equivalence in Temporal Equilibrium Logic (TEL). Using
this proof, we have implemented a system, ABSTEM, for
analysing TEL arbitrary theories in different ways. First,
ABSTEM constitutes the first tool for computing temporal
equilibrium models of any arbitrary temporal theory. Sec-
ond, it also allows checking three types of equivalence be-
tween two arbitrary theories: LTL, weak and strong equiv-
alence. When equivalence is not satisfied, ABSTEM shows

2For further details, see the extended version of this
document at http://kr.irlab.org/sites/default/
files/papers/kr2014-ex.pdf.

counterexamples in the form of a Büchi automaton. Regard-
ing efficiency and scalability, this prototype works satisfac-
torily for small theories like the ones presented in the paper.
It must be noted, however, that checking THT-equivalence
is a PSPACE-complete problem.
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