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Abstract

We propose a solution to a long-standing problem in the foun-
dations of well-founded semantics (WFS) for logic programs.
The problem addressed is this: which (non-modal) logic can
be considered adequate for well-founded semantics in the
sense that its minimal models (appropriately defined) coin-
cide with the partial stable models of a logic program? We
approach this problem by identifying theHT 2 frames pre-
viously proposed by Cabalar to capture WFS as structures
of a kind used by Dǒsen to characterise a family of logics
weaker than intuitionistic and minimal logic. We define a
notion of minimal, totalHT 2 model which we callpartial
equilibrium model. Since for normal logic programs these
models coincide with partial stable models, we propose the
resulting partial equilibrium logic as a logical foundation for
well-founded semantics. In addition we axiomatise the logic
of HT 2-models and prove that it captures the strong equiva-
lence of theories in partial equilibrium logic.

Keywords: well-founded semantics, partial stable mod-
els, equilibrium logic

Introduction
Of the various proposals for dealing with default negation in
logic programming that go beyond the methods of ordinary
Prolog, thewell-founded semantics(WFS) of Van Gelder,
Ross and Schlipf (van Gelder, Ross, & Schlipf 1991) has
proved to be one of the most attractive and resilient. Partic-
ularly its favourable computational properties have made it
popular among system developers and the well-known im-
plementation XSB-Prolog1 is now extensively used in AI
problem solving and applications in knowledge represen-
tation and reasoning. The present paper studies the logi-
cal foundations of WFS and proposes a solution to a long-
standing open problem: how to characterise partial stable
models as minimal models in a suitable nonclassical, non-
modal logic. We thereby obtain a deductive base logic (in
the sense of (Dietrich 1994)) for well-founded inference as
well as a means to extend WFS to disjunctive programs and
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1See http://www.cs.sunysb.edu/∼sbprolog/xsb-page.html

arbitrary propositional theories.2 A major challenge of the
paper is to axiomatise the base logic.

Well-founded semantics defines a nonmonotonic infer-
ence relation whose properties have been keenly studied.
But compared with other logical formalisms popular in
knowledge representation and reasoning, the logicalfounda-
tionsof WFS remain largely uncharted territory. One cause
seems to be that an adequate underlying logic for WFS has
simply not been identified and studied. While well-founded
models are easy to describe using a three-valued semantics,
it is much harder to say under which logic or logics is well-
founded inference closed. Also WFS is still closely tied to a
very restricted syntax, that of normal logic programs. Vari-
ous attempts have been made to extend this syntax, mainly
in two directions, by adding a second, explicit negation op-
erator and, secondly, by permitting disjunctive rules, ie rules
whose heads may comprise disjunctions of atoms. While the
first avenue has seen some success in terms of implemented
systems and practical applications (Pereira & Alferes 1992),
progress on the second path has been limited. The main
problem is that there have been several different proposals
for how to extend WFS with disjunction and virtually no
agreement on which is more adequate or even on the general
criteria by which adequacy can be assessed.

A natural way to identify a logical foundation for a logic
programming semantics or inference relation is to represent
the intended models of the semantics as minimal models
in a suitable logic. In the case of stable models and an-
swer sets a solution of this sort was found several years ago.
The logic of here-and-there,HT , (also known as G̈odel’s
3-valued logic) was used in (Pearce 1997) to represent sta-
ble models as minimal models and was identified as a max-
imal logic with the property that equivalent theories have
the same (stable model) semantics. The weakest extension
of the logic containing strong negation and its axioms plays
the same role for answer set programming with two nega-
tions. Later, in (Lifschitz, Pearce, & Valverde 2001), it was
shown thatHT characterises the strong equivalence of pro-
grams (see below) under stable semantics, and subsequently
(de Jongh & Hendriks 2002) identified the family of all su-

2Without going into technicalities, very roughly if|∼ is some
nonmonotonic inference relation then a monotonic logicL forms
a deductive base for|∼ if |∼ extendsL-inference andL-equivalent
theories are also equivalent under|∼.



perintuitionistic logics with this property. This work has
led to a flourishing research programme in the area of logic
programming and nonmonotonic reasoning, influencing re-
search topics such as how to: (i) extend the syntax of an-
swer set programs eg. to allow rules with boolean formulas
in heads and bodies (Lifschitz, Tang, & Turner 1999), or
even to arbitrary propositional formulas (Pearce 1997; Fer-
raris 2005); (ii) provide a semantics for answer set programs
with additional constructs such as cardinality constraints,
weight constraints (Ferraris & Lifschitz 2005) or aggregates
(Ferraris 2005); (iii) characterise strong equivalence for
other nonmonotonic inference relations and LP semantics
(Turner 2001; 2004; Odintsov & Pearce 2005); (iv) define
variants of strong equivalence such as partial equivalence
(Woltran 2004), equivalence wrt particular classes of formu-
las (Eiter & Fink 2003; Pearce & Valverde 2004b) or equiv-
alence across different vocabularies (Pearce & Valverde
2004a); (v) use monotonic base logics to verify valid pro-
gram transformations (Osorio, Navarro, & Arrazola 2001;
Pearce 2004).

The approach and main results of the paper
Our aim here is to initiate a similar foundational study for
WFS following the same approach adopted for stable mod-
els and answer sets: find a minimal model characterisation
of the intended logic programming structures and axioma-
tise the resulting base logic. In the case of stable models the
corresponding minimal models in the logicHT are called
equilibrium models. For reasons that will become clear, in
the case of partial stable semantics and WFS it is natural to
call the resulting minimal modelspartial equilibriummod-
els.

There are several possible approaches to understanding
and extending WFS. For example the technique of (Brass
& Dix 1994) to capture WFS via a set of program trans-
formations has been much discussed in the literature. Our
approach by contrast proceeds via partial stable (p-stable)
models. There are several reasons for this. First, p-stable
models, though defined via program reducts, are not too
far removed conceptually from ordinary model theoretic se-
mantics. Thus we can hope to analyse them via logical and
model-theoretic methods. Second, p-stable models are a nat-
ural generalisation of ordinary (2-valued) stable models to a
multi-valued setting; and as we have seen stable models do
admit a natural logical foundation. Third, the well-founded
model of a normal logic program coincides with the unique
minimal p-stable model. So if we can capture p-stable se-
mantics for normal programs in terms of minimal models for
some logic, then a further minimisation process will yield
the well-founded model.

Before proceeding to the technical details of the paper let
us see briefly why, unlike in the case of stable model reason-
ing, we cannot use superintuitionistic logics as a basis for
well-founded semantics. When dealing with deductive bases
for logic programming we are assuming the direct or ‘trivial’
translation of program rules into logical formulas. In this pa-
per we use the negation symbol ‘¬’ corresponding to the op-
eratornot of logic programs, and ordinary implication‘→’
replaces the inverted arrow ‘←’. So a program rule of the

form q ← p, not r is treated simply as a logical formula

p ∧ ¬r → q.

Now consider the simple rulep← not p, or¬p→ p written
as a logical formula, and let us suppose that the non-logical
constants arep andq. The well-founded model of this pro-
gram makes the atomp undecided andq false. Now suppose
we enlarge our program by adding a new ruleq ← not p.
Viewed as a formula¬p → q, from the standpoint of intu-
itionistic logic we have added no new ‘content’, since intu-
itionistically ¬p → q follows logically from¬p → p, so
the second program is equivalent to the first. But consider
the well-founded model of the enlarged program: now the
atomq has changed truth value and become undecided; the
two programs are not equivalent under WFS. So intuition-
istically equivalent formulas need not have the same well-
founded semantics.

The paper is organised as follows. We first review Došen
semantics (Dǒsen 1986) for a logic calledN , a general
framework for dealing with weak negation, and then proceed
to study a particular caseN∗ that results from combining
this approach with Routley semantics (Routley & Routley
1972) (also used in (Odintsov & Pearce 2005) for paracon-
sistent answer sets). We then consider the semantics ofHT 2

frames introduced by (Cabalar 2001) to model partial stable
models and we show that they are a particular case ofN∗

frames. We also present in this section a 6-valued character-
isation ofHT 2 that sheds some new light on the compari-
son with Przymusinski’s 3-valued definition of partial stable
models. Next we define a concept of minimal and totalHT 2

model calledpartial equilibriummodel and we show that on
logic programs these coincide with partial stable models, so
that partial equilibrium logic provides a foundation for and
extension of well-founded inference. Two of the main con-
tributions of the paper follow. First we axiomatise theHT 2

logic and prove a completeness theorem, then we establish in
the following section a strong equivalence theorem to show
how the logicHT 2 captures strongly equivalent theories in
partial equilibrium logic. The paper concludes with a brief
discussion of related work and with some topics for future
investigation.

Our study is still at a preliminary stage and many issues
are left open for future work. For instance, it is evident that
partial equilibrium logic provides a means to extend well-
founded and p-stable semantics beyond the syntax of normal
programs, even to arbitrary propositional theories. However,
a more detailed analysis of the behaviour of this extension
and a comparison with other extensions of WFS in the lit-
erature are topics we are currently exploring and hope to
present in future work.

Došen and Routley semantics
The logic we are going to investigate is an extension of a
logic introduced by Dǒsen in (Dǒsen 1986) (see also (Došen
1999)) which he denotes byN . Došen’s aim was to study
logics weaker than Johansson’s minimal logic. We recall
here the main definitions and facts regardingN . Formu-
las ofN are built-up in the usual way using atoms from a
given propositional signatureAt and the standard logical



constants:∧, ∨, →, ¬, respectively standing for conjunc-
tion, disjunction, implication and negation. We writeFor
to stand for the set of all well-formed formulae of this lan-
guage. The rules of inference forN aremodus ponensand
the contraposition rule

α→ β

¬β → ¬α
(RC)

The set of axioms contains the axiom schemata of positive
logic plus:

¬α ∧ ¬β → ¬(α ∨ β) (1)

Definition 1 (N model) A model for N is a quadruple
M = 〈W,≤, R, V 〉 such that: (i)〈W,≤〉 is a partial or-
dering (of worlds), (ii)R ⊆ W 2 is an accessibility relation
among worlds verifying(≤ R) ⊆ R, (iii) and finally,V is
a valuation function fromAt×W −→ {0, 1} satisfying:

V (p, u) = 1 & u ≤ w ⇒ V (p, w) = 1 (2)

V is extended to a valuation on all formulas via the following
conditions.

• V (ϕ ∧ ψ,w) = 1 iff V (ϕ,w) = V (ψ,w) = 1

• V (ϕ ∨ ψ,w) = 1 iff V (ϕ,w) = 1 or V (ψ,w) = 1

• V (ϕ→ ψ,w) = 1 iff for everyw′ such thatw ≤ w′,
V (ϕ,w′) = 1⇒ V (ψ,w′) = 1

• V (¬ϕ,w) = 1 iff for everyw′ such thatwRw′

V (ϕ,w′) = 0

As the reader may have already observed, the main differ-
ence with respect to intuitionistic frames is the presence of a
new accessibility relationR used for interpreting negation,
while≤ remains for implication. Extending valuationV to
all formulas, we use for positive connectives the same con-
ditions as in the case of intuitionistic logic, but for negation
we use instead the condition involving the relationR.

A propositionϕ is said to betrue in anN modelM =
〈W,≤, R, V 〉, if V (ϕ, v) = 1, for all v ∈ W . A formulaϕ
is valid, in symbols|= ϕ, if it is true in everyN model. It
is easy to prove by induction that condition (2) above holds
for any formulaϕ, ie

V (ϕ, u) = 1 & u ≤ w ⇒ V (ϕ,w) = 1 (3)

Moreover,N is complete, that is, a formula is valid iff it is a
theorem ofN .

Let us consider now the logicN∗ obtained by adding to
N the following axioms

¬(α→ α) → β (4)

¬(α ∧ β) → ¬α ∨ ¬β (5)

Thus, both De Morgan laws are provable inN∗

N∗ ` ¬(α ∧ β)↔ ¬α ∨ ¬β, ¬(α ∨ β)↔ ¬α ∧ ¬β

since axioms (1) and (5) explicitly provide one direction of
each law, whereas the opposite implications can be inferred
via the rule (RC).

An N modelM = 〈W,≤, R, V 〉 is called anN∗ model
if it satisfies

∀x∃x∗(xRx∗ ∧ ∀y(xRy ⇒ y ≤ x∗)) (6)

ie, for any worldx of M there exists a≤-greatest world
x∗ among those accessible fromx by R. It can be easily
checked that the new axioms ofN∗ are valid in allN∗ mod-
els. Moreover,N∗ is complete wrt to that class of models.

The persistence of validity of formulas (3) plus the exis-
tence of a greatestR-accessible world (6) implies that the
validity of negated formulas atx is equivalent to

V (¬ϕ, x) = 1 ⇔ V (ϕ, x∗) = 1.

This observation allows us to define a Routley style seman-
tics (Routley & Routley 1972) for extensions ofN∗.

Definition 2 A Routley frame is a triple〈W,≤, ∗〉, where
W is a set,≤ a partial order onW and∗ : W →W is such
thatx ≤ y iff y∗ ≤ x∗. A Routley model is a Routley frame
together with a valuationV : At ×W −→ {0, 1} as forN
models.

As usual, a formulaϕ is valid in a Routley model if it is
valid at every world of this model.

Completeness proofs forN andN∗ can be obtained via
the method of canonical models. We now sketch this for
N∗. Let S be some logic extendingN∗, ie some set of for-
mulas containingN∗ and closed under substitution, (RC),
and modus ponens. First we say that a set of formulasΓ
is a theorywrt S (S theory) if it containsS and is closed
undermodus ponensand aprimeS theoryif it additionally
satisfies the disjunction property:

α ∨ β ∈ Γ⇒ α ∈ Γ or β ∈ Γ

Next we note a standard extension lemma. LetΣ and∆ be
sets of formulas. A relationΣ `S ∆ means that for some
ϕ0, . . . , ϕn ∈ ∆ the disjunctionϕ0 ∨ . . . ∨ ϕn can be ob-
tained from elements ofS andΣ using the rule ofmodus
ponens.

Lemma 1 (Extension lemma)For any extensionS of N∗,
any sets of formulasΣ and ∆, if Σ 6`S ∆, then there is a
primeS theoryΓ ⊇ Σ such thatΓ 6`S ∆.

On this basis one defines canonical models as follows.

Definition 3 (Canonical model) Let S be any extension of
N∗. ThecanonicalS frameis the triple〈W c,≤c, ∗c〉 where
(i) W c is the set of prime theories wrtS, (ii) Γ ≤c ∆ :=
Γ ⊆ ∆, (iii) Γ∗

c

:= {α| ¬α 6∈ Γ}. ThecanonicalS model
is the canonicalS frame together with the valuation function
V c such thatV c(p,Γ) = 1 iff p ∈ Γ.

It is not hard to check that the canonical modelS is indeed
a Routley model. The only non-trivial item is to prove that
the∗-function is well defined, ie thatΓ∗

c

is a prime theory.

Lemma 2 For any primeS theoryΓ, the setΓ∗
c

is also a
primeS theory.

Proof. Forϕ ∈ S, we have¬ϕ 6∈ Γ, otherwiseΓ is trivial
by axiom (4). Thus,S ⊆ Γ∗. Let ϕ andϕ → ψ be inΓ∗,
ie ¬ϕ,¬(ϕ → ψ) 6∈ Γ. By the disjunction property ofΓ



and De Morgan laws¬(ϕ ∧ (ϕ → ψ)) 6∈ Γ, equivalently,
¬(ϕ ∧ ψ) 6∈ Γ. Since¬ψ → ¬(ϕ ∧ ψ) ∈ N∗, ¬ψ 6∈
Γ, i.e. ψ ∈ Γ∗. We have proved thatΓ∗ is closed under
modus ponens. The disjunction property ofΓ∗ follows by
De Morgan laws. 2

Now the completeness forN∗ follows from the lemma for
the canonical model.

Lemma 3 In the canonicalS model, for everyΓ ∈Wc and
everyϕ,

V c(ϕ,Γ) = 1⇔ ϕ ∈ Γ.
Proof. By induction on the complexity ofϕ. 2

The completeness property follows by noting that if6`N∗

ϕ then by the extension lemma there is a primeN∗ theory
Γ such thatϕ 6∈ Γ. It follows from Lemma 3 thatϕ does
not hold in the canonicalN∗ model and therefore is notN∗-
valid.

Theorem 1 For any formulaϕ, `N∗ ϕ iff ϕ is valid in every
Routley model.

Finally, we note that an intuitionistic negation can be de-
fined inN∗. Fix some propositional variablep0 and put

⊥ := ¬(p0 → p0) and − α := α→ ⊥.

From axiom (4) it follows that for any Routley modelM =
〈W,≤, ∗, V 〉, the constant⊥ is not satisfied at any world
w ∈ W . Therefore, the satisfaction of the derived expres-
sion−α coincides exactly with the interpretation of negation
in intuitionistic logic:

V (−α,w) = 1 iff ∀w′ such thatw ≤ w′, V (α,w′) = 0.

Since satisfaction of positive connectives is also defined
as in intuitionistic logic, we actually have

Proposition 1 The〈∨,∧,→,−〉-fragment ofN∗ coincides
with intuitionistic logic.

HT 2-models
As mentioned in the introduction, it was shown in (Pearce
1997) that the so-called logic ofhere-and-there, HT , can
be used as a foundation for the stable model semantics for
logic programs. In the semantics for intermediate or super-
intuitionistic logics,HT can be captured by rooted Kripke
frames with two elements, commonly denoted byh and t
and called ‘here’ and ‘there’, withh ≤ t. In (Cabalar 2001)
a notion ofHT 2 model was introduced and studied in or-
der to capture partial stable models for logic programs. The
motivation for the notation is thatHT 2 models are based on
frames that include for each worldw in anHT -model an
additional worldw′ accessible fromw via the≤ relation. In
addition, just as we haveh ≤ t in anHT -model, we have
alsoh′ ≤ t′ in anHT 2-model. More precisely we define
HT 2 in terms ofN models as follows.

Definition 4 (HT 2 model) AnHT 2 model is anN model
M = 〈W,≤, R, V 〉 such that (i)W comprises 4 worlds
denoted byh, h′, t, t′, (ii) ≤ is a partial ordering onW sat-
isfyingh ≤ t, h ≤ h′, h′ ≤ t′ and t ≤ t′, (iii) R ⊆ W 2 is
given byhRh′, h′Rh, tRt′, t′Rt, hRt′, h′Rt. (iv) V is an
N -valuation.

An interesting observation is that when we forceh = h′

andt = t′ we actually obtain that≤ andR collapse into the
same relation and, in fact, the whole structure becomes an
HT frame. Thus, it is easy to see that:

Proposition 2 Any valid formula inHT 2 is also a valid for-
mula inHT .

Proposition 3 In HT 2 models the following formulas are
valid: α→ ¬¬α, ¬α↔ ¬¬¬α, ¬(α→ α)→ β,
¬(α ∧ β)→ ¬α ∨ ¬β, α ∧ ¬α→ ¬β ∨ ¬¬β.
Proof. SinceHT 2 frames are finite, the validity of formulas
can be verified directly. 2

According to Proposition 3, theHT 2 frame defines
an extension ofN∗ and we can replace the above de-
fined models by models based on the Routley frame
WHT 2

= 〈WHT 2
,≤, ∗〉, whereWHT 2

= {h, h′, t, t′} and
the ordering≤ and the action of∗ are represented in the
following diagram.

•

• •

•

??
����

��

oo

OO
t′

t h′

h

That is,h∗ = t∗ = t′, (h′)∗ = (t′)∗ =
t andu < v iff v is strictly higher
thanu in the diagram.

Now, fix someHT 2 modelM = 〈WHT 2
, V 〉. For w ∈

WHT 2
let us set∆M

w := {ϕ : V (ϕ,w) = 1}.
Lemma 4 For an arbitraryHT 2 modelM = 〈WHT 2

, V 〉
the following hold. (i)∆w is a primeHT 2 theory for any
w ∈ WHT 2

. (ii) ∆u ⊆ ∆v iff u ≤ v. (iii) ∆t′ = ∆∗
h and

∆t = ∆∗
h′ . (iv) ϕ → ψ ∈ ∆w iff for all v ≥ w either

ϕ 6∈ ∆v or ψ ∈ ∆v.

Proof. All these properties follow straightforwardly from
the definition of validity of formulas in Routley models and
the structure of anHT 2 frame. 2

Lemma 5 Let Q = 〈∆h,∆h′ ,∆t,∆t′〉 be a quadruple of
primeHT 2 theories satisfying all conditions of Lemma 4.
Define anHT 2 modelMQ = 〈WHT 2

, VQ〉 as follows:

VQ(p, w) = 1 iff p ∈ ∆w, w ∈WHT 2
.

Then for allw ∈WHT 2
we have

∆MQ
w = ∆w.

Proof. By induction on the structure of formulas. 2

Due to the last two lemmas, the RoutleyHT 2 modelM
can be identified with the quadruple of primeHT 2 theories
〈∆M

h ,∆M
h′ ,∆M

t ,∆M
t′ 〉. Now, let us say that a prime theory

∆ is: consistentif ϕ ∧ ¬ϕ 6∈ ∆ for anyϕ; inconsistentif it
is not consistent;completeif ϕ 6∈ ∆ implies¬ϕ ∈ ∆; and
weakly completeif ¬ϕ 6∈ ∆ implies¬¬ϕ ∈ ∆.

Lemma 6 Let ∆ be a primeHT 2 theory. (i)∆∗∗ = {ϕ :
¬¬ϕ ∈ ∆}; (ii) ∆ ⊆ ∆∗∗ and∆∗ = ∆∗∗∗; (iii) ∆ = Γ∗
iff ∆ is closed under the rule¬¬ϕ/ϕ; (iv) if ∆ is inconsis-
tent, then∆ is weakly complete; (v)∆∗ is consistent iff∆
is weakly complete; (vi)∆ ⊆ ∆∗ iff ∆ is consistent; (vii)
∆∗ ⊆ ∆ iff ∆ is complete; (viii)∆ = ∆∗ iff ∆ is consistent
and complete.



Proof. (i). By definitionϕ ∈ ∆∗∗ iff ¬ϕ 6∈ ∆∗ iff ¬¬ϕ ∈
∆.

(ii) The inclusion∆ ⊆ ∆∗∗ follows from the previous
item and the formulaϕ→ ¬¬ϕ ∈ HT 2. By definitionϕ ∈
∆∗∗∗ iff ¬¬¬ϕ 6∈ ∆. The latter is equivalent to¬ϕ 6∈ ∆
due to¬ϕ↔ ¬¬¬ϕ ∈ HT 2, ieϕ ∈ ∆∗.

(iii) If ∆ = Γ∗, then∆ = ∆∗∗ by the previous item. Let
¬¬ϕ ∈ ∆, thenϕ ∈ ∆∗∗ = ∆ by item (i). Conversely, if∆
is closed under the rule¬¬ϕ/ϕ, then∆∗∗ = ∆ by item (i).

(iv) This follows from the formulaϕ∧¬ϕ→ ¬ψ∨¬¬ψ ∈
HT 2 and the disjunction property of∆.

(v) The consistency of∆∗ means that for everyϕ, either
ϕ 6∈ ∆∗ or ¬ϕ 6∈ ∆∗. By definition of∆∗ this is equiva-
lent to¬ϕ ∈ ∆ or ¬¬ϕ ∈ ∆ for everyϕ, ie to the weak
completeness of∆.

(vi) Let ∆ ⊆ ∆∗. If ϕ ∈ ∆, thenϕ ∈ ∆∗, ie¬ϕ 6∈ ∆.
Assume∆ is consistent, thenϕ ∈ ∆ implies¬ϕ 6∈ ∆, ie

ϕ ∈ ∆∗.
(vii) Let ∆∗ ⊆ ∆. If ¬ϕ 6∈ ∆, thenϕ ∈ ∆∗, and so

ϕ ∈ ∆.
Let ∆ be complete. Ifϕ ∈ ∆∗, then¬ϕ 6∈ ∆ andϕ ∈ ∆

by completeness.
(viii) Follows from items (vi) and (vii). 2

Proposition 4 If ϕ 6∈ HT 2, then

6`HT 2 {ϕ} ∪ {ψ ∧ ¬ψ : ψ ∈ For}.
Proof. Let ϕ 6∈ HT 2 and ϕ ∨ (ψ0 ∧ ¬ψ0) ∨ . . . ∨
(ψn ∧ ¬ψn) ∈ HT 2. The latter means by the exten-
sion lemma that for any prime theory∆ eitherϕ ∈ ∆ or
∆ is inconsistent. However,ϕ is refutable at someHT 2

model 〈∆h,∆h′ ,∆t,∆t′〉, which meansϕ 6∈ ∆h. Since
∆h ⊆ ∆t′ = ∆∗

h, ∆h is consistent by item (vi) of the previ-
ous lemma. 2

By contraposition we obtain the following consequence.

Corollary 1 HT 2 is closed under the rule

α ∨ (β ∧ ¬β)
α

.

Minimal HT 2 models and partial stable models
The correspondence betweenHT 2 and WFS is established
by the fact that, as we prove in this section, some mini-
mal HT 2 models coincide with Przymusinki’s partial sta-
ble models (Przymusinski 1994), when we restrict the syn-
tax to that of normal logic programs. We recall next some
basic definitions from Przymusinski’s 3-valued setting, and
proceed later to introduce a related multi-valued characteri-
sation ofHT 2 that will be very useful for comparison pur-
poses.

A 3-valued interpretationT is a mapping from the propo-
sitional signatureAt to the set of truth values3 {0, 1, 2} re-
spectively standing forfalse, undefinedand true. We can
also represent the interpretationT as a pair of sets of atoms
(T, T ′) satisfyingT ⊆ T ′ whereT(p) = 0 iff p 6∈ T ′,
T(p) = 2 iff p ∈ T andT(p) = 1 otherwise (ie,p ∈ T ′\T ).
Notice that in the literature, it is perhaps more usual to find
the alternative forms:

3In (Przymusinski 1994),1 and2 are respectively represented
as1/2 and1 instead.

• a pair of sets(T+, T−), respectively denoting true and
false atoms, withT+ ∩ T− = ∅,

• a setL of literals which isconsistent(it contains no pair
p,¬p).

but it is clear that we may equivalently use any of the three
representations.

Two ordering relations among 3-valued interpretations are
defined such that, ifT1 = (T1, T

′
1) andT2 = (T2, T

′
2), then:

i) T1 ≤ T2 iff T1 ⊆ T2 andT ′1 ⊆ T ′2,

ii) T1 � T2 iff T1 ⊆ T2 andT ′2 ⊆ T ′1.

In (Przymusinski 1994), these relations receive the names
of standardandFitting’s ordering respectively. The≤ re-
lation intuitively represents that one interpretation contains
“less truth” than the other. It is equivalent to the condition:
∀p ∈ V, T1(p) ≤ T2(p), where≤ denotes now the inte-
ger ordering for values. The other relation,�, measures the
degree of knowledge in terms of undefined atoms. Interpre-
tations with shape(T, T ) are calledcomplete(they have no
undefined atoms).

Given a 3-valued interpretationT, Przymusinski’s valua-
tion of formulas is defined so that conjunction is the mini-
mum, disjunction the maximum, and negation and implica-
tion are defined as:

• T(¬ϕ) = 2−T(ϕ)

• T(ϕ→ ψ) =
{

2 if T(ϕ) ≤ T(ψ)
0 otherwise

Additionally, valuation of truth constants is fixed asT(>) =
2, T(⊥) = 0 andT(u) = 1 (the latter is a new constant
representing undefinedness).

The definition of partial stable model relies on a gener-
alisation of the program reduct (Gelfond & Lifschitz 1988)
to the 3-valued case. Given a 3-valued interpretationT, the
reductΠT is formed by replacing each negated literal¬p in
programΠ by>,u or⊥ depending on whetherT(p) is 0, 1
or 2 respectively.

Definition 5 (Partial stable model) A 3-valued interpreta-
tion T is a partial stable modelif it is the≤-minimal model
of ΠT.

In (Przymusinski 1994) it is shown that a positive program
(like ΠT whenΠ is normal) has a unique≤-minimal model.
It was also shown that thewell founded modelT of a normal
programΠ is the�-minimal partial stable model. Again,
for the case of normal programs, it has also been proved that
there exists a�-minimum partial stable model, ie, a unique
well founded model.

Now, let us return toHT 2 and consider a modelM =
〈W,≤,∗ , V 〉 denoting byH,H ′, T, T ′ the four sets of atoms
respectively verified at each corresponding point or world
h, h′, t, t′. Since, by construction,H ⊆ H ′ andT ⊆ T ′, it
is clear that we can representM as a pair〈H,T〉 of 3-valued
interpretationsH = (H,H ′) andT = (T, T ′). In this way,
we could define the possible “situations” of a formula in
HT 2 by using a pair of valuesxy with x, y ∈ {0, 1, 2}.
Condition (3) restricts the number of these situations to the
following six 00 := ∅, 01 := {t′}, 11 := {h′, t′}, 02 :=



{t, t′}, 12 := {h′, t, t′}, 22 := {h, h′, t, t′}, where each
set shows the worlds at which the formula is satisfied. Thus,
an alternative way of describingHT 2 is by providing its
logical matrix in terms of a 6-valued logic. As a result,
the above setting becomes an algebra of 6 cones:AHT 2

:=
〈{00, 01, 11, 02, 12, 22},∨,∧,→,¬〉 where∨ and∧ are set
theoretical join and meet, whereas→ and¬ are defined as
follows:

x→ y := {w : w ≤ w′ ⇒ (w′ ∈ x⇒ w′ ∈ y)},
¬ x := {w : w∗ 6∈ x}.

The only distinguished element is22. The lattice structure
of this algebra can be described by the conditionxy ≤ zt⇔
x ≤ z & y ≤ t and is shown in Figure 1, together with the
resulting truth-tables.

22

12
zzz

z DDD
D

11 02

01

DDDD zzzz

00

ϕ ¬ϕ
00 22
01 11
11 11
02 00
12 00
22 00

→ 00 01 11 02 12 22
00 22 22 22 22 22 22
01 00 22 22 22 22 22
11 00 02 22 02 22 22
02 00 11 11 22 22 22
12 00 01 11 02 22 22
22 00 01 11 02 12 22

GivenV (φ) = xy andV (ψ) = zt :

V (φ ∧ ψ) = uv ⇔ u = min(x, z) & v = min(y, t)
V (φ ∨ ψ) = uv ⇔ u = max(x, z) & v = max(y, t)

Figure 1:Lattice structure and truth tables for the 6-valuedHT 2

description.

An interesting observation is that, by the semantics, if
(H,T) is a model then necessarilyH ≤ T, since it is
easy to check that this condition is equivalent toH ⊆ T
andH ′ ⊆ T ′. Moreover, for any theoryΠ note that if
〈H,T〉 |= Π then also〈T,T〉 |= Π.

The ordering≤ can be extended to a partial ordering�

among models as follows. We set〈H1,T1〉 � 〈H2,T2〉 if
(i) T1 = T2; (ii) H1 ≤ H2. A model〈H,T〉 in whichH =
T is said to betotal. Note that the termtotal model does
not refer to the absence of undefined atoms. To represent
this, we further say that a total partial equilibrium model is
completeif T has the form(T, T ).

We are interested here in a special kind of minimal model
that we call a partial equilibrium model.

Definition 6 (Partial equilibrium model) A modelM of a
theoryΠ is said to be apartial equilibriummodel ofΠ if (i)
M is total; (ii)M is minimal among models ofΠ under the
ordering�.

In other words a partial equilibrium model ofΠ has the form
〈T,T〉 and is such that if〈H,T〉 is any model ofΠ with
H ≤ T, thenH = T. Partial equilibrium logicis the logic
determined by truth in all partial equilibrium models of a
theory. Formally we can define a nonmonotonic inference
relation by:

Definition 7 (entailment) Let Π be a theory,ϕ a formula
andPEM(Π) the collection of all partial equilibrium mod-
els ofΠ. We say thatΠ entailsϕ, in symbolsΠ |∼ϕ, if either
(i) or (ii) holds: (i) PEM(Π) 6= ∅ andM |= ϕ for every
M ∈ PEM(Π); (ii) PEM(Π) = ∅ andϕ is true in all
HT 2-models ofΠ.

In this definition we consider the skeptical or cautious entail-
ment relation; a credulous variant is easily given if needed.
Clause (ii) is needed because not all consistent theories have
partial equilibrium models. Again (ii) represents one pos-
sible route to understanding entailment in the absence of
intended models; other possibilities may be considered de-
pending on context.

Finally, we proceed now to use the representation based
on pairs of 3-valued interpretations to establish a straight-
forward correspondence to partial stable models. We be-
gin by noting a property we will use below: examining
the table for implication in Figure 1, it is easy to see that
M(ϕ → ψ) = 22 iff, given M(ϕ) = xy andM(ψ) = uv,
we have bothx ≤ u and y ≤ v. We also fix theHT 2

valuation of constants asM(>) = 22, M(u) = 11 and
M(⊥) = 00.

Lemma 7 For anyM = 〈H,T〉 and any atomp:
M(¬p) = M((¬p)T).

Proof. AssumeT has the form(T, T ′). We have three
cases, depending onT(p).

(i) For T(p) = 2 the reduct is(¬p)T = ⊥, but we also
havep ∈ T , ie, M(p) ∈ {02, 12, 22} and soM(¬p) =
00 = M(⊥).

(ii) If T(p) = 1 the reduct is(¬p)T = u and we also have
p ∈ T ′ \ T , ie,M(p) ∈ {01, 11}, which meansM(¬p) =
11 = M(u).

(iii) If T(p) = 0 the reduct is(¬p)T = > and we also
getp 6∈ T ′, ie,M(p) = 00, which meansM(¬p) = 22 =
M(>). 2

Corollary 2 For anyHT 2 interpretationM = 〈H,T〉 and
any normal logic programΠ: M |= Π iff M |= ΠT. 2

Lemma 8 LetΠ be a positive logic program (possibly con-
taining constants in the body) and letT be a 3-valued model
of Π. Then, for anyM = 〈H,T〉 and any ruler ∈ Π:
M(r) = 22 iff H(r) = 2.

Proof. First, we note that for any atom or constantϕ,
M(ϕ) = xy iff H(ϕ) = x andT(ϕ) = y. Now, let r
have the form(Ai ∧ · · · ∧An → B) and letM(Ai) = xiyi

andM(B) = uv. ConditionM(r) = 22 means that both
min{xi} ≤ u andmin{yi} ≤ v. However, the former is
equivalent toH(r) = 2, whereas the latter meansT(r) = 2
that in our case is always true, asT is a 3-valued model of
Π. 2



Theorem 2 LetΠ be a normal logic program. Then〈T,T〉
is a partial equilibrium model ofΠ if and only if T is a
partial stable model ofΠ.

Proof. From Corollary 2, we can safely replace programΠ
by ΠT in the claim, provided that for determining if〈T,T〉
is in partial equilibrium, we fix the second component of
HT 2 models toT. But now, asΠT is positive, we can apply
Lemma 8. In particular, we get first that〈T,T〉 is anHT 2

model iff T is a 3-valued model. And similarly, we also get
that for anyH < T, 〈H,T〉 is anHT 2 model if H is a
3-valued model. 2

Following (Przymusinski 1994), once partial stable mod-
els are captured, we can further minimise among them
wrt the amount of information (ie, defined atoms) to ob-
tain a well-founded model. Thus, anHT 2 well-founded
modelwould just be a partial equilibrium model,�-minimal
among the partial equilibrium models ofΓ.

Axiomatisation of HT 2

Although we have describedHT 2 via a class of frames, it
can be considered a logic in the sense that it defines a set of
formulas: those valid on these frames. A more constructive
(and perhaps more standard) definition ofHT 2 is also pos-
sible using a calculus, that is, a set of axioms and inference
rules.

LetHT ∗ be anN∗ extension obtained by adding the fol-
lowing axioms:
A1. −α ∨ −− α
A2. −α ∨ (α→ (β ∨ (β → (γ ∨ −γ))))
A3.

∧2
i=0((αi →

∨
j 6=i αj)→

∨
j 6=i αj)→

∨2
i=0 αi

A4. α→ ¬¬α
A5. α ∧ ¬α→ ¬β ∨ ¬¬β
A6. ¬α ∧ ¬(α→ β)→ ¬¬α
A7. ¬¬α ∨ ¬¬β ∨ ¬(α→ β) ∨ ¬¬(α→ β)
A8. ¬¬α ∧ ¬¬β → (α→ β) ∨ (β → α),
and the elimination of contradictions rule

α ∨ (β ∧ ¬β)
α

(EC)

Proposition 5 The canonical frameWHT∗
satisfies the fol-

lowing properties: (i)WHT∗
is strongly directed; (ii)

WHT∗
is of depth3; (iii) each element ofWHT∗

has at
most two immediate successors; (iv) elements ofWHT∗

sat-
isfy all properties listed in Lemma 6.

Proof. Items (i)-(iii) can be inferred from axioms A1, A2
and A3 respectively in the same way as for superintuitionis-
tic logics determined by these axioms. Item (iv) holds since
only axioms ofHT ∗ were used in the proof of Lemma 6.2

Theorem 3 HT ∗ = HT 2.

Proof. The inclusionHT ∗ ⊆ HT 2 follows from the def-
inition of HT ∗. All its axioms areHT 2 tautologies, which
can be verified directly. Moreover,HT 2 is closed under the
rule (EC) by Corollary 1.

We prove the nontrivial inclusionHT ∗ ⊆ HT 2. Take
someϕ0 non-provable inHT ∗ and construct anHT 2 model
refutingϕ0.

Let ∆ be a primeHT ∗ theory such thatϕ0 6∈ ∆. By the
rule (EC) ifHT ∗ 6` ϕ0, thenHT ∗ 6` {ϕ0} ∪ {β ∧ ¬β| β ∈
For}. Thus we may assume that∆ is consistent.

1. Assume that∆ is consistent and complete. We prove
that for anyϕ andψ,

ϕ→ ψ ∈ ∆ ⇔ ϕ 6∈ ∆ orψ ∈ ∆. (7)

The direct implication is obvious. Ifψ ∈ ∆, thenϕ →
ψ ∈ ∆ by the positive axiomψ → (ϕ → ψ). Let ϕ 6∈ ∆
andϕ → ψ 6∈ ∆. By completeness¬ϕ,¬(ϕ → ψ) ∈ ∆,
whence¬¬ϕ ∈ ∆ by A6. Consistency and completeness of
∆ imply in this caseϕ ∈ ∆. This contradiction proves the
desired equivalence.

By Lemma 6 we have∆ = ∆∗. Thus, the quadruple
〈∆,∆,∆,∆〉 is anHT 2 model refutingϕ0. Note that we
have established also the following fact

Lemma 9 If ∆ is a complete primeHT ∗ theory closed un-
der the rule¬¬ϕ/ϕ, then∆ is a maximal element ofWHT∗

.

Proof. In the above reasoning the consistency of∆ was
used to establish that∆ is closed under the rule¬¬ϕ/ϕ.
Therefore, equivalence (7) holds for∆. Assume∆ is not
maximal. Let∆′ ∈ WHT∗

andψ0 be such that∆ ⊂ ∆′ and
ψ0 ∈ ∆′ \∆. On one hand,−ψ0 ∈ ∆ by (7). On the other
hand,−ψ0 6∈ ∆ by canonical model lemma. 2

2. Assume that∆ is not complete, but is consistent and
closed under¬¬ϕ/ϕ. Item (vi) of Lemma 6 implies∆ ⊆
∆∗, where as item (iii) implies that∆ = Γ∗. Thus∆ = ∆∗∗

by item (ii) of the same lemma. Note that∆∗ is complete
since∆∗∗ ⊆ ∆∗. By the last lemma∆∗ is a maximal prime
HT ∗ theory.

We claim that

ϕ→ ψ ∈ ∆ ⇔ (ϕ 6∈ ∆ ∨ ψ ∈ ∆) ∧ (ϕ 6∈ ∆∗ ∨ ψ ∈ ∆∗).

The direct implication is obvious. We prove the converse
implication. Since∆∗ is maximal, the second conjunctive
term means exactly thatϕ → ψ ∈ ∆∗. Therefore,¬(ϕ →
ψ) 6∈ ∆.

If ψ ∈ ∆, thenϕ→ ψ ∈ ∆. Assumeϕ 6∈ ∆ andψ 6∈ ∆.
By the rule¬¬ϕ/ϕ we have¬¬ϕ 6∈ ∆ and¬¬ψ 6∈ ∆.
By A7 at least one of formulas¬¬ϕ,¬¬ψ,¬(ϕ → ψ) or
¬¬(ϕ → ψ) belongs to∆. Therefore,¬¬(ϕ → ψ) ∈ ∆
and soϕ→ ψ ∈ ∆.

One can see that all conditions of Lemma 4 hold for the
quadruple〈∆,∆∗,∆,∆∗〉. We have thus constructed the
following countermodel forϕ0.

•

• •

•

??

����
��

��

oo

OO
∆∗

∆ ∆∗

∆
3. Now supposeϕ0 6∈ ∆, where∆ is a consistent weakly

complete prime theory not closed under¬¬ϕ/ϕ. By item
(vi) of Lemma 6 we have∆ ⊆ ∆∗, whence∆∗ is also
weakly complete. By item (iii) of the same lemma∆∗ is



closed under the rule¬¬ϕ/ϕ. Therefore,∆∗ is complete
and it is maximal inWHT∗

by Lemma 9. Item (v) of Lemma
6 implies that∆∗ is consistent. Consistency and complete-
ness imply the equality∆∗∗ = ∆∗ by item (viii). The inclu-
sion∆ ⊆ ∆∗ is proper since∆ is not closed under¬¬ϕ/ϕ.
If there is no other proper extension of∆, we obtain a coun-
termodel〈∆,∆∗,∆∗,∆∗〉.

•

• •

•

??

����
��

��

oo

OO
∆∗

∆∗ ∆∗

∆

Assume that there isΓ ∈ WHT∗
such thatΓ 6∈ {∆,∆∗}

and∆ ⊆ Γ. Since∆∗ is maximal andWHT∗
is strongly

directed, we haveΓ ⊆ ∆∗. By the antimonotonicity of the
∗-operation we obtainΓ∗ = ∆∗.

By item (iii) of Proposition 5 there exists at most two
prime theoriesΓ1 and Γ2 between∆ and ∆∗. Assume
Γ1 6= Γ2. ThenΓ1 andΓ2 are mutually incomparable by
item (ii) of Proposition 5.

��
��

��
�

??
??

??
?

??
??

??
?

��
��

��
�

∆∗ = ∆∗∗ = Γ∗1 = Γ∗2

Γ1 Γ2

∆

Letϕ ∈ Γ1 \Γ2 andψ ∈ Γ2 \Γ1. In this caseϕ,ψ ∈ ∆∗∗

and¬¬ϕ,¬¬ψ ∈ ∆ by item (i) of Lemma 6. By axiom A8
we obtain(ϕ→ ψ)∨ (ψ → ϕ) ∈ ∆. Since∆ possesses the
disjunction property we haveϕ → ψ ∈ ∆ or ψ → ϕ ∈ ∆.
Both cases contradict the choice ofϕ andψ. In the first case,
there is an extensionΓ1 of ∆ such thatϕ ∈ Γ1 andψ 6∈ Γ1.
In the second case, we haveψ ∈ Γ2 andϕ 6∈ Γ2.

Thus, if there is a proper extensionΓ of ∆ different from
∆∗, it is unique and we obtain forϕ0 the countermodel
〈∆,Γ,∆∗,∆∗〉.

•

• •

•

??

����
��

��

oo

OO
∆∗

∆∗ Γ

∆

4. Consider the last case. Letϕ0 6∈ ∆, where∆ is
consistent but is neither weakly complete nor closed under
¬¬ϕ/ϕ. Again by Lemma 6 we have∆ ⊆ ∆∗ and∆∗ is
closed under¬¬ϕ/ϕ. Since∆ is not weakly complete,∆∗

is not consistent by item (v) of the same lemma.

We show that∆∗ is complete. For any formulaϕ we have
either¬ϕ 6∈ ∆ or ¬¬ϕ 6∈ ∆, consequently,ϕ ∈ ∆ or ¬ϕ ∈
∆ by the definition of the∗-operation.

Completeness of∆∗ implies its maximality and the in-
clusion∆∗∗ ⊆ ∆∗. Since∆∗ = ∆∗∗∗, we conclude that
∆∗∗ is consistent. By this fact and inconsistency of∆∗ the
inclusion∆∗∗ ⊆ ∆∗ is proper. By item (ii) of Lemma 6.
∆ ⊆ ∆∗∗. This inclusion is also proper since∆ is not closed
under¬¬ϕ/ϕ. If there is no other extension of∆ we obtain
the countermodel〈∆,∆∗,∆∗∗,∆∗〉.

•

• •

•

??

����
��

��

oo

OO
∆∗

∆∗∗ ∆∗

∆

If there is one moreΓ such that∆ ⊆ Γ, it is unique
by item (iii) of Proposition 5. The strong directedness of
WHT∗

and the maximality of∆∗ imply Γ ⊆ ∆∗. Since
WHT∗

is of depth 3, theories∆∗∗ and Γ are incompara-
ble. By antimonotonicity of∗ we haveΓ∗ ⊆ ∆∗ and
∆∗∗ ⊆ Γ∗. Thus,Γ∗ ∈ {∆∗,∆∗∗}. Taking into account
Γ ⊆ Γ∗∗ we obtainΓ∗ = ∆∗∗. We arrive at the counter-
model〈∆,Γ,∆∗∗(= Γ∗),∆∗〉, and we are done.

•

• •

•

??

����
��

��

oo

OO
∆∗

∆∗∗ = Γ∗ Γ

∆
2

Strong equivalence wrt partial equilibrium
logic

We now establish a strong equivalence theorem for partial
equilibrium logic. The notion ofstrong equivalenceis im-
portant both conceptually and as a potential tool for sim-
plifying nonmonotonic programs and theories and optimis-
ing their computation. For stable semantics strong equiva-
lence can be completely captured in the logicHT (Lifschitz,
Pearce, & Valverde 2001) and in ASP this fact has given rise
to a lively programme of research into defining and com-
puting different equivalence concepts, see eg (Eiter, Fink &
Woltran 2006; Woltran 2004). In the case of WFS and p-
stable semantics, however, to our knowledge until now, with
the exception of (Nomikos, Rondogiannis & Wadge 2005),
there have been no studies of strong equivalence and related
notions.

We begin by noting that, when considering logic pro-
grams, equivalence under Przymusinki’s 3-valued logic is
not adequate for testing strong equivalence, much in the
same way as classical logic is not suitable for strong equiv-
alence under stable models. In fact, as happens in that



case, it is not even suitable for checking regular equiva-
lence. As an example, the programs{p → q,¬p → q}
and{p → q,¬q → p} are equivalent under Przymusinski’s
3-valued logic although they clearly have different well-
founded models – the first one makesp false andq true,
while the second leaves both atoms undefined.

Returning to arbitrary theories, in the present context we
say that two propositional theoriesΓ1 andΓ2 arestrongly
equivalentif for any theoryΓ, theoriesΓ1 ∪ Γ andΓ2 ∪ Γ
have the same partial equilibrium models.

Proposition 6 TheoriesΓ1 andΓ2 are strongly equivalent
iff Γ1 andΓ2 are equivalent inHT 2.

Proof. We consider the non-trivial direction. Let us as-
sume thatΓ1 andΓ2 have different models and construct a
set of formulasΓ such thatΓ1 ∪Γ andΓ2 ∪Γ have different
partial equilibrium models.

Let 〈H,T〉 be anHT 2-model such that〈H,T〉 |= Γ1 and
〈H,T〉 6|= Γ2. Note that in this case we have〈T,T〉 |= Γ1.

Case 1. Assume〈T,T〉 6|= Γ2. If T = T ′, put Γ :=
T . In this case it can be easily seen that〈T,T〉 is a partial
equilibrium model ofΓ1 ∪Γ, but it is not a model ofΓ2 ∪Γ.

AssumeT 6= T ′ andp0 ∈ T ′ \ T . Now we put

Γ := T ∪ {¬p0 → q | q ∈ T ′}.

Clearly, 〈T,T〉 6|= Γ2 ∪ Γ. Let 〈J,T〉 |= Γ1 ∪ Γ. Since
T ⊆ Γ, we haveJ = T . The atomp0 is refuted att (by
choicep0 6∈ T ), therefore,¬p0 ∈ ∆h′ by h′∗ = t. From the
definition ofΓ we have thatT ′ ⊆ ∆h′ , whenceJ ′ = T ′. We
have thus proved that〈T,T〉 is a partial equilibrium model
of Γ1 ∪ Γ.

Case 2.Let 〈T,T〉 |= Γ2. Fix some atomp0 such that
p0 6∈ T ′ andp0 does not occur in formulas ofΓ1 andΓ2. We
put

Γ := H ∪ {p0 ↔ ¬p0} ∪Π0 ∪Π1 ∪Π2 ∪Π3,

where
Π0 = {p0 → p | p ∈ H ′}
Π1 = {p→ q ∨ p0 | p, q ∈ T \H}
Π2 = {(p0 → p)→ q | p ∈ T ′ \H ′, q ∈ T \H}
Π3 = {p0 ∧ p→ q | p ∈ T ′ \H, q ∈ T ′ \H ′}
Note that for any model〈H,T〉, validity of p0 ↔ ¬p0 at

this model means thatp0 ∈ H ′ \ T , ie p0 is true exactly at
h′ andt′.4

Consider the new models〈H,T1〉 and〈T1,T1〉, where
T1 := (T, T ′ ∪ {p0}). Sincep0 is not involved in the com-
putation of validity of formulas fromΓ1 andΓ2 we still have

〈H,T1〉 |= Γ1, 〈H,T1〉 6|= Γ2,

〈T1,T1〉 |= Γ1, 〈T1,T1〉 |= Γ2.

4If in the model under considerationT 6= T ′, instead of adding
to Γ the formulap0 ↔ ¬p0 for a new atomp0 we can takep1 ∈
T ′ \ T and replacep0 by¬p1 in Π1, . . . , Π4. The negation¬p1 is
true exactly ath′ andt′.

Alternatively, we could pass to the conservative extension of
HT 2 obtained by adding a new constantu together with axiom
u ↔ ¬u. In this case, we replacep0 by u.

It is routine to check that both〈H,T1〉 and 〈T1,T1〉 are
models ofΓ, which proves that〈T1,T1〉 is not a partial
equilibrium model ofΓ1 ∪ Γ.

Let us prove that〈T1,T1〉 is a partial equilibrium model
of Γ2 ∪ Γ. Assume that〈J,T1〉 |= Γ2 ∪ Γ. SinceH ⊆ Γ
we haveH ⊆ J , on the other hand the inclusionΠ0 ⊆ Γ
guarantees thatH ′ ⊆ J ′. One of these inclusions must be
proper, because〈H,T1〉 is not a model ofΓ2.

If H 6= J , the satisfiability ofΠ1 implies the equality
J = T sincep0 is false ath. At the same time, formulas of
Π3 imply J ′ = T ′ ∪ {p0}. Indeed, letp1 ∈ J \ H. Since
both p0 andp1 are true ath′, the validity ofp0 ∧ p1 → q
means thatq ∈ J for all q ∈ T ′ \H ′.

Assume nowJ ′ \H ′ 6= ∅ andp2 ∈ J ′ \H ′. All implica-
tionsp0 ∧ p2 → q, q ∈ T ′ \H ′, are inΠ2, whenceJ ′ = T ′.
At the same time〈J,T1〉 |= p0 → p2. Now the equality
H = T follows from the fact that(p0 → p2)→ q ∈ Π3 for
all q ∈ T \H. 2

The above result can be extended to show thatHT 2 also
captures strong equivalence wrt well-founded models (ie,�-
minimal partial equilibrium models)5.

Note that unlike in the case of strong equivalence under
stable model semantics, we cannot assume in the general
case that the formulas inΓ have the syntax of logic program
rules. So whenΓ1 andΓ2 have the form of logic programs,
it is clear thatHT 2 equivalence is a sufficient condition for
strong equivalence, but it is an open question whetherΓ can
be taken to be a logic program (of whatever kind) in the case
of non-equivalence.

Related work
There has been a number of attempts to provide a foundation
for well-founded semantics; some are more or less logical in
nature, others employ alternative mathematical methods. Of
the former kind, we should mention:

• The approach of (Bochman 1998a; 1998b) which analy-
ses several logic programming semantics, including WFS,
in a generalised framework of Gentzen-style deduction. A
strong point of Bochman’s method ofbi-consequence re-
lations is its ability to capture different semantics within
the same framework. The method is somewhat removed
from ordinary logic and model theory and does not pro-
vide Hilbert-style axiomatisations. It remains to be seen
whether it might complement the methods described here.

• Another type of technique can be found in (Rondogiannis
& Wadge 2002) which proposes an infinite-valued logic
to capture WFS. However it is unclear how this logic re-
lates to other known multi-valued logics and how it can be
used to extend the semantics beyond the format of normal
programs.

• Another recent approach is that of (Alcântara, Daḿasio,
& Pereira 2004) which studies WFS and variants using
semantical frames. These are closely related to theHT 2-
frames described here and in (Cabalar 2001). However no
logical axiomatisation of the semantics is presented.

5The details will be included in a sequel to the present paper.



• The method of representing WFS via embeddings into
nonmonotonic modal logics. This has been explored no-
tably in (Przymusinski 1995; Bonatti 1995). Though
this is quite different from our aim to study WFS in a
language close to the original logical syntax, we also
hope in the future to examine modal counterparts of
partial equilibrium logic and thereby make comparisons
with frameworks such as those of (Przymusinski 1995;
Bonatti 1995).

Among efforts to capture well-founded reasoning using
other mathematical methods, we should mention:

• Argumentation theory as applied in (Bondarenko, Dung,
Kowalski, & Toni 1997). This method has proved flexible
enough to model several kinds of semantics for logic pro-
gramming and nonmonotonic reasoning and implementa-
tions are now being developed (Dung, Kowalski, & Toni
2006). This approach can provide ways to enlarge the
syntactical scope of well-founded reasoning. It remains
to be seen how they relate to logical systems such as par-
tial equilibrium logic.

• The infinite-game semantics recently proposed by (Ron-
dogiannis & Wadge 2005). This appears at present to be
restricted to the syntax of normal programs.

Conclusions and future work
We have proposed partial equilibrium logic as a general sys-
tem of nonmonotonic logic to act as a foundation for the
semantics of partial stable models and thereby for well-
founded inference. Our approach has been to identify an
underlying monotonic logical framework to be used as a ba-
sis. The natural choice is a logic in which partial stability
can be expressed as a simple minimality condition with well-
foundedness as a special case. The condition of equilibrium
that captures stable models in the logic of here-and-there can
be readily generalised to a minimality condition that cap-
tures partial stability in a logicHT 2 which corresponds in
a natural way toHT . In this paper we have shown how the
resulting logic has a six-valued truth matrix and can be ax-
iomatised as an extension of Došen’s logicN . Although the
negation ofHT 2, corresponding to the well-founded nega-
tion, is rather weak, intuitionistic negation is actually de-
finable inHT 2. We have seen also thatHT 2 captures the
strong equivalence of theories in partial equilibrium logic.

The present paper reports on ongoing work that will con-
tinue to investigate many more issues in the foundations of
WFS and p-stable semantics. Work currently in progress is
examining a series of further topics including:

• the complexity of reasoning with partial equilibrium
logic, for the general case as well as for specific classes
of extended logic programs;

• the behaviour of partial equilibrium logic on disjunctive
and nested logic programs and its comparison with other
semantics;

• further study of the relation ofHT 2 toHT and of partial
equilibrium logic to equilibrium logic;

• general properties of partial equilibrium entailment;

• strong equivalence results for special classes of models
such as the well-founded models defined above;

• how to add strong or explicit negation to partial equilib-
rium logic and compare this with the well-known system
WFSX with explicit negation (Pereira & Alferes 1992).

• proof theory and implementation methods for partial equi-
librium logic.

We hope to present some of this ongoing work in a sequel to
the present paper.
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