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Abstract

We propose a solution to a long-standing problem in the foun-
dations of well-founded semantics (WFS) for logic programs.
The problem addressed is this: which (non-modal) logic can
be considered adequate for well-founded semantics in the
sense that its minimal models (appropriately defined) coin-
cide with the partial stable models of a logic program? We
approach this problem by identifying tHé7T> frames pre-
viously proposed by Cabalar to capture WFS as structures
of a kind used by Dgen to characterise a family of logics
weaker than intuitionistic and minimal logic. We define a
notion of minimal, totalH7 model which we calpartial
equilibrium model Since for normal logic programs these
models coincide with partial stable models, we propose the
resulting partial equilibrium logic as a logical foundation for
well-founded semantics. In addition we axiomatise the logic
of HT?-models and prove that it captures the strong equiva-
lence of theories in partial equilibrium logic.

Keywords: well-founded semantics, partial stable mod-
els, equilibrium logic

Introduction

Of the various proposals for dealing with default negation in
logic programming that go beyond the methods of ordinary
Prolog, thewell-founded semantic®FS) of Van Gelder,

Ross and Schlipf (van Gelder, Ross, & Schlipf 1991) has
proved to be one of the most attractive and resilient. Partic-
ularly its favourable computational properties have made it
popular among system developers and the well-known im-
plementation XSB-Prologis now extensively used in Al

problem solving and applications in knowledge represen-
tation and reasoning. The present paper studies the logi
cal foundations of WFS and proposes a solution to a long-
standing open problem: how to characterise partial stable
models as minimal models in a suitable nonclassical, non-
modal logic. We thereby obtain a deductive base logic (in
the sense of (Dietrich 1994)) for well-founded inference as
well as a means to extend WFS to disjunctive programs and
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arbitrary propositional theori€s A major challenge of the
paper is to axiomatise the base logic.

Well-founded semantics defines a nonmonotonic infer-
ence relation whose properties have been keenly studied.
But compared with other logical formalisms popular in
knowledge representation and reasoning, the lofipcedda-
tionsof WFS remain largely uncharted territory. One cause
seems to be that an adequate underlying logic for WFS has
simply not been identified and studied. While well-founded
models are easy to describe using a three-valued semantics,
it is much harder to say under which logic or logics is well-
founded inference closed. Also WFS is still closely tied to a
very restricted syntax, that of normal logic programs. Vari-
ous attempts have been made to extend this syntax, mainly
in two directions, by adding a second, explicit negation op-
erator and, secondly, by permitting disjunctive rules, ie rules
whose heads may comprise disjunctions of atoms. While the
first avenue has seen some success in terms of implemented
systems and practical applications (Pereira & Alferes 1992),
progress on the second path has been limited. The main
problem is that there have been several different proposals
for how to extend WFS with disjunction and virtually no
agreement on which is more adequate or even on the general
criteria by which adequacy can be assessed.

A natural way to identify a logical foundation for a logic
programming semantics or inference relation is to represent
the intended models of the semantics as minimal models
in a suitable logic. In the case of stable models and an-
swer sets a solution of this sort was found several years ago.
The logic of here-and-therd{ T, (also known as @del's
3-valued logic) was used in (Pearce 1997) to represent sta-
ble models as minimal models and was identified as a max-
imal logic with the property that equivalent theories have
the same (stable model) semantics. The weakest extension
of the logic containing strong negation and its axioms plays
the same role for answer set programming with two nega-
tions. Later, in (Lifschitz, Pearce, & Valverde 2001), it was
shown thatHT" characterises the strong equivalence of pro-
grams (see below) under stable semantics, and subsequently
(de Jongh & Hendriks 2002) identified the family of all su-

2Wwithout going into technicalities, very roughly £ is some
nonmonotonic inference relation then a monotonic lo§iftorms
a deductive base fgr if |~ extendsC-inference andC-equivalent
theories are also equivalent under



perintuitionistic logics with this property. This work has
led to a flourishing research programme in the area of logic
programming and nonmonotonic reasoning, influencing re-
search topics such as how to: (i) extend the syntax of an-
swer set programs eg. to allow rules with boolean formulas
in heads and bodies (Lifschitz, Tang, & Turner 1999), or
even to arbitrary propositional formulas (Pearce 1997; Fer-
raris 2005); (ii) provide a semantics for answer set programs
with additional constructs such as cardinality constraints,
weight constraints (Ferraris & Lifschitz 2005) or aggregates
(Ferraris 2005); (iii) characterise strong equivalence for
other nonmonotonic inference relations and LP semantics
(Turner 2001; 2004; Odintsov & Pearce 2005); (iv) define

form ¢ < p, not r is treated simply as a logical formula
pA—T—q.

Now consider the simple rule« not p, or —-p — p written

as a logical formula, and let us suppose that the non-logical
constants arp andq. The well-founded model of this pro-
gram makes the atojundecided and false. Now suppose
we enlarge our program by adding a new rgle— not p.
Viewed as a formularp — ¢, from the standpoint of intu-
itionistic logic we have added no new ‘content’, since intu-
itionistically -p — ¢ follows logically from—-p — p, so

the second program is equivalent to the first. But consider
the well-founded model of the enlarged program: now the

variants of strong equivalence such as partial equivalence atomq has changed truth value and become undecided; the

(Woltran 2004), equivalence wrt particular classes of formu-
las (Eiter & Fink 2003; Pearce & Valverde 2004b) or equiv-
alence across different vocabularies (Pearce & Valverde
2004a); (v) use monotonic base logics to verify valid pro-
gram transformations (Osorio, Navarro, & Arrazola 2001;
Pearce 2004).

The approach and main results of the paper

Our aim here is to initiate a similar foundational study for

WEFS following the same approach adopted for stable mod-
els and answer sets: find a minimal model characterisation
of the intended logic programming structures and axioma-

two programs are not equivalent under WFS. So intuition-
istically equivalent formulas need not have the same well-
founded semantics.

The paper is organised as follows. We first reviewsBro
semantics (Dsen 1986) for a logic calledv, a general
framework for dealing with weak negation, and then proceed
to study a particular cas®* that results from combining
this approach with Routley semantics (Routley & Routley
1972) (also used in (Odintsov & Pearce 2005) for paracon-
sistent answer sets). We then consider the semantiggof
frames introduced by (Cabalar 2001) to model partial stable
models and we show that they are a particular casd’™of

tise the resulting base logic. In the case of stable models the frames. We also present in this section a 6-valued character-

corresponding minimal models in the logi€¢T are called
equilibriummodels. For reasons that will become clear, in
the case of partial stable semantics and WFS it is natural to
call the resulting minimal modelsartial equilibrium mod-

els.

isation of HT? that sheds some new light on the compari-
son with Przymusinski’s 3-valued definition of partial stable
models. Next we define a concept of minimal and téfal?
model callecpartial equilibriummodel and we show that on
logic programs these coincide with partial stable models, so

There are several possible approaches to understandingthat pa_rtial equilibrium Iogi_c provides a foundation fpr and
and extending WFS. For example the technique of (Brass extension of well-founded inference. Two of the main con-

& Dix 1994) to capture WFS via a set of program trans-

tributions of the paper follow. First we axiomatise tHg >

formations has been much discussed in the literature. Our l0gic and prove a completeness theorem, then we establish in

approach by contrast proceeds via partial stable (p-stable) the following sect2ion a strong equivalenc_e theorem to sh_ow
models. There are several reasons for this. First, p-stable oW the logicHT= captures strongly equivalent theories in

models, though defined via program reducts, are not too
far removed conceptually from ordinary model theoretic se-
mantics. Thus we can hope to analyse them via logical and

model-theoretic methods. Second, p-stable models are a nat-

ural generalisation of ordinary (2-valued) stable models to a

partial equilibrium logic. The paper concludes with a brief
discussion of related work and with some topics for future
investigation.

Our study is still at a preliminary stage and many issues
are left open for future work. For instance, it is evident that

multi-valued setting; and as we have seen stable models do Partial equilibrium logic provides a means to extend well-

admit a natural logical foundation. Third, the well-founded

model of a normal logic program coincides with the unique
minimal p-stable model. So if we can capture p-stable se-
mantics for normal programs in terms of minimal models for

some logic, then a further minimisation process will yield

the well-founded model.

Before proceeding to the technical details of the paper let
us see briefly why, unlike in the case of stable model reason-
ing, we cannot use superintuitionistic logics as a basis for
well-founded semantics. When dealing with deductive bases
for logic programming we are assuming the direct or ‘trivial’
translation of program rules into logical formulas. In this pa-
per we use the negation symbel ‘corresponding to the op-
eratornot of logic programs, and ordinary implication”
replaces the inverted arrow—". So a program rule of the

founded and p-stable semantics beyond the syntax of normal
programs, even to arbitrary propositional theories. However,
a more detailed analysis of the behaviour of this extension
and a comparison with other extensions of WFS in the lit-
erature are topics we are currently exploring and hope to
present in future work.

DoSen and Routley semantics

The logic we are going to investigate is an extension of a
logic introduced by D&en in (D&en 1986) (see also (Ben
1999)) which he denotes hy. DoSen’s aim was to study
logics weaker than Johansson’s minimal logic. We recall
here the main definitions and facts regardiNg Formu-

las of N are built-up in the usual way using atoms from a
given propositional signaturd¢ and the standard logical



constants:A, V, —, —, respectively standing for conjunc-
tion, disjunction, implication and negation. We writ&r
to stand for the set of all well-formed formulae of this lan-
guage. The rules of inference faf aremodus ponenand
the contraposition rule
a=p (RC)
—|/6 — X
The set of axioms contains the axiom schemata of positive
logic plus:

—a A -8 — =(aVs) 1)

Definition 1 (N model) A model for N is a quadruple
M = (W,<,R,V) such that: (i)(W,<) is a partial or-
dering (of worlds), (i)R C W2 is an accessibility relation
among worlds verifyind< R) C R, (iii) and finally, V' is
a valuation function fromdt x W — {0, 1} satisfying:

Vipu) =1 & u<w = V(pw)=1 2

V is extended to a valuation on all formulas via the following
conditions.

. V((p/\@/},w) =1 iff V(p,w)=V({@,w)=1
VieViy,w)=1 iff V(p,w)=1 or V(¢,w)=1
V(e — ¢,w) =1 iff for every w’ such thato < w’,
Vipw)=1=V(@,w')=1
V(—p,w) =1 iff for every v’ such thatw Rw’

V(% =0

As the reader may have already observed, the main differ-
ence with respect to intuitionistic frames is the presence of a
new accessibility relatio? used for interpreting negation,
while < remains for implication. Extending valuatidn to
all formulas, we use for positive connectives the same con-
ditions as in the case of intuitionistic logic, but for negation
we use instead the condition involving the relati®n

A propositiony is said to berue in an N modelM =
(W, <,R, V), if V(p,v) =1, forallv e W. Aformulay
is valid, in symbolsk= ¢, if it is true in everyN model. It
is easy to prove by induction that condition (2) above holds
for any formulayp, ie

Viebu)=1 & u<w = Vip,w)=1 3)
Moreover,N is complete, that is, a formula is valid iff it is a
theorem ofN.

Let us consider now the logity* obtained by adding to

N the following axioms

“(la—a) — (4)
~(aAB) = —aV-p (5)
Thus, both De Morgan laws are provablenti

N*E=(aAB) < —aV -8, 2(aVp) < aA-g

since axioms (1) and (5) explicitly provide one direction of

An N modelM =
if it satisfies

(W,<,R, V) is called anN* model

Vodz*(xRx™ ANVy(zRy = y < x™)) (6)

ie, for any worldx of M there exists a<-greatest world
+* among those accessible framby R. It can be easily
checked that the new axioms &F are valid in allN* mod-
els. MoreoverN* is complete wrt to that class of models.

The persistence of validity of formulas (3) plus the exis-
tence of a greatedk-accessible world (6) implies that the
validity of negated formulas at is equivalent to

V(imp,z) =1 & V(p,z*) = 1.

This observation allows us to define a Routley style seman-
tics (Routley & Routley 1972) for extensions df*.

Definition 2 A Routley frame is a tripléW, <, %), where
W is a set,< a partial order onW and« : W — W is such
thatz < y iff y* < 2*. A Routley model is a Routley frame
together with a valuatio® : At x W — {0, 1} as for NV
models.

As usual, a formula is valid in a Routley model if it is
valid at every world of this model.

Completeness proofs fa¥ and N* can be obtained via
the method of canonical models. We now sketch this for
N*. LetS be some logic extendingy*, ie some set of for-
mulas containingV* and closed under substitution, (RC),
and modus ponensFirst we say that a set of formulds
is atheorywrt S (S theonry) if it contains S and is closed
undermodus ponenand aprime S theoryif it additionally
satisfies the disjunction property:

avVpel=aecl or el

Next we note a standard extension lemma. Letnd A be
sets of formulas. A relatiol g A means that for some
©vo,---,n € A the disjunctionyy V ... V ¢, can be ob-
tained from elements of and X using the rule ofmodus
ponens

Lemma 1 (Extension lemma) For any extensiort of N*,
any sets of formula¥ and A, if ¥ /s A, then there is a
prime .S theoryl" O ¥ such that” /g A

On this basis one defines canonical models as follows.

Definition 3 (Canonical model) Let S be any extension of
N*. ThecanonicalS frameis the triple (1W<, <¢, «¢) where
(i) W¢ is the set of prime theories wA, (i) I' <¢ A :=

I C A, (iii) T*° := {a|] ma ¢ T'}. ThecanonicalS model
is the canonicab frame together with the valuation function
Ve suchthatV<(p,T') = 1iff p e T

Itis not hard to check that the canonical mofés indeed
a Routley model. The only non-trivial item is to prove that
thex-function is well defined, ie thdt* is a prime theory.

Lemma 2 For any primesS theoryT, the setl™*" is also a
prime S theory.

Proof. Fory € S, we have-p ¢ I', otherwisel is trivial

each law, whereas the opposite implications can be inferred by axiom (4). ThusS C I'*. Lety andy — 9 be inT™*,

via the rule (RC).

ie ~p,~(p — ¥) ¢ I'. By the disjunction property of



and De Morgan laws:(p A (¢ — ) € T, equivalently,
~(p AY) ¢ I. Since—) — —(¢ Ay) € N*, =) ¢
T, ie. ¢ € I'*. We have proved thdf* is closed under
modus ponensThe disjunction property of* follows by
De Morgan laws. ]

Now the completeness fay* follows from the lemma for
the canonical model.

Lemma 3 In the canonicalS model, for every” € W, and
everyy,
Viip, V=1 peT.

Proof. By induction on the complexity af. O

The completeness property follows by noting that if -
® then by the extension lemma there is a prinié theory
I" such thatp ¢ T'. It follows from Lemma 3 thatp does
not hold in the canonicaV* model and therefore is nd{*-
valid.

Theorem 1 For any formulap, by« ¢ iff ¢ is valid in every
Routley model.

Finally, we note that an intuitionistic negation can be de-
fined in N*. Fix some propositional variab}g and put
L :==(pp—po)and —a:=a— L.

From axiom (4) it follows that for any Routley modét =

(W, <,*,V), the constantL is not satisfied at any world
w € W. Therefore, the satisfaction of the derived expres-
sion—a coincides exactly with the interpretation of negation
in intuitionistic logic:

V(—a,w) = 1iff Vo' such thatw < v, V (o, w’) = 0.

Since satisfaction of positive connectives is also defined
as in intuitionistic logic, we actually have

Proposition 1 The(V, A, —, —)-fragment of N* coincides
with intuitionistic logic.
HT?-models

As mentioned in the introduction, it was shown in (Pearce
1997) that the so-called logic dfere-and-there HT', can

be used as a foundation for the stable model semantics for
logic programs. In the semantics for intermediate or super-

intuitionistic logics, HT can be captured by rooted Kripke
frames with two elements, commonly denoted/byand ¢
and called ‘here’ and ‘there’, with < ¢. In (Cabalar 2001)
a notion of HT? model was introduced and studied in or-

der to capture partial stable models for logic programs. The

motivation for the notation is thaf 72 models are based on
frames that include for each world in an HT-model an
additional worldw’ accessible fronw via the< relation. In
addition, just as we have < ¢ in an HT-model, we have
alsoh’ < t'in an HT?-model. More precisely we define
HT? in terms of N models as follows.

Definition 4 (HT? model) An HT? modelis an N model
M = (W,<, R, V) such that (i)W comprises 4 worlds
denoted byy, b/, ¢, ¢, (ii) < is a partial ordering onlV sat-
isfyingh <t,h < K,k <t andt < t, (i) R C W?is
given byhRR', h' Rh, tRt', t'Rt, hRt', k' Rt. (iv) V is an
N-valuation.

An interesting observation is that when we force= h’
andt = t’ we actually obtain that and R collapse into the
same relation and, in fact, the whole structure becomes an
HT frame. Thus, itis easy to see that:

Proposition 2 Any valid formula ind T2 is also a valid for-
mulainHT.

Proposition 3 In HT? models the following formulas are
valid: o — ——a, ~a — =, ~(a — a) — G,

Proof. SinceHT? frames are finite, the validity of formulas
can be verified directly. O

According to Proposition 3, thedT? frame defines
an extension ofN* and we can replace the above de-
fined models by models based on the Routley frame
WHT* — (WHT® < &) whereWHT” = {h 1/ t,#'} and
the ordering< and the action of are represented in the
following diagram.

t/

/!

te

Thatis,h* =¢* =¢t/, (W)* = (t')* =
t andu < v iff v is strictly higher
thanw in the diagram.

o)

h
Now, fix someHT? modelM = (WHT* V). Forw €
WHT let us setAM := {p : V (o, w) = 1}.

w

Lemma 4 For an arbitrary HT? modelM = <WHT2, V)
the following hold. ()A,, is a prime HT? theory for any
we WHT® (i) A, C A, iff u < v. (i) Ay = A} and
Ay = Ay, (V) o — ¢ € Ay dff forall v > w either
p g Ayorp e,

Proof. All these properties follow straightforwardly from
the definition of validity of formulas in Routley models and
the structure of aii T2 frame. O

Lemmabs LetQ = (A, Ap, Ay, Ap) be a quadruple of
prime HT? theories satisfying all conditions of Lemma 4.
Define anHT2 modelMq = (WHT* Vq) as follows:

Valp,w) =1iff pe Ay, we WHT,
Then for allw € WHT” we have
A{XIQ =Ay,.

Proof. By induction on the structure of formulas. O
Due to the last two lemmas, the Routl&§7? model M

can be identified with the quadruple of priniEl"? theories

(AM AN AM AN, Now, let us say that a prime theory

A is: consistentf ¢ A —p ¢ A for any ¢; inconsistentf it

is not consistentcompletef ¢ ¢ A implies—¢ € A; and

weakly completd —¢ ¢ A implies——p € A.

Lemma 6 Let A be a primeHT? theory. (i)A** = {p :
——p € A}; (i) A C A* andA* = A*F; (i) A =T~
iff A is closed under the rule—g/p; (iv) if A is inconsis-
tent, thenA is weakly complete; (VA* is consistent iffA
is weakly complete; (viA C A* iff A is consistent; (vii)
A* C Aiff Ais complete; (viii)A = A* iff A is consistent
and complete.



Proof. (i). By definitiony € A** iff =p & A*iff =—p €
A

(i) The inclusionA C A** follows from the previous
item and the formula — ——¢ € HT?. By definitiony €
A** iff =—=—p ¢ A. The latter is equivalent tep ¢ A
due to—~y « ———p € HT?,iep € A*.

(i) If A =T*, thenA = A** by the previous item. Let
——p € A, theny € A** = A by item (i). Conversely, ifA
is closed under the rule—p/p, thenA** = A by item (i).

(iv) This follows from the formulgpA—p — —pV—-—) €
HT? and the disjunction property af.

(v) The consistency oA* means that for every, either
o & A* or —mp ¢ A*. By definition of A* this is equiva-
lentto—p € A or -—p € A for everyyp, ie to the weak
completeness aA.

(vi) Let A C A*. If p € A, thenp € A*ie—-p & A.

AssumeA is consistent, thep € A implies—p € A, ie
p e A*,

(vii) Let A* C A. If =p & A, thenp € A*, and so
peA.

Let A be complete. Ifp € A*, then—p ¢ Aandp € A
by completeness.

(viii) Follows from items (vi) and (vii).
Proposition 4 If ¢ ¢ HT?, then

Vear: {p} U{p A=) : ¢ € For}.

Proof.  Lety ¢ HT? andy V (1o A —tho) V ... V
(Yn A —p,) € HT? The latter means by the exten-
sion lemma that for any prime theoty eitherp € A or
A is inconsistent. Howevery is refutable at someéiT?
model (A, Apr, Ay, Ay), which meansp ¢ Aj,. Since
Ap € Ay = A}, Ay, is consistent by item (vi) of the previ-
ous lemma. a

By contraposition we obtain the following consequence.

Corollary 1 HT? is closed under the rule

aV(BA-P)

«

O

Minimal H7T? models and partial stable models

The correspondence betweff? and WFS is established
by the fact that, as we prove in this section, some mini-
mal HT? models coincide with Przymusinki’'s partial sta-
ble models (Przymusinski 1994), when we restrict the syn-
tax to that of normal logic programs. We recall next some
basic definitions from Przymusinski's 3-valued setting, and
proceed later to introduce a related multi-valued characteri-
sation of HT that will be very useful for comparison pur-
poses.

A 3-valued interpretatiofT' is a mapping from the propo-
sitional signaturedt to the set of truth valués{0, 1,2} re-
spectively standing fofalse undefinedandtrue. We can
also represent the interpretati@has a pair of sets of atoms
(T,T') satisfyingT C T’ whereT(p) = 0iff p & T,
T(p) = 2iff p € T andT(p) = 1 otherwise (iep € T'\T).
Notice that in the literature, it is perhaps more usual to find
the alternative forms:

3In (Przymusinski 1994)] and2 are respectively represented
as1/2 and1 instead.

e a pair of set§T+,T™), respectively denoting true and
false atoms, witA'* N T~ = 0,

e a setl of literals which isconsisten{it contains no pair

p; ).
but it is clear that we may equivalently use any of the three
representations.

Two ordering relations among 3-valued interpretations are
defined such that, ', = (71,77) andTy = (T3, T3), then:

I) T, <Ty iff T, C1Ty andTll - TQI,
||) T, X Ts iff T, CTs andTQ/ - Tll

In (Przymusinski 1994), these relations receive the names
of standardand Fitting's ordering respectively. The< re-
lation intuitively represents that one interpretation contains
“less truth” than the other. It is equivalent to the condition:
Vp € V, T1(p) < Ta(p), where< denotes now the inte-
ger ordering for values. The other relatiet, measures the
degree of knowledge in terms of undefined atoms. Interpre-
tations with shapéT, T') are calleccomplete(they have no
undefined atoms).

Given a 3-valued interpretatidR, Przymusinski’s valua-
tion of formulas is defined so that conjunction is the mini-
mum, disjunction the maximum, and negation and implica-
tion are defined as:

o T(—p)=2-T(p)

_J 2 ifT < T(v)
e Tlp—v)= { 0 :)the(rs\iz)ise (

Additionally, valuation of truth constants is fixed®$T) =
2, T(L) = 0 andT(u) = 1 (the latter is a new constant
representing undefinedness).

The definition of partial stable model relies on a gener-
alisation of the program reduct (Gelfond & Lifschitz 1988)
to the 3-valued case. Given a 3-valued interpretalipthe
reductIIT is formed by replacing each negated literalin
programll by T, u or L depending on whethé&(p) is 0, 1
or 2 respectively.

Definition 5 (Partial stable model) A 3-valued interpreta-
tion T is apartial stable moddf it is the <-minimal model
of ITT.

In (Przymusinski 1994) itis shown that a positive program
(like TIT whenII is normal) has a uniqus-minimal model.
It was also shown that theell founded modéT" of a normal
programll is the <-minimal partial stable model. Again,
for the case of normal programs, it has also been proved that
there exists as-minimum partial stable model, ie, a unique
well founded model.

Now, let us return ta7? and consider a mode\ =
(W, <,*,V)denoting byH, H', T, T' the four sets of atoms
respectively verified at each corresponding point or world
h,h',t,t'. Since, by construction/ C H' andT C T', it
is clear that we can represeht as a paifH, T') of 3-valued
interpretationdl = (H, H') andT = (7,7"). In this way,
we could define the possible “situations” of a formula in
HT? by using a pair of valuesy with =,y € {0,1,2}.
Condition (3) restricts the number of these situations to the
following six 00 := 0, 01 := {#'}, 11 := {K/,t'}, 02 :=



{t,t'}, 12 := {h',t,t'}, 22 := {h, 1/ ¢t,¢'}, where each In other words a partial equilibrium model Bfhas the form
set shows the worlds at which the formula is satisfied. Thus, (T, T) and is such that ifH, T) is any model oflI with

an alternative way of describing/7? is by providing its H < T, thenH = T. Partial equilibrium logicis the logic
logical matrix in terms of a 6-valued logic. As a result, determined by truth in all partial equilibrium models of a
the above setting becomes an algebra of 6 codésr” .— theo_ry. Formally we can define a nonmonotonic inference
({00,01,11,02, 12,22}, V, A, —, =) whereV andA are set relation by:

theoretical join and meet, whereas and— are defined as Definition 7 (entailment) Let IT be a theory,y a formula
follows: andPEM(IT) the collection of all partial equilibrium mod-
els ofTI. We say thafl entailse, in symboldI |~ ¢, if either
. (i) or (i) holds: (i) PEM(II) # @ and M = ¢ for every
-z o= {wiwt g M e PEM(ID); (i) PEM(II) = 0 and ¢ is true in all
HT?-models ofl.

r—y = {w:w<vw =W er=w €y)},

The only distinguished elementdg. The lattice structure

of this algebra can be described by the conditigr< zt < In this definition we consider the skeptical or cautious entail-
z < z & y < tandis shown in Figure 1, together with the  ment relation; a credulous variant is easily given if needed.
resulting truth-tables. Clause (i) is needed because not all consistent theories have
partial equilibrium models. Again (ii) represents one pos-
o | = sible route to understanding entailment in the absence of
00| 22 intended models; other possibilities may be considered de-
01| 11 pending on context.
22 11| 11 Finally, we proceed now to use the representation based
| 02 | 00 on pairs of 3-valued interpretations to establish a straight-
12 12| 00 forward correspondence to partial stable models. We be-
VAN 22| 00 gin by noting a property we will use below: examining
11 02 the table for implication in Figure 1, it is easy to see that
NS — | 00 01 11 02 12 22 M(p — o) = 22iiff, given M(¢) = zy andM (1)) = uwv,
01 00 | 22 22 22 22 22 22 we have bothe < w andy < v. We also fix theHT?
\ 01100 22 22 22 22 22 valuation of constants a&/(T) = 22, M(u) = 11 and
00 11 | 00 02 22 02 22 22 M (L) = 00.
0200 11 11 22 22 22
121 00 01 11 02 22 22 Lemma 7 ForanyM = (H,T) and any atonp:
22|00 01 11 02 12 22 M(—p) = M((-p)").
Proof. AssumeT has the form(T,7’). We have three
GivenV(¢) = zy andV () = zt : cases, depending GR(p).

(i) For T(p) = 2 the reduct if—p)T = L, but we also

V(9 NY) = uv & u =min(z, 2) & v =min(y,1) havep € T, ie, M(p) € {02,12,22} and soM(—p) =

Vip V) =uw < u=max(z,z) &v=mazx(y,t)

00 = M(1).
Figure 1:Lattice structure and truth tables for the 6-valugd (i) If T(p) = 1the reducti§—p)™ = uand we also have
description. p e T \ T, e, M(p) S {017 11}, which meansM(ﬂp) =
11 = M(u).

An interesting observation is that, by the semantics, if (i) If T(p) = 0 the reduct i—p)T = T and we also
(H,T) is a model then necessarill < T, since it is getp ¢ 17, ie, M(p) = 00, which means\/ (—p) = 22 ;

easy to check that this condition is equivalentHoC T M(T).

and H' C T’. Moreover, for any theorfil note that if Corollary 2 For any HT? interpretation = (H, T) and

(H,T) E 11 Fhen alsa(T, T) = II. . . any normal logic progranil: M = ITiff M = 1IT. O
The ordering< can be extended to a partial orderifg

among models as follows. We s@;, T;) < (Hy, T5) if Lemma 8 LetII be a positive logic program (possibly con-

(i) T; = To; (i) H; < Hs. Amodel(H, T) inwhichH = taining constants in the body) and [Etbe a 3-valued model

T is said to betotal. Note that the terntotal model does of IL. Then, for anyM = (H,T) and any ruler € II:
not refer to the absence of undefined atoms. To represent M (r) = 22iff H(r) = 2.
this, we further say that a total partial equilibrium model is Proof.  First, we note that for any atom or constant

completdf T has the formT,T). :
: . . . M(p) = xy iff H(p) = x andT(¢) = y. Now, letr
We are interested here in a special kind of minimal model /2% form(A; A--- A Ap — B) and letM(A;) — zsy;

that we call a partial equilibrium model. and M (B) = ww. ConditionM (r) = 22 means that both
Definition 6 (Partial equilibrium model) A modelM of a min{x;} < wandmin{y;} < v. However, the former is
theoryIl is said to be gartial equilibriummodel oflI if (i) equivalent taH (r) = 2, whereas the latter mea¥r) = 2

M is total; (i) M is minimal among models of under the that in our case is always true, @sis a 3-valued model of

ordering <. II. O



Theorem 2 LetII be a normal logic program. ThefT, T)
is a partial equilibrium model ofI if and only if T is a
partial stable model ofI.

Proof. From Corollary 2, we can safely replace progrAm
by ITT in the claim, provided that for determining(f, T)
is in partial equilibrium, we fix the second component of
HT? models tdT'. But now, ad1” is positive, we can apply
Lemma 8. In particular, we get first théT, T) is an HT?
model iff T is a 3-valued model. And similarly, we also get
that for anyH < T, (H,T) is an HT? model if H is a
3-valued model. m|
Following (Przymusinski 1994), once partial stable mod-

Let A be a primeHT™* theory such thap, ¢ A. By the
rule (EC) if HT* t/ @o, thenHT* t/ {oo} U{B A 0| B €
For}. Thus we may assume thAtis consistent.

1. Assume that\ is consistent and complete. We prove
that for anyy and+,

p—oPYEAN & pdAory e A. @)

The direct implication is obvious. ) € A, theny —
1 € A by the positive axiom) — (¢ — ¢). Letp & A
andy — ¢ ¢ A. By completenessip, =(p — ) € A

whence-—¢ € A by A6. Consistency and completeness of

A imply in this casep € A. This contradiction proves the

els are captured, we can further minimise among them desired equivalence.

wrt the amount of information (ie, defined atoms) to ob-
tain a well-founded model. Thus, alHT? well-founded
modelwould just be a partial equilibrium modek-minimal
among the partial equilibrium models Bf

Axiomatisation of HT?
Although we have describeHT? via a class of frames, it

can be considered a logic in the sense that it defines a set of
formulas: those valid on these frames. A more constructive

(and perhaps more standard) definitionf1™ is also pos-

sible using a calculus, that is, a set of axioms and inference

rules.
Let HT™* be anN* extension obtained by adding the fol-
lowing axioms:

Al. —aV——«

A2 —aV(a—(BY(E—0V-)

A3. Ni—o((ai — \/jgéi o) — Vj;éi aj) = Vg
Ad. o — o

A5. aA-a— GV

AB. —aA—=(a—f)— a

A7. ——aV -8V a(a— f)V-—(a— f)

A8. ——aN-=f— (a— F)V(B— a)

and the elimination of contradictions rule

Proposition 5 The canonical fram@V 7" satisfies the fol-
lowing properties: (i) WHT" is strongly directed; (i)
WHT" is of depth3; (iii) each element oMV 7" has at
most two immediate successors; (iv) elemeni®6f’” sat-

isfy all properties listed in Lemma 6.

Proof. Items (i)-(iii) can be inferred from axioms A1, A2
and A3 respectively in the same way as for superintuitionis-
tic logics determined by these axioms. Item (iv) holds since
only axioms of HT* were used in the proof of Lemma &

Theorem 3 HT* = HT?.

Proof. The inclusionHT* C HT? follows from the def-
inition of HT™*. All its axioms areHT? tautologies, which
can be verified directly. MoreoveH T2 is closed under the
rule (EC) by Corollary 1.

We prove the nontrivial inclusiodT* C HT?. Take
somey, non-provable ind T* and construct aff 72 model
refuting g.

By Lemma 6 we have\ = A*. Thus, the quadruple
(A A, A A) is an HT? model refutingpo. Note that we
have established also the following fact

Lemma 9 If A is a complete primé/T™ theory closed un-
der the rule~—¢ /¢, thenA is a maximal element o 77"

Proof. In the above reasoning the consistency’ofvas
used to establish thak is closed under the rule—p/p.

Therefore, equivalence (7) holds fdr. AssumeA is not

maximal. LetA’ € WHT™ and), be such that\ ¢ A’ and
o € A\ A. On one hand-vy, € A by (7). On the other
hand,—o € A by canonical model lemma.

2. Assume thatA is not complete, but is consistent and
closed under—p/p. Item (vi) of Lemma 6 impliesA C
A*, where as item (i) implies thah = I'*. ThusA = A**
by item (ii) of the same lemma. Note thAt* is complete
sinceA** C A*. By the last lemma\* is a maximal prime
HT* theory.

We claim that
poYPeEAN S (pdAVYEAN(pE A" VY € A¥).

The direct implication is obvious. We prove the converse
implication. SinceA* is maximal, the second conjunctive

term means exactly that — ¢ € A*. Therefore,~(¢ —

V) & A
If v € A, thenp — ¢ € A. Assumep ¢ A andy € A.

By the rule——¢/p we have—-—p ¢ A and——¢ ¢ A.
By A7 at least one of formulas—yp,—~—,~(¢ — ) or
-=(¢ — ) belongs toA. Therefore,~—(¢ — ) € A
and sgp — 3 € A.

One can see that all conditions of Lemma 4 hold for the
quadruple(A, A*; A, A*). We have thus constructed the

following countermodel fory,.

A*
L]

/

A e LA

[}
A
3. Now suppose, ¢ A, whereA is a consistent weakly
complete prime theory not closed underp/p. By item
(vi) of Lemma 6 we haveA C A*, whenceA* is also

weakly complete. By item (iii) of the same lemms* is



closed under the rule—p/¢. Therefore,A* is complete
and itis maximal inV#7” by Lemma 9. Item (v) of Lemma
6 implies thatA* is consistent. Consistency and complete-
ness imply the equalith** = A* by item (viii). The inclu-
sionA C A* is proper since\ is not closed undef—p /.
If there is no other proper extension Af we obtain a coun-
termodel{A, A* A* A*).

A*

/

A* e o A*
[ ]
A

Assume that there E € WHT" such thaf® ¢ {A, A*}
andA C I'. SinceA* is maximal andVH ™" is strongly
directed, we hav& C A*. By the antimonotonicity of the
x-operation we obtail™* = A*.

By item (iii) of Proposition 5 there exists at most two
prime theoriesI'y andI'; betweenA and A*. Assume
I'y # I'5. ThenI'; andI's are mutually incomparable by
item (ii) of Proposition 5.

S
N

Letp e Ty \T'y andy € T\ T';. Inthis casep, v € A**
and—-—¢, = € A by item (i) of Lemma 6. By axiom A8
we obtain(¢ — ¥) V (v — @) € A. SinceA possesses the
disjunction property we have — ¢ € Aory — ¢ € A.
Both cases contradict the choiceoéndy. In the first case,
there is an extension; of A such thatp € T'; andvy ¢ I';.
In the second case, we hayec T'; andy ¢ T's.

Thus, if there is a proper extensidrof A different from
A*, it is unique and we obtain fopy the countermodel
(AT, A%, A*).

=A™ =T% =T}

Iy

e

4. Consider the last case. Let ¢ A, whereA is

consistent but is neither weakly complete nor closed under

—-—@/p. Again by Lemma 6 we havA C A* andA* is
closed under—¢/p. SinceA is not weakly completeA*
is not consistent by item (v) of the same lemma.

We show thatA* is complete. For any formula we have
either—p & A or -—p ¢ A, consequentlyp € A or—yp €
A by the definition of the--operation.

Completeness ofA* implies its maximality and the in-
clusionA** C A*. SinceA* = A***, we conclude that
A** is consistent. By this fact and inconsistency/sf the
inclusionA** C A* is proper. By item (ii) of Lemma 6.
A C A**. Thisinclusion is also proper singeis not closed
under——p/o. If there is no other extension df we obtain
the countermode]A, A* ) A** A*).

A*
[}

A**. e A*

If there is one mord” such thatA C T, it is unique
by item (iii) of Proposition 5. The strong directedness of
WHT" and the maximality ofA* imply I' € A*. Since
WHT" is of depth 3, theorie®\** and T are incompara-
ble. By antimonotonicity of« we havel* C A* and
A* C T*. Thus,I'* € {A*, A**}. Taking into account
I' € I'** we obtainI™ = A**. We arrive at the counter-
model{A, T, A**(=T"*), A*), and we are done.

A*
[ ]
A** =T*e ol
[ ]
A

Strong equivalence wrt partial equilibrium
logic

We now establish a strong equivalence theorem for partial
equilibrium logic. The notion oftrong equivalencés im-
portant both conceptually and as a potential tool for sim-
plifying nonmonotonic programs and theories and optimis-
ing their computation. For stable semantics strong equiva-
lence can be completely captured in the lIoHi€ (Lifschitz,
Pearce, & Valverde 2001) and in ASP this fact has given rise
to a lively programme of research into defining and com-
puting different equivalence concepts, see eg (Eiter, Fink &
Woltran 2006; Woltran 2004). In the case of WFS and p-
stable semantics, however, to our knowledge until now, with
the exception of (Nomikos, Rondogiannis & Wadge 2005),
there have been no studies of strong equivalence and related
notions.

We begin by noting that, when considering logic pro-
grams, equivalence under Przymusinki's 3-valued logic is
not adequate for testing strong equivalence, much in the
same way as classical logic is not suitable for strong equiv-
alence under stable models. In fact, as happens in that



case, it is not even suitable for checking regular equiva-
lence. As an example, the prografyis — ¢,—p — ¢}
and{p — ¢,—~q — p} are equivalent under Przymusinski’'s
3-valued logic although they clearly have different well-
founded models — the first one makedalse andqg true,
while the second leaves both atoms undefined.

Returning to arbitrary theories, in the present context we
say that two propositional theoridg andI's are strongly
equivalentf for any theoryI, theoriesI'; UT andT'; U T
have the same partial equilibrium models.

Proposition 6 TheoriesI'; andT'; are strongly equivalent
iff ', andT', are equivalent inHT2.

Proof. We consider the non-trivial direction. Let us as-
sume thafl'; andI'; have different models and construct a
set of formulad” such that”; UT andI's UT have different
partial equilibrium models.

Let (H, T) be anHT-model such thatH, T) = I'; and
(H, T) k£ T's. Note that in this case we hay@, T) = T';.

Case 1. Assume(T,T) (£ I's. If T = T/, putl :=
T. In this case it can be easily seen tk/&t T) is a partial
equilibrium model ofl*; UT', but it is not a model of', UT'.

AssumeT # T andpy € 77 \ T. Now we put

F:=TU{-p)—qlqgeT}.

Clearly, (T, T) £ T2 UT. Let(J,T) = T; UT. Since
T C T, we haveJ = T. The atomp, is refuted att (by

choicepg & T), thereforepy € Ay by h'* = t. From the
definition of ' we have thaf” C A/, whenceJ’ = T". We

have thus proved thdfT', T) is a partial equilibrium model
of 'y UTl.

Case 2.Let (T, T) | I's. Fix some atonp, such that
po € T' andp, does not occur in formulas &, andI's. We
put

F::HU{pQ<—>—\p0}UH0UH1UH2UH3,

where
oo = {po—pl|lpecH}
M = {p—qVplpgeT\H}
I, = {(pp—p)—qlpeT'\H, qeT\H}
I3 = {poAp—qlpeT'\H, qeT'\H'}

Note that for any modelH, T'), validity of p; < —pg at
this model means thak € H' \ T, ie p, is true exactly at
B’ andt’ .4

Consider the new modeld, T,) and (T, T;), where
T; := (T, 7" U {po}). Sincepy is not involved in the com-
putation of validity of formulas froni'; andT’s we still have

(H, Ty) =Tq, (H,Ty) }~To,
(T1,T1) ET1, (T1,Ty) =To.

“If in the model under consideratidh + T”, instead of adding
to I" the formulapy < —po for a new atormp, we can takep; €
T’ \ T and replaceyo by —p; in 1y, . .., I14. The negationp; is
true exactly ak’ andt’.
Alternatively, we could pass to the conservative extension of
HT? obtained by adding a new constantogether with axiom
u < —w. In this case, we replags by u.

It is routine to check that botkH, T,) and (T, T;) are
models ofT", which proves tha{T;, T;) is not a partial
equilibrium model oft’; UT.

Let us prove thatT,, T ) is a partial equilibrium model
of 'y UT. Assume thatJ, T;) =Ty UT. SinceH C T
we haveH C J, on the other hand the inclusidfy C T°
guarantees thatl’ C J’. One of these inclusions must be
proper, becaus@, T ) is not a model of's.

If H # J, the satisfiability oflI; implies the equality
J = T sincepy is false ath. At the same time, formulas of
I3 imply J' = T" U {po}. Indeed, lepp; € J\ H. Since
both pg andp; are true ath’, the validity ofpg A p1 — ¢
means thay € Jforallg € T\ H'.

Assume nowJ’ \ H' # @ andpy € J'\ H’'. Allimplica-
tionspy Apa — ¢q,q € T'\ H’, are inlly, whenceJ’ = T".

At the same timgJ, T;) &= po — p2. Now the equality
H = T follows from the fact thatp, — p2) — ¢ € 115 for
alge T\ H. O

The above result can be extended to show HhzE also
captures strong equivalence wrt well-founded models<ie,
minimal partial equilibrium model8)

Note that unlike in the case of strong equivalence under
stable model semantics, we cannot assume in the general
case that the formulas in have the syntax of logic program
rules. So whe'; andI's have the form of logic programs,
it is clear thatH T equivalence is a sufficient condition for
strong equivalence, but it is an open question whelfheain
be taken to be a logic program (of whatever kind) in the case
of non-equivalence.

Related work

There has been a number of attempts to provide a foundation
for well-founded semantics; some are more or less logical in

nature, others employ alternative mathematical methods. Of
the former kind, we should mention:

e The approach of (Bochman 1998a; 1998b) which analy-
ses several logic programming semantics, including WFS,
in a generalised framework of Gentzen-style deduction. A
strong point of Bochman’s method bf-consequence re-
lationsis its ability to capture different semantics within
the same framework. The method is somewhat removed
from ordinary logic and model theory and does not pro-
vide Hilbert-style axiomatisations. It remains to be seen
whether it might complement the methods described here.

¢ Another type of technique can be found in (Rondogiannis
& Wadge 2002) which proposes an infinite-valued logic
to capture WFS. However it is unclear how this logic re-
lates to other known multi-valued logics and how it can be
used to extend the semantics beyond the format of normal
programs.

e Another recent approach is that of (Alttara, Darasio,
& Pereira 2004) which studies WFS and variants using
semantical frames. These are closely related to##g-
frames described here and in (Cabalar 2001). However no
logical axiomatisation of the semantics is presented.

5The details will be included in a sequel to the present paper.



The method of representing WFS via embeddings into
nonmonotonic modal logics. This has been explored no-
tably in (Przymusinski 1995; Bonatti 1995). Though
this is quite different from our aim to study WFS in a
language close to the original logical syntax, we also
hope in the future to examine modal counterparts of
partial equilibrium logic and thereby make comparisons
with frameworks such as those of (Przymusinski 1995;
Bonatti 1995).

Among efforts to capture well-founded reasoning using
other mathematical methods, we should mention:

Argumentation theory as applied in (Bondarenko, Dung,
Kowalski, & Toni 1997). This method has proved flexible
enough to model several kinds of semantics for logic pro-
gramming and nonmonotonic reasoning and implementa-
tions are now being developed (Dung, Kowalski, & Toni
2006). This approach can provide ways to enlarge the
syntactical scope of well-founded reasoning. It remains
to be seen how they relate to logical systems such as par-
tial equilibrium logic.

The infinite-game semantics recently proposed by (Ron-
dogiannis & Wadge 2005). This appears at present to be
restricted to the syntax of normal programs.

Conclusions and future work

We have proposed partial equilibrium logic as a general sys-
tem of nonmonotonic logic to act as a foundation for the
semantics of partial stable models and thereby for well-
founded inference. Our approach has been to identify an
underlying monotonic logical framework to be used as a ba-
sis. The natural choice is a logic in which partial stability
can be expressed as a simple minimality condition with well-
foundedness as a special case. The condition of equilibrium
that captures stable models in the logic of here-and-there can
be readily generalised to a minimality condition that cap-
tures partial stability in a logidZT? which corresponds in
a natural way taHT'. In this paper we have shown how the
resulting logic has a six-valued truth matrix and can be ax-
iomatised as an extension of Ben’s logic/NV. Although the
negation of T2, corresponding to the well-founded nega-
tion, is rather weak, intuitionistic negation is actually de-
finable in HT2. We have seen also thafT? captures the
strong equivalence of theories in partial equilibrium logic.
The present paper reports on ongoing work that will con-
tinue to investigate many more issues in the foundations of
WEFS and p-stable semantics. Work currently in progress is
examining a series of further topics including:

e the complexity of reasoning with partial equilibrium
logic, for the general case as well as for specific classes

of extended logic programs;

the behaviour of partial equilibrium logic on disjunctive
and nested logic programs and its comparison with other
semantics;

further study of the relation off 72 to HT and of partial
equilibrium logic to equilibrium logic;

general properties of partial equilibrium entailment;

e strong equivalence results for special classes of models
such as the well-founded models defined above;

e how to add strong or explicit negation to partial equilib-
rium logic and compare this with the well-known system
WEFSX with explicit negation (Pereira & Alferes 1992).

¢ prooftheory and implementation methods for partial equi-
librium logic.

We hope to present some of this ongoing work in a sequel to
the present paper.
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