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Abstract. The nonmonotonic formalism of partial equilibrium logic (PEL) was
introduced and studied in [I}2] and proposed as a logical foundation for the par-
tial stable and well-founded semantics of logic programs. Here we study further
logical properties of PEL and some techniques to compute partial equilibrium
models.

1 Introduction

Equilibrium logic [11]] is a general nonmonotonic formalism based on the nonclassical
logic HT of here-and-there, (also known as Goedel’s 3-valued logic). It was proposed
in [[10] as a logical foundation for the stable model semantics of logic programs. Re-
cently in [d}2] partial equilibrium logic has been introduced and studied as a foundation
for the partial stable (p-stable) and well-founded semantics (WFS) of logic programs.
This formalism is based on a 6-valued logic which we denote by HT2. Just as equilib-
rium models correspond to the stable models of programs as defined in [5]], so partial
equilibrium models correspond to the p-stable models defined in [[14]]. In each case the
equilibrium construction is similarly based on taking certain total models that are min-
imal. The underlying models, however, are different in each case, and while total HT'
models are complete in the sense of verifying either ¢ or —¢ for any formula ¢, the
total T2 models are not.

The present paper continues the work of [1J2] whose main results were as follows:
(i) partial equilibrium logic (PEL) was defined and p-equilibrium models were shown to
coincide with p-stable models for logic programs.; (ii) the logic HT'? was axiomatised
and completeness shown; (iii) analogous to the case of equilibrium logic, it was shown
that the strong equivalence of theories wrt PEL can be captured by equivalence in the
logic HT?; (iv) some properties of nonmonotonic entailment in PEL and its complexity
were studied as well as a method for reducing PEL to ordinary equilibrium logic. Here
we examine further logical and computational issues associated with p-equilibrium
models and their underlying logics: HT2 and the logic of total HT2 models, which
we denote by HT™. In particular we provide in §4 a proof theory for PEL by presenting
tableau calculi for the logics HT and HT™* as well as for p-equilibrium model check-
ing. The calculus for HT? is of independent interest as a means for checking the strong
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equivalence of theories. We also (§3) axiomatise the logic H7T™* and discuss its relation
to other logics such as Przymusinski’s Przs [15]. Lastly in §5 we consider the method
of splitting a logic program, a familiar technique for optimising computation under the
stable model semantics [[7)4]]. We derive a splitting theorem for disjunctive and nested
logic programs under PEL.

2 Logical preliminaries: thelogics HT2 and PEL

We introduce the logic HT? and its semantics, given in terms of HT2 frames, and we
define partial equilibrium logic (PEL) in terms of minimal H7T2 models. Formulas of
HT? are built-up in the usual way using atoms from a given propositional signature At
and the standard logical constants: A, v, —, =. We write £(At) to stand for the set of
all well-formed formulae (ie, the language) under signature At. A set of H7T'? formulae
is called a theory. The axiomatic system for HT2 is described in two stages. In the first
stage we include the following inference rules:

o, o — a—f

B

plus the axiom schemata of positive logic together with:

b (Modus Ponens)

_\/8—>_\a

Al. ma A= — —(aVP) A2. v(a— a) = A3. =(aNp) = —~aV -8

Thus, both De Morgan laws are provable in HT2. Moreover, axiom A2 allows us to
define intuitionistic negation, ‘—’,in HT? as: —a := a — —=(po — po)-
In a second stage, we further include the rule W and the axioms schemata:

Ad, —aV ——«a

A5 —aV(a— (BV(B—(vV—7)

A6. /\?:o((ai - \/j;éi o) — \/j;éi o) — \/?:0 @
A7. a— -«

A8. aA-a— -GV -0

A9. —aA-(a— f) = a

A10. ——aV =8V a(a— f)V-—(a— F)

All. ——a A= — (a—B)V(f— a)

HT? is determined by the above inference rules and the schemata A1-Al1.

Definition 1. A (Routley) frame is a triple (W, <,x), where W is a set, < a partial
order on W and x : W — W is such that z < y iff y* < x*. A (Routley) model is
a Routley frame together with a valuation V ie. a function from At x W — {0, 1}
satisfying (1): V(p,u) =1 & u<w = V(p,w)=1.

The valuation V' is extended to all formulas via the usual rules for intuitionistic (Kripke)
frames for the positive connectives A, v, — where the latter is interpreted via the <
order:

V(e — ¢,w) =1 iffforall w’ suchthatw < w’, V(p,w')=1=V(¢,w')=1



The main difference with respect to intuitionistic frames is the presence of the x
operator that is used for interpreting negation via the following condition:

V(imp,w) =1 iff V(p,w*)=0.

A proposition ¢ is said to be true in a model M = (W, <,x, V), if V(p,v) = 1, forall
v € W. A formula ¢ is valid, in symbols |= ¢, if it is true in every model. It is easy to
prove by induction that condition (1) in Definition 1 above holds for any formula ¢, ie

Vie,u)=1 & u<w=V(p,w)=1. 1)

Definition 2 (HT? model). An HT? model is a Routley model M = (W, <, R, V)
such that (i) W comprises 4 worlds denoted by h, b’ ¢, t', (ii) < is a partial ordering
on W satisfying h < t,h < h/, ' < andt¢ < ¢/, (iii) the * operation is determined
by h* =t* =+¢/, ()* = (t')* =, (iv) V is a-valuation.

The diagram on the right depicts the <-ordering among worlds
(a strictly higher location means >) and the action of the x- map-
ping using arrows. /
Truth and validity for 72 models are defined analogously to 3
the previous case and from now on we let = denote the truth (valid-
ity) relation for H7? models. We have the following completeness h
theoremfl:

Theorem 1 ([I). = ¢ iff ¢ is a theorem of HT2.

2.1 HT? as a6-valued logic

Now, consider an H72 model M = (W, <,*, V) and let us denote by H, H', T, T’ the
four sets of atoms respectively verified at each corresponding point or world h, b/, ¢, t'.
More succinctly, we can represent M as the pair (H, T') so that we group each pair of
unprimed/primed world as H = (H, H') and T = (7T, T"). By construction, each of
these pairs I = (I, I") satisfies I C I’, so that I can be seen as a 3-valued interpretation.
Given I and an atom p, we use the values {0, 1, 2} to respectively denote p € I, p €
I'\Tandp ¢ I'. As we have two pairs like this, (H, T), the possible “situations” of a
formula in HT? can be defined by a pair of values zy with 2,y € {0, 1,2}. Condition
@ restricts the number of these situations to the following six 00 := (), 01 :=
{t'}, 11:= {h',t'}, 02 := {¢,t'}, 12 := {h/,¢,¢'}, 22 := W where each set shows
the worlds at which the formula is satisfied. Thus, an alternative way of describing H1'2
is by providing its logical matrix in terms of a 6-valued logic. As a result, the above
setting becomes an algebra of 6 cones: AHT? .= ({00,01,11,02,12,22} V, A, —, =)
where v and A are set theoretical join and meet, whereas — and — are defined as
follows: z — y ={w:w<w = W cx=w €y)}, -z:={w:w" ¢}

The only distinguished element is 22. The lattice structure of this algebra can be
described by the condition zy < 2t < z < z & y < t and is shown in Figure [
together with the resulting truth-tables.

5 The first stage alone defines a logic complete for the general Routley frames.



22 o | - — 100 01 11 02 12 22
| 00| 22 00 | 22 22 22 22 22 22
12 01 11 01|00 22 22 22 22 22
PN 11| 11 11| 00 02 22 02 22 22
11 02 02 | 00 02|00 11 11 22 22 22
NS 12| 00 12 | 00 01 11 02 22 22
0|1 22 | 00 22 (00 01 11 02 12 22

00 V(g Atp) =min{V(9), V(¥)}, V(¢ V1) = max{V(¢),V ()}

Fig. 1. Lattice structure and truth tables for the 6-valued H7T? description.

2.2 minimal models and relation to logic programs

The truth-ordering relation among 3-valued interpretations I; < I, is defined so that Iy
contains less true atoms and more false ones (wrt set inclusion) than I. Note that by
the semantics, if (H, T) is a model then necessarily H < T, since it is easy to check
that this condition is equivalentto H C T and H' C T’. Moreover, for any theory IT
note that if (H, T) |= II then also (T, T) |= II.

The ordering < is extended to a partial ordering << among models as follows. We
set (Hl,T1> < <H2,T2> if (I) T, = Ty, (II) H, < H, A model <H,T> in which
H = T is said to be total. Note that the term total model does not refer to the absence of
undefined atoms. To represent this, we further say that a total partial equilibrium model
is complete if T has the form (7, 7).

We are interested here in a special kind of minimal model that we call a partial
equilibrium (or p-equilibrium) model. Let I7 be a theory.

Definition 3 (Partial equilibrium model). A model M of IT is said to be a partial
equilibrium model of IT if (i) M is total; (ii) M is minimal among models of IT under
the ordering <.

In other words a p-equilibrium model of IT has the form (T, T) and is such that if
(H, T) is any model of IT with H < T, then H = T. We will sometimes use the
abbreviation T = IT to denote that (T, T) is a p-equilibirum model of theory IT. Partial
equilibrium logic (PEL) is the logic determined by truth in all p-equilibrium models of
a theory.

We turn to the relation between PEL and logic programs. A disjunctive logic pro-
gram is a set of formulas (also called rules) of the form

arN...Nagm A=by A...AN=b, w1 V...V 2

where the a, b, ¢ with subscripts range over atoms and m, n, k& > 0; for the definition of
the p-stable models of a disjunctive logic program 11, see [14].

Theorem 2 ([2]). A total HT? model (T, T) is a p-equilibrium model of a disjunctive
program I7 iff the 3-valued interpretation T is a p-stable model of I7.



We define a further partial ordering on total models by (T, T;) < (T9, T2) if both
Ty C Ty and T4 C TY. Then we say that a total H7'? model that is <-minimal among
the p-equilibrium models of a theory I" is a well-founded model of I". This terminol-
ogy is justified by the fact that if IT is a normal logic program, the unique <-minimal
p-equilibrium model of IT coincides with the well-founded model of IT in the sense
of [18].

The notion of strong equivalence for logic programs was introduced in [8] and logi-
cally characterised for the case of programs under stable model semantics. The study of
strong equivalence, its generalisations and computation, has since become a lively re-
search area, with potential for application to program optimisation. Until now there was
no analogous research programme for p-stable and WF semantics. A basis is provided
however by TheoremBlbelow and several extensions proved in [2].

Definition 4 ((strongly) equivalent theories). Two theories I7, I1’ are said to be (PEL)-
equivalent or simply equivalent (resp. strongly equivalent), in symbols IT = IT’ (resp.
II =, II"), iff they have the same p-equilibrium models (resp. iff forany I", T U T" =
mrur).

Theorem 3 ([])). Two theories I1, II’ are strongly equivalent iff they are HT? equiva-
lent, ie have the same HT? models.

This provides added interest in computational proof systems for HT2.

2.3 Complexity of reasoning in HT? and PEL

We denote by SAT¢, and V AL¢, the classes of satisfiable formulas and valid formu-
las respectively in classical logic, and SAT' 2 and V AL 7= the classes of satisfiable
formulas and valid formulas respectively in HT? logic.

Theorem 4 ([2]). (i) SATxr= is NP-complete and V AL g2 is coNP-complete; (ii)
the problem of deciding whether a formula in HT2 has partial equilibrium models is
XP-hard.

Corollary 1 ([2])). (i) The problem of checking the strong equivalence of theories is
coNP-complete. (ii) The decision problem for equilibrium entailment is 771 -hard.

3 Thelogicof Total Models

Total models play an important role in the definition of PEL since p-equilibrium models
are a special kind of total model. We describe the logic of total models.

First note that total models can be distinguished among all HT2-models via the
scheme ——¢ — . Foran HT2 model M = ((H,H'), (T, T")) = (WHT" V), set

A = {p: V(p,w) =1}

for w € WHT" Obviously, H > AM, H' S AM, etc. We omit the superscript M if
it does not lead to confusion.



Proposition 1. The following items are equivalent:

1. (H,T) E ¢ — pforany ¢,
2. H=T,
3. Ah = At and Ah/ = At/.

Let us set HT* := HT? + {—~—p — p}. From the last proposition, it follows that
the number of possible situations of a formula in a total Z72-model is reduced to the
following three, 00 := 0, 11 := {h',¢'}, 22 := {h,h/,t,¢'}, where each set shows
the worlds at which the formula is satisfied. Thus, logic HT* can be characterized
by the three-element algebra: A”T" := ({00, 11,22}, V, A, —, =) with the only dis-
tinguished element 22 and operations determined as the restrictions of the respective
operation of the algebra .A%7” It is routine to check that the set {00, 11, 22} is closed
under .A#T* -operations.

At the same time, HT* differs from Przymusinski’s logic Przs [[15] as well as from
N3 [L712], classical explosive logic with strong negation. All these logics are three-
valued and the operations \ and A determine the structure of a linearly ordered lattice
on the set of truth-values. If we denote the least truth-value in all these logics by 00,
the greatest by 22, and the intermediate by 11, we see that all the logics have the same
connectives —, Vv, A, but different implications:

— 7[00 11 22 —N, |00 11 22 — pPrz,[00 11 22
00 [222222 00 [222222 00 [222222
11 |00 2222 11 222222 11 |00 2222
22 |00 1122 22 |00 11 22 22 |00 00 22

Comparing HT* and N3 we note the following
Proposition 2. HT* & N3, ~(p — q) < (pA—q) & HT*.

For the comparison of HT* and Przs, recall that the language of Prz3 contains
also the necessity operator [ (122 = 22, lz = 00 otherwise) and — p,.., can be defined
via—, V, Aand [ @ = przg U= (Sl VIY) A (Sl Vi=p).

At the same time, [ can be defined via implicationas T — p,., ¢. Itis well known
that the operator [ is not definable in tukasiewcz’s three valued logic £3 and that ¢ 3
is equivalent to IN3. Therefore, the operators [ and — p,.., are not definable in Nj.
Consequently, I and — p,.., are not definable in the weaker logic HT*.

Proposition 3. Logic Przs is not definable in HT™.
A simple axiomatisation of H7* modulo the basic logic N* is given by the following
Proposition4. HT* =N*+{pV (p—q)V —¢, p = -, pA—p — qV —q}.

Proof. In fact, the proof of these statement is a simplified version of the completeness
proof for HT? in [].

Thus, we obtain HT™* by extending the intuitionistic fragment to H7T" and adding the
elimination of double negation and the Kleene axiom. Despite the fact that H7* and
HT have the same intuitionistic fragment, they have different negations and HT* #
HT. We can obtain HT from HT? in the following way.



Proposition 5. The addition to H72 of axiom (I) = —¢ A ¢ — L, is equivalent to the
condition T = T". O

Proposition 6. The addition to HT? of De Jongh and Hendrik’s axiom (used to obtain
HT from intuitionistic logic), (dJH) = ¢V (¢ — ¥)V —¢ is equivalent to the condition:
T,H € {H,T'}.

Proposition 7 (reductionto HT). HT = HT? U (1) U (dJH).

4 A Tableau Calculusfor PEL

We can describe a tableaux system for HT? using the standard methods for finite-
valued logics [6/12]. The formulas in the tableau nodes are labelled with a set of truth-
values, named signs, and these signs are propagated to the subformulas using the ex-
pansion rules. The family of the signs depends on the logic in question and it is possible
to describe several tableaux systems for the same logic. For HT2 we will use the fol-
lowing signs, where [> v] ={w € 6 |w > v}, and [< v] = {w € 6 | w < v}:

{00}, {01}, {11}, {02}, {22}, {01, 11}, [< 01], [< 11], [< 12], [> 01], [> 02], [> 12]

The usual notions of closed and terminated tableaux can be used in different ways.
In the following definition we introduce the concept of closed tableau in order to char-
acterise validity in HT2,

Definition 5. Let ¢ be a formula in HT?:

1. The Initial tableau to check the validity of ¢ is: Ty = [<12]:¢

2. If T'is a tableau and T is the tree obtained from T" applying one of the expansion
rules in figure 2, then T is tableau for .

3. Abranch B in a tableau T is called closed if one of the following condition hold:
(i) it contains the constant _L; (ii) it contains signed literals, s::p,...,S.:p, such that
N, S; = @. Atableau T is called closed if every branch is closed.

Intuitively, with the initial tableau [<12): we ask if it is possible to find an assign-
ment for ¢ that evaluates in [< 12], in other words a countermodel. The expansion rules
search for ways to evaluate the subformulas so as to define the countermodel.

Theorem 5 (Soundness and completeness of the tableaux system). The formula ¢ is
valid in HT? if and only if there exists a closed tableau for it.

4.1 Partial equilibrium models

Tableaux systems can also be used to study additional properties and relations [12/13].
In this section we define a system based con auxiliary tableaux in order to generate the
partial equilibrium models of a theory. We proceed in two phases. First, we generate
the total models of a theory by means of a tableau system in which we search for a
terminted tableau. Then, for every total model, an auxiliary tableau is constructed to
check whether the model in question is in partial equilibrium or not.
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Fig. 2. Expansion rules for HT?
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The total assignments evaluate formulas in {00, 11, 22} and thus we only need to
work with the following system of signs: [< 11] = {00, 11}, [< 00] = {00}, [> 11] =
{11,22}, [> 11] = {22}.

Definition 6. Let IT = {¢1, ..., p, } atheory in HT?:

1. The Initial tableau to generate total models is a single branch tree containing the
following signed formulas: {22}:01,...,{22}:n.

2. If T'is atableau and 7" is the tree obtained from T by applying one of the expansion
rules in figure @ then 7" is tableau for . As usual in tableaux systems for propo-
sitional logics, if a formula can be used to expand the tableau, then the tableau is
expanded in every branch below the formula using the corresponding rule, and the
formula used to expand is marked and is no longer used.

3. A branch in a tableau T is called closed if the signed literals for a variable p,
S1:Dye .« S, Verify N, S; = @. Itis call open otherwise.

4. A branch in a tableau T is called finished if it doesn’t contain non-marked formu-
las.

5. Atableau T is called closed if every branch is closed, and it is terminated if every
branch is either closed or finished.

In this case the tableau begins with formulas signed with 22, since we are looking for
models. The expansion rules guarantee the construction of all possible models in such
a way that when all formulas have been expanded, all the models can be determined on
the basis of open branches.

Theorem 6. Let T be a non-closed terminated tableau for 17, and let {s.:p1, ..., S.:pn}
be the set of signed literals in an open branch. Then every assignment V' verifying
V(p:) € S, for all 4, is a total model of ¢. Moreover, all the total models of IT are
generated from T in this way.

Example: (Taken from [2]) The figure Bl shows the tableau for the theory IT = {-p —
qgVr,pVr}

The tableau is finished and allows us to construct the set of total models of I7, as
shown in the following table:

01|02(03]|04|05|06|07|08|09|010(011|012|013|014|015
22|22|22|22(22(22(22{22]22|11 |11 |11 {00 [ 00 | 00
22|22|22|11(11{11{00{00{00|22 |11]00 |22 |11 |00
22|11|00|22(11(00(22{11]00| 22 | 22|22 |22 |22 |22

S

Q

)

Auxiliary tableau to check the partial equilibrium property A total model is in
partial equilibrium if there is no other model of the theory less than it under the partial
ordering <. In terms of the many-valued semantics, this ordering is defined between
assignments based on the following relations between truth-values: 01<111, 02<112<122.
To look for such a model we construct an initial tableau specifically for each total model
by applying the expansion rules in figure 2

Definition 7. Let ¢ be a formulain H7? and V' a total model of it.
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Fig. 4.

1. The Initial tableau to check the partial equilibrium property of V' for ¢ is a single
branch tree containing the following signed formulas: {22}, {00}:p for every p
such that V' (p) = 00, {o1,11}:p for every p such that V'(p) = 11, and {02,12,22}:p for
every p such that V(p) = 22.

2. If T'is a tableau and 7" is the tree obtained from T" applying one of the expansion
rules in figure 2 then T" is (.

3. A branch B in a tableau 7" is called V'-closed if one of the following condition
holds: (i) it contains the constant L ; (ii) it contains signed literals, s.:p,..., S.:p,
such that N?_, S; = @; (iii) all the formulas in the branch have been expanded and,
for every variable p, it contains signed literals, s.:p.,..., s.:p, such that N_,.S; =

{V(p)}-

4. Atableau T is called V-closed if every branch is V'-closed.

Adding literals of the form {o1,11}:p, {02,12,22}:p Or {00}:p, depending on the initial
tableau, requires that models be evaluated in a particular form; specifically we force
models derived from the tableau to be less than V. Nevertheless, we know that one
model will always be found, V' itself, and therefore we include one more condition on
closure: a branch closes if V. is the only model generated.

Theorem 7. Let V' be a total model of ¢. V' is a partial equilibrium model of /7 if and
only if there exists a V'-closed tableau for .

In the figure B we show that, for the previous example, the model o4 is a partial
equilibrium model; observe that the leftmost branch closes because V' is the only model
generated, while all other branches close due to inconsistencies provoked by the three
signed literals added to the initial tableau. In the second tableau in the same figure we
check that the model 015 is not a partial equilibrium model.

5 A splitting theorem for PEL

The previous tableau calculus offers a general method for satisfiability testing in H1'2
and PEL, given any arbitrary theory. When we restrict the syntax to (some class of)
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logic programs, we usually expect, however, that simpler computation methods can
be applied. Consider for instance the case of disjunctive logic programs. As shown
in [2], PEL also coincides with p-stable models for this syntactic class. Maintaining the
same minimisation criterion, we may easily get that a disjunctive program yields several
well-founded models (even no well-founded model at all), and the typical incremental
algorithm for computing WFS for normal programs is not applicable. However, it is
still possible to apply a form of incremental reasoning if we can divide or “split” the
program into blocks without cyclic dependences among them. As an example, consider
the simple program Iy = {pV¢} which yields two p-stable models (also well-founded),
making p true and ¢ false in one case, and vice versa. Now, assume we have the enlarged
program ITy = IIo U {-r Ap — r,q A —p — s,—s — s}. It seems natural to use this
second set of formulas to compute atoms r and s, once p and q are still fixed by the rule
in ITy. This technique is called “splitting” and was first introduced in [[7]] for the case of
stable models. We now establish a similar result for PEL in the more general syntactic
case where theories are sets of implications.

Givenapair T = (T, T’) and a set of atoms U, we denote T|yy = (T NU, T NU).
We apply a similar notation for theories too. If I7 is some theory in language £(V'), and
U C V, then we write IT | to stand for set of formulas IT N £(U). We respectively call
bottom and top to the subtheories 17|y and 1T\ II|.

Definition 8 (Splitting set). Given a set of implications IT on signature V, a subset
U C V is called a splitting set for IT if for all (¢ — ¢) € II\II|y, v € £(V\U). O

Theorem 8 (Splitting theorem). Let IT be a set of implications, U a splitting set for
IT and T a pair (T, T") of sets of atoms 7" C T”. Then T ke I1 iff both (i) T|y ke I |y
and (ii) T r II’, being [T’ := (IT\II|v)

U(TNU) 3)
U{-p|peU\T'} (4)
U{peulpe(T"\T)NU} (5)

The previous theorem is completed with the following resulfl. Let us denote by
I [/ p] the replacement in theory IT of any occurrence of atom p by the formula ¢.

Theorem 9 (Replacement theorem). For any theory IT and any model M:
(i) M HIu{p} iff M = II[T /p| U {p}

(i) MEHTU{-p} iff M I[L/p|U{-p}

[y MEITU{p—u}liff M E IIu/p|U{p < u}

Returning to the example program I1;, U = {p, ¢} is a splitting set dividing 1T,
into the bottom 11, and the top 177\ I1,. As we saw, [T has two p-equilibrium models:
T, = ({p}, {p}) and T2 = ({q}, {q}). Now, fixing T, we consider the theory IT’ =
I \IIp U {p} U {—q} which, by the replacement theorem, is equivalentto {—r A T —
r,L A=T — s,-s — s,p,—q}. After some trivial simplifications, this amounts to
{-r — r,ms — s,p,~q} whose unique p-equilibrium model is defined by T3 =
({p},{p,r,s}). Following similar steps, when fixing T we finally get the program
{s,—s — s, ¢, —p} with the only p-equilibrium model T4 = ({q, s}, {q, s}).

8 The proofs of both theorems are included in an extended version [3] of this paper.
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Concluding remarks

Partial equilibrium logic (PEL) provides a foundation and generalisation of the p-stable
semantics of logic programs and hence is arguably also a suitable framework for study-
ing the well-founded semantics of programs. In this paper we have extended previous
results on PEL by further examining its underlying logics HT2 and HT*, and pre-
senting tableaux proof systems for HT2, HT* and for PEL itself. As a contribution
to the computation of PEL in the case of disjunctive and nested logic programs, we
have shown how to apply the splitting method of [[Z/4]. Further optimisation of these
computational techniques is a topic for future work.
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