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Abstract. A formalism called partial equilibrium logic (PEL) has re-
cently been proposed as a logical foundation for the well-founded seman-
tics (WFS) of logic programs. In PEL one defines a class of minimal
models, called partial equilibrium models, in a non-classical logic, HT 2.
On logic programs partial equilibrium models coincide with Przymusin-
ski’s partial stable (p-stable) models, so that PEL can be seen as a way to
extend WFS and p-stable semantics to arbitrary propositional theories.
We study several extensions of PEL with strong negation and compare
these with previous systems extending WFS with explicit negation, no-
tably WSFX [10] and p-stable models with “classical” negation [11].

1 Introduction

The well-founded semantics (WFS) of [13] provides one of the most established
approaches to logic programming, and the well-known implementation XSB-
Prolog4 is extensively used in AI problem solving. Closely related to WFS is
the semantics of partial stable models due to Przymusinski [11]. Partial stable
(henceforth p-stable) models provide a natural generalisation of stable models [5]
to a multi-valued setting and on normal logic programs capture the well-founded
model as a special (minimal model) case.

Stable, p-stable and well-founded semantics have all been extended with a
second negation operator representing explicit falsity. In the first two cases this
was originally called classical negation [6, 11], in the latter case explicit negation
[10]. Nowadays the terms “strong” and “explicit” are often used interchangeably
to denote this second form of negation.

The term strong negation has its roots in logic and refers to the concept of
constructible falsity introduced by Nelson [8] and later presented in the form of
an axiomatic system by Vorob’ev [14, 15]. In the case of stable models or answer
sets it is appropriate to label the second negation “strong” because these models
correspond in an exact fashion to minimal models in an extension of Nelson’s
logic, sometimes called N5 (standing for 5 truth-values). A nonmonotonic exten-
sion of N5, called equilibrium logic, yields a foundation for answer set semantics
? This research was partially supported by CICyT project TIC-2003-9001-C02.
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as well as a means to extend the syntax of answer set programs to arbitrary
propositional theories [9, 7, 4]. Another, equivalent way to view N5 is to take the
superintuitionistic logic of here-and-there, (HT ), and form its least extension by
strong negation satisfying the Vorob’ev axioms.

These logical foundations for answer set programs with strong negation have
been extensively studied in the literature. Until recently there was no compara-
ble foundational study for well-founded and p-stable semantics; an underlying,
monotonic base logic was missing. Recently this situation has changed with
the development of partial equilibrium logic (PEL), a nonmonotonic formalism
proposed in [18] as a logical foundation for well-founded and p-stable seman-
tics. In PEL one defines a class of minimal models, called partial equilibrium
(p-equilibrium) models, inside a non-classical logic HT 2. It is shown in [18, 19]
that, on normal and disjunctive logic programs, p-equilibrium models coincide
with p-stable models, so that PEL can be seen as a way to extend WFS and
p-stable semantics to arbitrary propositional theories.

In this paper we study the result of adding strong negation ‘∼’ to HT 2

and hence to partial equilibrium logic. It is useful to work with a conservative
extension HT 2

u of HT 2 formed by adding a constant ‘u’ for ‘undefined’. We
consider a basic logical system HT 2∼

u and two different extensions of it. All three
are conservative extensions of HT 2

u . The base system is fully paraconsistent in
the sense that a literal and its contrary may be true in a single model. One
extension, HT 2

sc, obeys a “semi-consistency” property requiring that a literal
and its contrary cannot be true in a single model. Another extension, HT 2

coh,
obeys a form of the so-called coherence principle [10], sometimes formulated by
∼L→ ¬L, for any literal L, where ‘¬’ is default negation. Corresponding to these
three underlying logics, one obtains different variants of partial equilibrium logic
with strong negation.

While HT 2∼
u can already be considered suitable for handling paraconsistent

strong negation in this setting, its extensions relate to semantics proposed for
explicit negation in logic programming. Specifically we show that PEL based
on HT 2

sc captures precisely Przymusinski’s partial stable semantics for programs
with “classical” negation [11]. Furthermore, by a suitable encoding of program
rules into a particular kind of implications, the semantics WSFX of Pereira and
Alferes [10] is also interpretable in HT 2

sc. Finally, HT 2
coh captures the so-called

WFS with “strong negation” as defined in [2].

2 Routley semantics and strong negation

The logic HT 2 underlying partial equilibrium logic was defined in [18] as a finite-
valued extension of a logic N∗ whose semantics is given by direct combination
of Kripke semantics for intuitionistic logic and Routley style semantics for weak
negation ¬ [12]. Prior to considering the version of HT 2 with strong negation, we
first introduce this kind of negation to N∗, leading to a new logic we will denote
as N∗∼. Formulas of N∗ are built-up in the usual way using the logical constants:
∧, ∨, →, ¬, standing respectively for conjunction, disjunction, implication and



weak negation; N∗∼ adds to these strong negation, ∼. The rules of inference for
N∗ and N∗∼ are modus ponens and the contraposition rule for weak negation

(RC)
α→ β

¬β → ¬α

The axioms of N∗ (N∗∼) are as follows:

1. the axiom schemes of positive logic,
2. weak negation axioms:

W1. ¬α ∧ ¬β → ¬(α ∨ β) W2. ¬(α ∧ β) → ¬α ∨ ¬β
W3. ¬(α→ α) → β

3. and for N∗∼ one adds the following axiom schemata involving strong nega-
tion taken from the calculus of Vorob’ev [14, 15] :

N1. ∼ (α→ β) ↔ α ∧ ∼β N2. ∼(α ∧ β) ↔ ∼α∨ ∼ β
N3. ∼(α ∨ β) ↔ ∼α ∧ ∼β N4. ∼ ∼α↔ α
N5. ∼¬α↔ α

We introduce a notion of frame in the style of Routley [12].

Definition 1 (N∗∼ model). A Routley or N∗∼ frame is a triple 〈W,≤, ∗〉,
where W is a set, ≤ a partial order on W and ∗ : W −→ W is such that x ≤ y
iff y∗ ≤ x∗. An N∗∼ model M = 〈W,≤, ∗, V +, V −〉 is an N∗∼ frame 〈W,≤, ∗〉
together with two valuations V +, V − : At×W −→ {0, 1} satisfying the condition:

V +(−)(p, u) = 1 & u ≤ w ⇒ V +(−)(p, w) = 1 (1)

Valuations extend to all formulas in the following way:

• V +(ϕ ∧ ψ,w) = 1 iff V +(ϕ,w) = V +(ψ,w) = 1
• V +(ϕ ∨ ψ,w) = 1 iff V +(ϕ,w) = 1 or V +(ψ,w) = 1
• V +(ϕ→ ψ,w) = 1 iff for every w′ such that w ≤ w′,
V +(ϕ,w′) = 1 ⇒ V +(ψ,w′) = 1

• V +(¬ϕ,w) = 1 iff V +(ϕ,w∗) = 0
• V +(∼ ϕ,w) = 1 iff V −(ϕ,w) = 1
• V −(ϕ ∧ ψ,w) = 1 iff V −(ϕ,w) = 1 or V −(ψ,w) = 1
• V −(ϕ ∨ ψ,w) = 1 iff V −(ϕ,w) = V −(ψ,w) = 1
• V −(ϕ→ ψ,w) = 1 iff V +(ϕ,w) = 1 and V −(ψ,w) = 1
• V −(¬ϕ,w) = 1 iff V +(ϕ,w) = 1
• V −(∼ ϕ,w) = 1 iff V +(ϕ,w) = 1

The only difference betweenN∗∼ models and Routley models for the logic N∗

as defined in [18] is the presence of two valuations V + and V − and valuation V +

is defined in exactly the same way as the only valuation V of a Routley model. We
read V +(ϕ,w) = 1 as “ϕ is verified at w” and V −(ϕ,w) = 1 as “ϕ is falsified at
w”. A proposition ϕ is said to be true in an N∗∼ model M = 〈W,≤, R, V +, V −〉,
and we write M |= ϕ, if V +(ϕ, v) = 1, for all v ∈ W . A formula ϕ is valid, in



symbols |= ϕ, if it is true in every N∗∼ model. It is easy to prove by induction
that condition (1) above holds for any formula ϕ, ie, V +(−)(ϕ, u) = 1 & u ≤
w ⇒ V +(−)(ϕ,w) = 1. Moreover N∗∼ is complete for this semantics in the sense
that a formula is valid iff it is a theorem of N . Completeness proof for N∗∼ can
be obtained via an easy modification of the canonical model method used in [18]
to prove the completeness of N∗ wrt Routley models.

Note that axiom (W3) allows to define an intuitionistic negation ‘−’ in N∗∼.
Fix some propositional variable p0 and put ⊥ := ¬(p0 → p0) and −α := α→ ⊥,
then the 〈∨,∧,→,−〉-fragment of N∗∼ coincides with intuitionistic logic.

Verification and falsification for ∨, ∧, → and ∼ was defined in exactly the
same way as for paraconsistent Nelson’s logic N− [17], at the same time verifi-
cation conditions for ∨, ∧, → and ¬ are the same as validity conditions for these
connective in the logic N∗ [18], whence

Proposition 1. The logic N∗∼ is a conservative extension of both N− and N∗.

We say that a formula is in negative normal form (nnf) if it contains strong
negation only in front of atoms. The strong negation axioms allow one to move
strong negation through all other connectives, therefore, we have

Proposition 2. For any formula ϕ, there is a formula ψ in nnf such that N∗∼ `
ϕ↔ ψ.

Assume that we have chosen one or another procedure for reducing a formula
ϕ to its nnf ϕ. Now we assign to each atom p ∈ At the new atom p′ and to each
formula ϕ the formula ϕ′ obtained by replacing in ϕ each subformula ∼ p by p′.
In this way we obtain an embedding ofN∗∼ intoN∗. This method for eliminating
strong negation was discovered by Vorob’ev [14, 15].

Proposition 3 (Vorob’ev reduction). N∗∼ ` ϕ iff N∗ ` ϕ′.

3 HT 2 with strong negation

Given a semantic characterisation of some N∗ extension determined via a class
of N∗ frames, the least extension of this logic with strong negation can be defined
by considering N∗∼ models over the same class of frames. In this way we obtain
the definition of HT 2∼ from the logic HT 2. We first introduce briefly the latter.

The logical constants of HT 2 are ∧, ∨, →, ¬. Intuitionistic negation ‘−’ is
definable as −α := α → ¬(p0 → p0). The axioms and inference rules are those
of N∗ together with the schemata:

W4. −α ∨ −− α
W5. −α ∨ (α→ (β ∨ (β → (γ ∨ −γ))))
W6.

∧2
i=0((αi →

∨
j 6=i αj) →

∨
j 6=i αj) →

∨2
i=0 αi

W7. α→ ¬¬α
W8. α ∧ ¬α→ ¬β ∨ ¬¬β
W9. ¬α ∧ ¬(α→ β) → ¬¬α
W10. ¬¬α ∨ ¬¬β ∨ ¬(α→ β) ∨ ¬¬(α→ β)
W11. ¬¬α ∧ ¬¬β → (α→ β) ∨ (β → α)



and the rule (EC) α∨(β∧¬β)
α

HT 2 and HT 2∼ models are based on the same notion of frame:

Definition 2 (HT 2∼, HT 2 frame). An HT 2∼ (HT 2) frame is an N∗∼ frame
M = 〈W,≤, ∗〉 such that (i) W comprises 4 worlds denoted by h, h′, t, t′, (ii) ≤
is a partial ordering on W satisfying h ≤ t, h ≤ h′, h′ ≤ t′ and t ≤ t′, (iii) the
*-operation is given by h∗ = t∗ = t′, h′∗ = t′∗ = t.

Definition 3 (HT 2∼, HT 2 model). An HT 2∼ model M=〈W,≤, ∗, V +, V −〉
is an HT 2∼ frame together with N∗∼ valuations V +, V − : At×W −→ {0, 1}. An
HT 2 model is like an HT 2∼ model but with a single valuation V corresponding
to V + and extended in that way to all N∗ formulas.

In [18] it was shown that HT 2 is complete for the class of HT 2 models.

Proposition 4. The Vorob’ev embedding also holds for HT 2∼, that is:
HT 2∼ ` ϕ iff HT 2 ` ϕ′.

With the help of the Vorob’ev reduction one can easily pass from the axioms of
HT 2 to obtain those of HT 2∼.

Theorem 1. HT 2∼ = HT 2 + {N1, . . . ,N5}.
Proof. HT 2 axioms are ∼-free and only valuation V + is involved in checking
their validity. Since V + coincides with valuation V of HT 2 models all these
axioms hold in HT 2∼-models too. Vorob’ev axioms hold in all N∗∼ models,
in particular, in HT 2∼. To prove completeness let us take some ϕ 6∈ HT 2∼.
By Proposition 4, ϕ′ 6∈ HT 2. Let M′ = 〈W,≤, ∗, V 〉 be a counter model for ϕ′.
Defining V +(p, w) = V (p, w) and V −(p, w) = V (p′, w) we obtain a countermodel
M = 〈W,≤, ∗, V +, V −〉 for ϕ. ut

Corollary 1. HT 2∼ is the least N∗∼-extension with the property that it is a
conservative extension of HT 2.

The logic HT 2∼ is suitable to handle paraconsistent strong negation. Before
defining logics suitable for explosive versions of strong negation with or without
a coherence principle we have to introduce an additional constant into HT 2. Let
u be a new constant symbol that will stand for “undefinedness.”

Definition 4. An HT 2
u -model is an HT 2 model, where the constant u is inter-

preted so that V (u, h) = V (u, t) = 0 and V (u, h′) = V (u, t′) = 1.

Denote by HT 2
u the logic determined by the class of HT 2

u -models.

Theorem 2. HT 2
u is a conservative extension of HT 2. Moreover, HT 2

u = HT 2+
{u↔ ¬u}.



The proof is based on an easy observation that formula p ↔ ¬p is true in
an HT 2 model iff p is true at h′ and t′ and false at h and t. We define the next
three conservative extensions of HT 2

u with strong negation:

HT 2∼
u := HT 2

u + {N1, ...,N5},
HT 2

sc := HT 2∼
u + {p∧ ∼ p→ u},

HT 2
coh := HT 2∼

u + {p→ ¬ ∼ p ∨ u,∼ p→ ¬p ∨ u}.

As above, HT 2∼
u is the least conservative extension of HT 2

u with strong nega-
tion. Models of the other logics are characterised as follows.

Proposition 5. Let M = 〈W,≤, ∗, V +, V −〉 be an HT 2∼
u model.

(sc) M |= HT 2
sc iff there is no atom p such that V +(p, t) = V −(p, t) = 1.

(coh) M |= HT 2
coh iff for any atom p,

V +(p, t) = 1 ⇒ V −(p, t′) = 0, V −(p, t) = 1 ⇒ V +(p, t′) = 0.

One can see that in the case ofHT 2
sc a principle of partial or semi-consistency (sc)

is satisfied, whereas for HT 2
coh the right-hand condition of Item 2 is equivalent

to the coherence principle (coh). Although these conditions will be explained in
further detail in the next section, it is easy to see that (coh) implies (sc) and so:

Proposition 6. HT 2
coh is stronger than HT 2

sc.

We conclude this section by formulating Vorob’ev reductions for these logics.

Proposition 7. Let ϕ be a formula in the language {∨,∧,→,¬,∼, u} and At(ϕ)
denote the set of its atoms.

1. HT 2∼
u ` ϕ iff HT 2

u ` ϕ′
2. HT 2

sc ` ϕ iff HT 2
u ` (

∧
p∈At(ϕ) p ∧ p′ → u) → ϕ′.

3. HT 2
coh ` ϕ iff HT 2

u ` (
∧

p∈At(ϕ)(p→ ¬p′ ∨ u) ∧ (p′ → ¬p ∨ u)) → ϕ′.

4 Partial equilibrium logic with strong negation

At each world in an HT 2∼ or HT 2∼
u model M = 〈W,≤,∗ , V +, V −〉 a certain

set of literals (atoms or strongly negated atoms) is verified. Let us denote by
H,H ′, T, T ′ the four sets of literals respectively verified at each corresponding
world h, h′, t, t′. In case M is an HT 2 model, H,H ′, T, T ′ are simply sets of
atoms. More succinctly, we can represent M as the pair 〈H,T〉 so that we group
each pair of unprimed/primed worlds as H = (H,H ′) and T = (T, T ′). Notice
that H ⊆ H ′ and T ⊆ T ′ by construction of M. Given such pairs H,T we
define a partial ordering relation by H ≤ T iff H ⊆ T and H ′ ⊆ T ′. Note that
if 〈H,T〉 is a model then necessarily H ≤ T. The ordering ≤ is extended to a
partial ordering � among models as follows. We set 〈H1,T1〉 � 〈H2,T2〉 if (i)
T1 = T2; (ii) H1 ≤ H2. A model 〈H,T〉 in which H = T is said to be total. Note
that the term total model does not refer to the absence of undefined literals. To



represent this, we further say that a total partial equilibrium model is complete
if T has the form (T, T ).

Let Π be a set of formulas and let M range over HT 2 or HT 2∼
u models as

appropriate.

Definition 5 (Partial equilibrium model). A model M of Π is said to be
a partial equilibrium (or p-equilibrium) model of Π if (i) M is total; (ii) M is
minimal among models of Π under the ordering �.

In other words a p-equilibrium model of Π has the form 〈T,T〉 and is such that
if 〈H,T〉 is any model of Π with H ≤ T, then H = T. Partial equilibrium logic
(PEL) is the logic determined by truth in all p-equilibrium models of a theory.

We turn to the relation between PEL and logic programs. A disjunctive (resp.
normal) logic program is a set of formulas (also called rules) of the form

a1 ∧ . . . ∧ am ∧ ¬b1 ∧ . . . ∧ ¬bn → c1 ∨ . . . ∨ ck (2)

where m,n, k ≥ 0 (resp. m,n,≥ 0, k = 1), and a, b, c with subscripts range over
atoms. A program is called extended if a, b, c with subscripts range over objective
literals (ie, an atom p or its strong negation ∼ p). For reasons of space we do not
repeat here the definition of partial stable (p-stable) models of [11]. A central
result of [18, 19] is:

Theorem 3 ([19]). A total HT 2 model 〈T,T〉 is a p-equilibrium model of a
disjunctive program Π iff T is a p-stable model of Π.

The obvious corresponding variants of PEL with strong negation are obtained by
considering HT 2∼

u , HT 2∼
sc or HT 2∼

coh models respectively. Let us now reconsider
the conditions given in Proposition 5. We see that models of HT 2∼

sc are ‘semi’-
consistent in that the sets H,T (ie, the “founded” information) do not contain
any contrary pairs of literals p,∼p. On the other hand, models of HT 2∼

coh have
the property that p ∈ T ⇒ ∼p 6∈ T ′ and ∼p ∈ T ⇒ p 6∈ T ′. Hence in any
p-equilibrium model M over HT 2∼

coh, we have that M |= p ⇒ M |= ¬∼p and
M |= ∼p⇒M |= ¬p. This is exactly the coherence principle formulated in [2].

The fact that the logics HT 2∼
u , HT 2∼

sc and HT 2∼
coh are reducible to HT 2

u

via the Vorob’ev transformations given in Proposition 7 is not only significant
for proving completeness theorems. The transformation from ϕ to ϕ′ is linear
and allows us to transfer some key properties from ordinary PEL to the strong
negation variants. This applies in particular to the strong equivalence theorem
and complexity results. We say that two sets of formulas Γ1 and Γ2 are strongly
equivalent, if for any set of formulas Γ , Γ1 ∪ Γ and Γ2 ∪ Γ have the same p-
equilibrium models.

Theorem 4 ([18]). Sets of N∗ formulas Γ1 and Γ2 are strongly equivalent iff
Γ1 and Γ2 are equivalent as HT 2

u theories.

Corollary 2. Theorem 4 continues to hold for sets of N∗∼ formulas where
strong equivalence is defined wrt any of the given strong negation extensions
of PEL and HT 2

u is replaced by HT 2∼
u , HT 2∼

sc and HT 2∼
coh as appropriate.



Proposition 8. The complexity of reasoning tasks in (any of the variants of)
PEL with strong negation lies in the same class as that of ordinary PEL. In
particular, from [19] it follows that the decision problem for entailment in PEL
with strong negation (checking truth in all p-equilibrium models) is ΠP

2 -hard.

Note that as in the case of answer set semantics, the Vorob’ev transformation
allows reducing all strong negation variants to ordinary PEL, whose implemen-
tation strategies are discussed elsewhere [19].

5 Capturing WFS variants with a second negation

Let us focus now on extended logic programs without disjunction, consisting of
rules like (2) where k = 1, and where subscripted a, b, c are objective literals. We
denote B+(r) := {a1, . . . , am}, B−(r) := {b1, . . . , bm} and Hd(r) := c1. Some-
times B+(r) (resp. B−(r)) will be used as the conjunction (resp. the disjunction)
of their atoms. The whole body is denoted as B(r) := B+(r) ∧ ¬B−(r). A pro-
gram is said to be definite if B−(r) = ∅ for all its rules. Given a set of objective
literals I and a definite rule r, we write I |= r when Hd(r) ∈ I if B+(r) ⊆ I and
I |= P when I |= r for all r ∈ P . The set I is consistent when it does not contain
a pair of literals p and ∼ p. The reduct [5] P I of a normal logic program P wrt
interpretation I corresponds to: (i) removing all r ∈ P with B−(r) ∩ I 6= ∅; and
(ii) removing the default literals from the remaining rules. As P I is definite, it
has a least model usually represented as ΓP (I), or just Γ (I) when there is no
ambiguity. The seminormal version Ps of a program P consists of a rule like
¬ ∼ Hd(r) ∧ B(r) → Hd(r) per each rule r ∈ P . We write Γs to stand for ΓPs ,
when there is no ambiguity about P . Furthermore, we consider that Γs(I) is not
defined for an inconsistent I.

A partial stable (p-stable) model is a pair I ⊆ J satisfying J = Γ (I) and
I = Γ (J). When I is consistent, it is called p-stable model with “classical nega-
tion” [11]. When (I, J) further satisfies coherence (L ∈ I implies ∼ L 6∈ J) it is
called p-stable model with “strong negation” [2]. A WFSX p-stable model is any
pair of sets of literals (I, J), with I consistent and I ⊆ J , satisfying J = Γs(I)
and I = Γ (J). The well-founded model (WFM) is the least-information p-stable
model (if one exists) in each of these variants. The WFM is computable by
iteration on operator ΓΓ or, in the case of WFSX, on ΓΓs.

Theorem 5. 〈T,T〉 is an HT 2
sc p-equilibrium model of an extended program P

iff T is a classical-negation p-stable model of P .

Theorem 6. 〈T,T〉 is an HT 2
coh p-equilibrium model of an extended program

P iff T is a strong-negation p-stable model of P .

Our WFSX encoding translates a program P into P ′ adding, for each r ∈ P ,
the pair of implications: u∧¬ ∼ Hd(r)∧B(r) → Hd(r) and B(r) → Hd(r)∨ u.

Lemma 1. Let M = 〈H,T〉, with H = (H,H ′) and T = (T, T ′), and let P
be an extended logic program. Then M |= P ′ in HT 2

u is equivalent to the four
conditions: H ′ |= PT

s , H |= PT ′
, T ′ |= PT

s and T |= PT ′
.



Theorem 7. A pair T = (T, T ′) is a WFSX p-stable model of an extended logic
program P iff 〈T,T〉 is an HT 2

sc p-equilibrium model of P ′.

Proof (sketch). The left to right direction follows quite directly from Lemma 1.
For right to left, if 〈T,T〉 is an HT 2

sc p-equilibrium model of P ′, from Lemma 1
we get T |= PT ′

and T ′ |= PT
s , so we only have to prove their minimality. If we

have some H ⊂ T , H |= PT ′
, then we can use Lemma 1 to conclude that the

interpretation 〈(H,T ′),T〉 would be model of P ′ smaller than 〈T,T〉. If we have
some H ′ ⊂ T ′, H ′ |= PT

s , something similar happens applying Lemma 1 on the
interpretation 〈(H ′∩T,H ′),T〉, although in this case, to prove thatH ′∩T |= PT ′

we must use consistency of T . ut

6 Concluding remarks

Partial equilibrium logic (PEL) provides a purely logical characterisation of p-
stable models and hence, as argued in [18, 19], yields a natural logical foundation
for p-stable semantics and WFS. We have shown here how strong negation can
be added to PEL while maintaining the same complexity of reasoning and pre-
serving strong equivalence theorems. While the coherence principle (∼L→ ¬L),
much discussed in [3], seems plausible for explosive strong negation, originally
[10] strong negation was added to logic programs without this principle. When
we deal with strong negation in a paraconsistent setting it seems reasonable
to explore different options: logics including coherence as in [1] as well as logics
without, as defined here. Indeed, if we do not assume that models are consistent,
the fact ∼ p should not imply that we can not prove p. In this way we are led
to the three conservative extensions of HT 2 with strong negation, viz. HT 2∼

u ,
HT 2∼

sc and HT 2∼
coh, where only the latter satisfies coherence.

We saw that PEL over HT 2∼
coh provides an alternative to the semantics WFSX

since its p-equilibrium models do not coincide with the p-stable models of [3].
Evidently there are different solutions for adding a second, coherent negation to
programs under WFS. There may be a trade-off between obtaining intuitively
correct inferences and computationally desirable properties. For example, WSFX
over normal programs enjoys computationally useful properties like relevance
[3] (not obeyed by PEL in general), while some example programs discussed
above seem to lead to less intuitive inferences under WSFX than under PEL.
Nevertheless we have seen a precise sense in which WSFX is interpretable in
PEL over HT 2∼

sc ; moreover PEL offers a genuinely logical treatment of strong
negation, defined over arbitrary formulas. In the case of the p-stable semantics
of Przymusinski [11], on the other hand, we can derive precise agreement with
the version of PEL defined over the logic HT 2∼

sc , and therefore obtain a means
to extend p-stable semantics to arbitrary propositional theories.

Summarising, we have studied extensions of PEL with strong negation based
on natural, logical principles. Capturing WSFX or other specific semantics was
not a primary aim. We have provided precise logical characterisations for various
extensions using axiomatic systems and we proved Strong Equivalence theorems.
As a by-product we showed that some of our extensions are closely related to



previously proposed semantics. In [1] there is a frame-based approach to WSFX
and its paraconsistent variant, WSFXp, but the aims and approach seem to be
different. [1] does not discuss logic, provide axiomatisations or strong equivalence
theorems. For these reasons, and for reasons of space, we have not provided a
comparison with the work of [1]; this topic is postponed for the future.
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