Passing through holes and getting entangled by strings:
an automated solution for a spatial puzzle

Paulo Santos' and Pedro Cabalar?

Abstract. This paper investigates the challenging problem of en-
coding the knowledge and reasoning processes involved in the com-
mon sense manipulation of physical objects. In particular we provide
a formalisation of a domain involving rigid objects, holes and a string
within a reasoning about actions and change framework. Therefore,
this work investigates the formalisation and reasoning about flexible
objects and void space (holes) in a single domain. Preliminary results
of automated reasoning within this domain are also presented.

1 Introduction

The field of qualitative spatial reasoning (QSR) [13] attempts the
formalisation of spatial knowledge based on primitive relations de-
fined over elementary spatial entities. One of the best known QSR
theories, for instance, is the Region Connection Calculus [8], which
is a first order axiomatisation of space based on regions and the con-
nectivity relation. Other representations of spatial knowledge include
theories about shape [6], distance [5], position [2] amongst others as
surveyed in [4]. However, the use of qualitative spatial knowledge
within a planning system remains largely neglected.

One possible reason for the lack of problem solving methods han-
dling qualitative spatial knowledge may be connected to the fact that
research on QSR has being conducted independently from research
on reasoning about actions and change (RAC) and Al planning (apart
from exceptions such as [12] and [11]). One of the motivations for
the present work is to approximate RAC to reasoning about spatial
knowledge by investigating the formalisation and automatic solution
of a challenging spatial puzzle.

This paper assumes the puzzle called The Fisherman’s Folly (Fig-
ure 1) that involves spatial entities such as strings, posts, rings,
spheres and holes (through the last ones some (but not all) domain
objects can pass). The Fisherman’s Folly puzzle consists in going
from the configuration shown in Figure 1(a) to the configuration in
Figure 1(b) by moving the objects positions respecting some do-
main restrictions. In this sense, this puzzle is similar to the clas-
sic 8-puzzle; however, in the present work the domain objects have
non-trivial spatial characteristics, such as flexibility and permeability
through holes.

The elements of the puzzle are a holed post fixed to a wooden base,
a string, a ring, a pair of spheres and a pair of disks. The disks and
spheres are attached to the string, along which the latter can move
but not the former, which are fixed to the string endpoints.

In the initial state (shown in Figure 1(a)) the post is in the middle
of the ring, which is supported on the post’s base. On the other hand,
the string passes through the post’s hole in a way that one sphere and

1 Centro Universitério da FEI, Sdo Paulo, email: psantos @fei.edu.br
2 Corufia University, Spain, email: cabalar@dc.fi.udc.es

(a) The initial state.

(b) The goal state.

Figure 1: A spatial puzzle: the Fisherman’s Folly.

one disk remain on each side of the post. It is worth pointing out
that the spheres are larger than the post’s hole, therefore the string
cannot be separated from the post without cutting either the post, or
the string, or destroying one of the spheres. The disks and the ring,
in contrast, can pass through the post’s hole. The goal of this puzzle
(depicted in Figure 1(b)) is to find a sequence of transformations of
the spatial configuration of the puzzle’s objects such that the ring
is freed from the system post-base-string, maintaining the physical
integrity of the domain objects. In fact, the goal state is not fixed to
the one shown in Figure 1(b). In order to be considered a solution, it
is sufficient to move the ring completely out of the rest of the system,
regardless the final configuration of the remaining domain objects.

The complexity imposed by the distinct states of the string allied
to the existence of holes in the domain objects makes the formal-
isation and reasoning about this domain a challenging problem. In
order to provide a formal account of the spatial relations involved in
the Fisherman’s Folly we need to consider in our formalisation (and
reasoning processes) the holes in objects, such as the post’s hole and
the space limited by the ring. This calls for assuming holes as real
objects, therefore having the same ontological status as spheres and
disks. Reasoning about holes and holed objects has been discussed in
detail in [14] from the standpoint of topology. However, to the best of
our knowledge, this paper presents the first approach that investigates
the problem of how these entities could be engaged in actions.

The string brings a further source of complexity which comes from
the related infinity of distinct configurations due to its flexibility. The
problem of incorporating knowledge about strings and string manip-
ulation has been tackled in [7] where a robotic system capable of
learning to tie a knot from visual observation is proposed, this sys-
tem is called the Knot Planning from Observation (KPO) paradigm.
In KPO each state of a string is represented by a matrix encoding the
string segments, which are defined by the portion of the string that
lies in between its endpoints and points where it crosses over itself.

Actions on flexible objects in this context are defined as an extension
of the Reidemeister moves in knot theory [10]. This representation
is suitable for the identification of string states from a computer vi-
sion system; however, it falls short in the context of problem solving,
which is the main purpose of the present paper. In this work, we pro-
pose a representation for string states that takes into account other
objects (including holes) that may be related to the string in the do-
main. In contrast to the work proposed in [7], we do not take into
account knots. Incorporating some of the ideas of the KPO paradigm
in our work shall be investigated in the future.

In summary, the purpose of this paper is to investigate the for-
malisation and autonomous solution of a spatial domain involving
holes and a solid objects(including a string), contributing with a
novel benchmark problem for common sense knowledge represen-
tation. In order to report this work, the present paper is organised
as follows: Section 2 presents a basic ontology about holes, where
we revisit some concepts from [1]; Section 3 presents a pair of base
shape primitives used to define a sufficient condition for object pen-
etrability through holes; Section 4 introduces a formalisation of the
puzzle that is used for finding an automated solution for the Fisher-
man’s Folly, as presented in Section 5.

2 A theory about holes

There are at least three distinct types of holes [1]: cavities, i.e. holes
that are entirely hidden inside their hosts; hollows, which are super-
ficial depressions on the host; and, perforating holes (or tunnels),
which are holes that have at least two distinct entrance boundaries. In
this paper we shall deal only with perforating holes, since only these
are relevant to the puzzle’s solutions®.

In the formalisation described below, holes are assumed as open
regions which boundaries belong to their host objects. The relation-
ship between holes and their hosts are formalised using the elemen-
tary relation: H(x,y), meaning “x is a hole in the object y” (con-
versely, “y is the host of x) [1].

In this work the domain objects are identified with their occupancy
regions, whereas holes are parts of an object’s complement that are
inside the object’s occupancy region and are not parts of any other
object. Therefore, as the domain is only populated by spatial regions,
it is convenient to include in the basic theory about holes a set of
mereological relations accounting for the degree of connectiveness
between spatial regions. In this work we assume RCC-8 ([8, 9, 3])
which is a many-sorted first-order axiomatisation of spatial relations
based on a dyadic primitive relation of connectivity (C'/2) between
two regions. Informally, assuming two regions « and y, the relation
C(z,y), read as “x is connected with y”, is true if and only if the
closures of x and y have a point in common. Assuming the C'/2
relation as primitive, and that z, y and z are variables for spatial re-
gions, the following mereological relations can be defined DC'(z,),
which stands for “x is disconnected from y”; EQ(z,y), for “x is
equal to y; PO(z,y), for “z partially overlaps y”; EC(z,y), for
“ the closure of = and y are externally connected”; T PP(z,y), for
“z is a tangential proper part of y”’; NT PP(x,y), for “z is a non-
tangential proper part of y”; and, TPPi/2 and NTPPi/2 are the
inverse relations of TPP/2 and NT PP/2 respectively. The con-
ceptual neighbourhood diagram of RCC8 is shown in Figure 2.

Assuming RCC, the relation H (z, y) is constrained by the axioms
(1) and (2) below. Axiom (1) guarantees that the host of a hole is not

3 Therefore, in the remainder of this paper we will use the words: tunnels,
perforating holes and holes interchangeably.

@ TPP

© @” S
NTPP

OO
@ .~ > A NTPPi
- (O,
TPPi

Figure 2: The RCCS relations and their conceptual neighbourhood diagram.

DC EC

itself a hole; whereas Axioms (2) states that the hole and it’s host
object are externally connected.

Hzy — —H(y, 2) e
Hzy — EC(z,y) 2)

Moreover, Axiom 1 implies that the relation H is irreflexive
(meaning that no hole hosts itself) and anti-symmetric (i.e., the host
cannot be a hole of its resident hole).

An essential characteristic of holes is that they can be interpene-
trated by other objects. Therefore, the hole ontology has to include
relations about the relative location of a hole wrt the penetrating ob-
ject. In a world uniquely populated by spatial regions, relative lo-
cation can be expressed by mereological relations. In order to de-
fine relative location wrt a hole, we need the concept of a hole entry
boundary (EB) that is defined in [1] by the relation EB(z, x, y), read
as “z is the maximally connected part of the hole x (fiat) boundary
that is nowhere a boundary of the host y”.

We can now express the following relations:

e an object x is wholly outside a hole h (W O(x, h)) ifft DC(z, h);
e an object x is just outside a hole h wrt the hole entry boundary h;
(JO(z, h, hy)) iff

EB(hi, h,y) A EC(z, hi) A —~TPP(x, h);

e 1 is partially outside h wrt the entry boundary h; (PO(x, h, h;))
iff
EB(hi,h,y) A PO(z,h) A C(z, hi);

e 1 is just inside h wrt the hole entry boundary h; (JI(z, h, h;)) iff
EB(hi,h,y) N EC(z,h;) NTPP(z,h).
ez is wholly inside (WI) h iff TPP(x,h) N NTPP(z,h);

The relations WO, JO, PO, W1 and J1I are schematised in Figure
3, where the host object is the cuboid, the hole is the cylindrical figure
inside the cuboid and the penetrating object is represented by the v-
shaped figure.

It is worth pointing out that, in contrast to [1], encoding the relative
location of an object wrt a hole using RCC relations allowed us to in-
clude both JO and JI into the same formalism since RCC is defined
over the closure of regions. Therefore, the concepts of just inside and
just outside can coexist with the initial assumption of holes as open
regions. Another difference between the formalism presented above
wrt that proposed in [1] is the inclusion of the hole entry boundary in
the definitions of JO, PO and J I, in order to account for the action
of an object passing through a particular hole entry boundary.

Figure 3 can be understood as a sequence of continuous transitions

(a) (b)

(©
JO(v, h, h;) PO(v, h, h;)

(d) (e)
JI(v, h, ;)

Figure 3: Relative location of an object v wrt a hole h.

from the relation wholly outside to wholly inside. In order to provide
a formal solution to the fisherman’s folly, however, we need to be
able to locate an object in space that is WO (with respect to every
hole) but that is near a particular entry boundary of a tunnel. In ef-
fect, tunnels are important qualitative landmarks that could be used
as local reference frames. This idea is developed in the next section.

2.1 Hole subspaces

It is not unusual in the common language to characterise sections of a
road by the sections before and after a tunnel. In a domestic domain,
we decide where to locate (non-wireless) electronic objects accord-
ing to the nearby plugs (which are, in fact, tunnel entry boundaries).
The issue of reasoning about tunnels becomes quite critical when the
problem is to locate buried infrastructure so that repairs can be con-
ducted on a particular network of pipes and cables underground®. In
spite of these facts, to the best of our knowledge, there are no ref-
erences that account to the potential use of holes entry boundaries
as local reference frames. This section describes an initial attempt to
cope with this issue.

In this work, we assume that the entry boundaries are uniquely
identified by a symbol referring to their host hole plus a subscript
number, that differentiates each of the EBs within a single hole (as
shown in Figure 4). If a global reference frame is assumed in the
domain, the entry boundaries can be identified by the 3D Cartesian
coordinates of their respective centre points; thus, the local reference
provided by the entry boundaries could be associated to a global ref-
erence frame. In this work, however, objects are located with respect
to the near neighbourhoods of the hole entry boundaries.

More formally, an object v is in the near neighbourhood (NN) of a
hole EB h; ift it is just outside it or it is connected to another object
that is either just outside the hole or partially overlapping it. In other
words:

e 1 is in the near neighbourhood of a hole entry boundary h;
(NN (z, h,)) iff

JO(CC, h, h’b) v 3y(cf(mﬁl/) A (JO(y, h, hl) v PO(y, h, h’b)))

4 cf. “http://'www.mappingtheunderworld.ac.uk/” last access on 6/4/2006.

oo
40 o |

Figure 4: Two holes h an g, and their respective entry boundaries, within a
single object.

In the Fisherman’s Folly puzzle, however, we only need to con-
sider holes that have only two entry boundaries and null depth (Fig-
ure 5). The entry boundaries of this kind on hole are called the poles
of the hole. These poles subdivide the space local to the hole into two
parts, named the hole subspaces.

Figure 5: Poles and subspaces of a hole.

Figure 5 represent the hole poles and their relative subspaces,
whereby the hole is the shaded region, the poles and the subspaces
are represented by a ‘+” and a ‘-’ sign. Thus, we can represent, for
each hole h in the puzzle, its corresponding poles as h~ and h™. Fur-
thermore, if a is a hole pole, then —a represents the opposite one, so
that —=h~ = h* and —h" = h™.

We are now capable of expressing formally that an object is near a
tunnel (e.g., a car is parked outside the Eurotunnel entrance) or that
objects are related to a network of tunnels (which is the case of the
puzzle in question). However, in order to account for the main issues
involved in the Fisherman’s Folly, the theory has to include some
basic ideas about object’s shape so that it is capable of expressing
object’s penetrability through holes. The next section discusses some
insights on this issue.

3 The shapes of objects

The shape of objects is, at the same time, the most elusive and the
most important issue in reasoning about the common sense space
[4]. In this paper we cannot scape from taking into account object’s
shape (at least in very basic terms), since the solution of the puzzle
involves passing an object of a particular shape and size, through a
hole entry boundary (also of a particular shape and size). In fact, for
the purposes of this work, shapes are only needed to facilitate the
proposal of a sufficient condition for an object to pass through an
entry boundary. To this end, we propose two shape primitives with
which we identify the shapes of the puzzle.

3.1 Shape Primitives

This work assumes ellipsoids and cylinders (Figure 6) as the basic
primitives to describe the puzzle’s object shapes.

An ellipsoid (Figure 6(a)) is a 3 dimensional geometric figure
which every planar cross section is an ellipsis. This figure has three

(a) Ellipsoid

(b) Elliptic
cylinder

Figure 6: Base shape primitive.

symmetry axes: AB, CD and EF (as shown in Figure 6(a)) that are
called, respectively, major, mean and minor axes. Thus, the spheres
in our puzzle have ellipsoid shapes whose three symmetry axes are
of the same lengths. Similarly, the post has the shape of an ellipsoid
with major axis much greater than both mean and minor axes.

In an analogous way, we use an elliptic cylinder (Figure 6(b)) as
the primitive that accounts for the shapes of the objects not repre-
sented by the ellipsoid. An elliptic cylinder is a cylinder whose base
is an ellipsis. Therefore, this figure also has a major, mean and minor
axes (respectivelly axes AB, CD and EF in Figure 6(b)). There-
fore, the shape of the puzzle’s disks and ring are cylinders whose
axis AB is much smaller than C'D and E'F, and the last two have
the equal lengths. The shape of the post base is approximated to a
cylinder analogous to the previous ones, however with greater pro-
portions. Similarly, the string has the shape of a cylinder where AB
is much greater than CD and EF.

The string’s shape has an extra complication which is its intrin-
sic flexibility. Thus we should also consider as the string shape ev-
ery different shapes that it can assume from any sequence of non-
destructive transformations. This issue turned out not to be essential
in our formal solution for the fisherman’s puzzle and is left for a fu-
ture investigation.

In the next section we present a sufficient condition for an object
to pass through a entry boundary.

3.2 A sufficient condition for passing an object
through a hole

We first assume a simple common sense conjecture that every object
is conducted through a hole in the direction of the largest semi-line
connecting any two points of its boundary, this semi-line we call con-
ducting line. Thus, the post shall be conducted through the ring hole
in the direction of its major axis; similarly, the disks are conducted
through the post hole via its diameter (i.e., via its mean and minor
axes, not its major).

Let’s define the region defined by the orthogonal projection of an
object o (taken through the object’s conducting line) as pl(p) and the
region defined by the orthogonal projection of a hole entry boundary
h; as p(h;). Now we say that an object can pass through a hole if it
is possible to superimpose pl(p) and p(h;) so that

TPP(pl(p),p(hi)) V NTPP(pl(p), p(h:)) V EQ(pl(p), p(hs)).

Thus, we know that the disk passes through the post hole because
there is a projection of it that is non-tangential proper part of the
hole’s entry boundary.

Now that we have a way of checking whether a particular object

can pass through a determined hole. In the next section we abstract
shapes away and deal only with the object’s names allied with a rela-
tion pass_o, defining the action of passing an object through a hole
(as discussed in Section 5).

4 A formalisation of the Fisherman’s Folly

The formalisation of the puzzle assumes a sort for holes, and a second
sort called long object that includes the string (str) and the post (p).
If we momentarily forget the hole in the post, both objects are “long”
in the sense that, in principle, they could be simultaneously crossing
several holes. Another common feature is that we can recognise two
tips in each of these objects, which are the endpoints of their major
axes. Thus for each long object [, we represent its two tips by [~
and [T, Each tip of a long object can be linked to something else.
For instance, the string tipss are connected to the disks, whereas the
bottom of the post is linked to the post base. Although encoded in
the same sort, the string and the post have an obvious difference: the
flexibility inherent in the former, which is not a characteristic of the
latter. As we shall see, in this work the string’s flexibility is reflected
in the constraints imposed on the movements of the domain objects
connected to it.

The rest of objects in the puzzle, that is the disks (d1, d2) and the
post base (b), will just be classified as regular objects, without show-
ing any particular feature, excepting perhaps that by their shapes,
they can or cannot pass through each given hole.

We illustrate the formalisation of the puzzle domain using dia-
grams. In these diagrams a box represents a hole, a circle a regular
object, a thick line stands for a long object and a small black circle
represents a link or connection. An example of this graphical repre-
sentation is shown in Figure 7. Note how the post has been divided
into a post hole (ph) linked to the top part of the post body (p). It
may be reasonably objected that this division is not so natural, but it
is also true that it would be possible to build an “equivalent” puzzle
where, for instance, ph was a ring and p a second string.

(a) So (initial state) (b) S1 (d2 passes left)

Figure 7: A pair of puzzle states.

Since each long object X can be crossing several holes, we will
represent this using a list of crossings, called chain(X). This list
should collect the sequence of all hole crossings made by object X
starting, for instance, from its negative tip and moving towards its
positive one, whereas the same hole may occur several times in the
list. Furthermore, the direction in which the string crosses the hole
is also relevant. To see why, assume we represent the situation for
Figure 8(a) simply as chain(str) = [ph, s1, ph, s2, ph, ph|. Then,
we could not distinguish Figure 8(a) from Figure 8(b):

Figure 8(b) clearly represents a substantially different situation wrt
Figure 8(a): the disk d2 is now to the right (or positive side) of the

@ | RO
e | <@
h|+ -
| . _ 2 [l | . _ phls ~—
ESaimE Asaiimm:

(2) (b)

Figure 8: Two different states that could not be distinguished without
crossing directions.

post hole ph. Instead, a more suitable representation of Figure 8(a)
would be: chain(str) = [ph~,st,ph",s5,ph™,ph~]. The list
chain is, therefore, a more direct representation of the ideas dis-
cussed in Section 2.

Using the formalisation of the puzzle in terms of the list chain,
presented in this section, we are able to define the basic actions on
domain objects, as introduced below.

5 Planning with the puzzle

In this section we define the two actions that implement the basic
movements on the puzzle’s objects: the action pass_o (passing an
object through a hole) and the action pass_h (passing a hole through
another hole).

5.1 Moving object endings: action pass_o

The action pass_o(A, B) represents passing a long object tip A
through some hole towards its tip B. For example, the execution
pass_o(strt, ph™) in the initial state Sp leads to S1 (both depicted
in Figure 7) and corresponds to moving the positive ending of str
(currently linked to disk d2) to the left of the post hole. It is clear that
the execution of pass(X ™+, B) (tesp. pass(X ~, B)) may equally
mean that we are adding or removing the hole from chain(X) de-
pending on the context. For instance, the movement described above,
pass_o(strt, ph™) should add ph~ to chain(str) leading to the list
[s,pht,s3,ph~] in Si, whereas performing pass_o(str™, ph™)
in that state should return us to the initial situation Sp, removing
ph™ from the list.
The possible effects of pass_o are depicted in Figure 9.

pass_o(A,B)
—

pass_o(A,-B)

Figure 9: Possible effects of pass_o.

Looking from the right to the left execution of pass_o, we
can conclude that, when we are performing pass_o(X ™', B) on

the chain(X) = [...,—B], we must remove —B from the tail
of this chain. The analogous case would be pass_o(X ~, B) with
chain(X) = [-B,...] where we would remove —B from the

head of chain(X). If none of the two previous cases occur, then
pass-o(A, B) is actually inserting a new crossing in chain(X).
Thus, pass_o(X ™, B) adds crossing B in the tail of chain(X)
whereas pass_o(X ~, B) adds crossing — B to the chain head.

5.2 Passing holes through holes: action pass_h

The previous action is not enough for describing the solution of the
problem, since it does not take into account the movement of passing
an (object containing a single) hole through another hole. To under-
stand why, let us assume that, given the initial situation depicted in
Figure 7 we tried to move the ring up. This is equivalent to move the
post hole ph down the ring, that is, to pass ph through r~. So we
would need an action such as pass_h(A, B) where A is now a hole
and B a hole pole. Back to the example, we would execute the action
pass_h(ph, ™) on the initial situation leading to the resulting state
depicted in Figure 10.

dl - @+ ;

- MJ(d2
u +O

[- |

Figure 10: Possible effect of pass_h.

The most relevant effect of this action is that the string chain,
which was previously unrelated to the ring hole, has gained two
new crossings as an effect of pass_h. In other words, the list:
chain(X) = [s{,ph?,s]] has to be updated to: chain(X) =
[s1, 77, ph?, Y 53]

5.3 Possible movements

This section presents some possible movements that can be operated
applying the two rules defined above. In the diagrams, we assume
that upmost and rightmost endings of long objects are positive.

b . b
h L -_— h L |
[« NI
0] e P
(1L)
[..,h1at, 20,07,] [...,hT et R et R b7,]

In Move (1R) we have that z is not contiguous to h in the chain.
Therefore, by executing pass_h(x, h™) we replace 2™ by the triple
h™, ", hT. Movement (1L) starts in a state where z is preceded
and succeeded by h in the chain but with alternate signs. A second
possible movement would be:

L~]
o= pE

[..,hT,at, 2t R, ...] [..

The problem of Move 2R is that it cannot be applied when x is
followed by h™ instead of h ™, as shown in the instance of movement
1, as follows:

(IR)

(1L)

(2R)

(2L)

[..,hT, etz T ... [hT, et R 2T AT AT]
In general, assuming we want to execute pass_h(z,e) and z is
crossed by some string, then for any string Y crossing x, and any
occurrence of z in chain(Y) we have the following list of possible
movements:

chain(Y) = [...,a,2°,b,...] = [...,a,e,2%, —e,b,...
with a,b & {e, —e} ora =e,b = —e.
chain(Y)=1[..,—e,z%e,...] = [...,2%,...]

chain(Y) = [...,a,2%e,...] = [..,a,e,2%,...] witl
a# —e

chain(Y) =1[...,—e,2%,a,...] = [..., 2%, —e, a,...] with
a # e}

Note that the above movements are complete, in the sense that if
occurs in chain(Y') as follows [...,a,x*,b,...] both a and b could
be equal to e, equal to —e or none of the two. As a result, we would
have 3 x 3 = 9 possibilities which, for brevity we do not depict
here, but can be seen to be all covered by the movements above. The
cases in which x is at head or tail end of the chain are also covered
by assuming that the ends themselves are elements different from all
the rest in the list.

Another important observation is that, while all the represented
elements in each movement would be involved in the distinction of
the movement type, only the underlined parts constitute the move-
ment effect. This means, for instance, that in movement (2R), a is
only used in the predecessor state, to establish that we have a (2R)
movement and not a (1L), whereas in the successor state, it could
be the case that a results moved to the left or even removed by
the effect of another movement (remember that £ may occur sev-
eral times in the chain). An example of this accumulated movement
would be, for instance, the execution of pass_h(xz, h™) on the list
[h=, 2T, hT, 27, h'] where we would perform (1L) on the first =
and (2R) in the second leading to [z ™+, b, 7).

With the representation developed above we can now formally ex-
press one solution to the Fisherman’s puzzle and the sequence of
states involved in its execution. Figure 11 shows this solution step by
step and depicts the corresponding spatial configurations of states S
through S5 (S> and S3 were already shown in Figure 7).

Clearly, S5 is a solution, since the ring 7 is not passed through any
long object. Note that the action performed in state S is actually a
combined one. This is because moving the ending p™* to r~ implies
passing also the post hole, as p™ and ph are linked.

The next section discusses an implementation of the puzzle into
an action language.

5.4 A simple Prolog implementation

As an actions domain, our abstraction of the Fisherman’s folly is
quite simple in the sense that most complex features of actions
reasoning are not required for the problem. We deal with two actions,

state | chain(p) | chain(sir) next action(s) movements
5 S | [T [sf,ph¥,s]] pass_ofstr T, ph™)
! ! 5| bl [, ok, s, ph7] pass.o{pt,e7) | (LR)x 2
[] & pass_hiph, r)
m -— m ‘ Sa [] [sl+,1'_, pht +t, s;", ¥, ek, +] pﬂ.ss-h(sz,r—) (1L}
1] (L)] 3] [sf, 7=, pht, st g 1] pass_h{r,pht) (2RH-(2L)
L] L] 3, [[si,ph"’ ‘.l';, st T, oo pass_hiss,) (1L}
%= |l [s,phT, 5T, ph7]

Figure 11: A formal solution for the Fisherman’s puzzle.

pass_o and pass_h whose execution causes a direct effect on the
fluents chain(X), for each long object X. Rather than providing
a precondition per each action, we have found more convenient to
specify general constraints in which the actions are not executable.
We have used a Prolog predicate nonexecutable(S,A) to represent
when an action A cannot be performed in a state S, including the
rules:

nonexecutable(_, pass-o([X,], [H,])) :
cannot_pass(X, H)
nonezecutable(S, pass_o(P, [H,])) :
member(linked_to(P) = X, S)
nonezxecutable(_, pass-h(X,[H,])) :
nonexecutable(S, pass_h(X,_)) :
member(linked_to(-)

,cannot_pass(X, H),!.
—cannot_pass(X, H),!.

=X,8),.

The pairs [X,Y] are used to represent tips of long objects, so that
for instance, [p,+] would stand for p™. The fourth non-executability
condition is used to force that, when an object tip is connected to a
hole, the planner tries first to pass the object tip and later the hole
in a same transition. In this way we avoid irrelevant solutions were
we can try to do it in the opposite ordering, with exactly the same
effects.

Of course, the main difficulty of this scenario from the standpoint
of planning representation languages (STRIPS, ADL, PDDL) or even
formalisms for action reasoning is the need for dealing with lists and
pattern matching. In fact, this has motivated the choice of Prolog
in order to build this preliminary prototype. Our implementation in-
cludes a Prolog predicate process_chain(X,HP,L1,L2) to describe the
effect of performing pass_h(X, HP) on chain list L] leading to list
L2. An example showing the implementation of movement (1R) is
shown below.

process_chain(X, HP,[A,[X, S], B|Cs], Ds) :
opposite(HP, HP1), A\ = HP1,B\ = HP,!,
process_chain(X, HP, [B|Cs], Ds0),
Ds =[A,HP,[X,S], HP1|Ds0].
Note how the right neighbour of [X,S], the crossed tip B, is used
to keep processing the rest of the chain in the recursive call, and how

the result of this recursive call DsO may not contain B any more — it
could be deleted by an accumulated movement (1L).

From the planning algorithm point of view, we have just imple-
mented a blind search, relying on depth-first forward chaining with
an iterative deepening strategy. Since the plan is really short, the Pro-
log program’ just takes 10.30 seconds to find a first solution, despite
of the inefficient planning strategy.

It is interesting to observe that the program actually finds sev-
eral solutions in five steps. For instance, apart from the obvi-
ous symmetric solution where we begin working with d; instead
of d2 making pass(s™,ph™), we also get a variant of the de-
picted solution in Figure 11 where to reach state S3 we exe-
cute instead the sequence pass_o(str™, ph™), pass_h(s2,r~) and
pass_o(p™,r7) & pass_h(ph,r~). This solution is not valid for
the original puzzle since, although both the sphere and the post can
pass through the ring, they cannot do so simultaneously. For imme-
diate future work, we plan extending our representation so that the
predicate cannot_pass describes when a group of objects cannot be
altogether simultaneously passing through a given hole.

We have also made some small variations of the original puz-
zle by changing some of the premises. For instance, by allow-
ing spheres to pass through the post hole we directly get a
shorter solution: pass_o(str™,ph~), then pass_h(s2,ph~), that
gets the string-disks-spheres tandem out of the post and, finally,
pass_o(p™,r7) & pass_h(ph,r~) to get the ring free.

6 Concluding remarks

In this work we presented some results of ongoing research on a
challenging problem for spatial reasoning and common sense knowl-
edge formalisation, namely, the problem of reasoning about spatial
domains that contain non-trivial objects such as holes and strings.
We proposed a representation whereby holes identify sub-spaces in
which objects could be located. The string in this paper is formalised
as a long object that restricts the movement of the objects linked to it.
In fact, the flexibility of this object is not fully explored in this work,
as we abstracted away the possibility of tying knots. This issue shall
be investigated in future work.

The formalisation of spatial knowledge is not the only challenge
in the domain assumed in this work. Solving the puzzle also in-
volves interesting issues that are beyond search (or planning) through
a state space. For instance, when changing the spatial configuration
of the puzzle, a person has a selective observation of domain objects,
whereby only a portion of the space is observed. Actions are, thus,
only applied within this limited view of the scene. A second issue is
the minimisation of the spatial configuration complexity; the string
allows for the application of a sequence of actions rolling the string
around the post, or through it, many times. Minimisation of the puz-
zle’s configuration complexity could be used as an heuristic in an
automated problem solver. However, how this complexity should be
measured is still an open problem. Finally, when trying to solve the
puzzle for the first time, a human agent may not know every con-
straint or every possible movement of the domain objects. Searching
for an automated way in which such spatial knowledge can be assim-
ilated is also a very challenging issue for further investigations.

5 We have used SWI-Prolog 5.2.11 interpreter running on Linux Mandrake
10 on a Pentium IV 1.5 GHz with a RAM of 512 MB.

REFERENCES

(1]
(2]
(3]

(4]

(31
(6]
(7]

(8]

(91

[10]
(1]

[12]
[13]

[14]

R. Casati and A. C. Varzi, Parts and Places: the structures of spatial
representation, MIT Press, 1999.

E. Clementini, P. di Felice, and D. Herndndez, ‘Qualitative representa-
tion of positional information’, Artificial Intelligence, (1997).

A. G. Cohn, B. Bennet, J. Gooday, and N.M. Gotts, ‘Representing and
reasoning with qualitative spatial relations about regions’, in Spatial
and Temporal Reasoning, ed., Oliviero Stock, 97 — 134, Kluwer Aca-
demic Publishers, (1997).

A. G. Cohn and S. M. Hazarika, ‘Qualitative spatial representation
and reasoning: An overview’, Fundamenta Informaticae, 46(1-2), 1-
29, (2001).

D. Hernandez, E. Clementini, and P. di Felice, ‘Qualitative distances’,
in LNAI, eds., W. Kuhn and A. Frank, Springer-Verlag, (1995).

R. C. Meathrel and A. P. Galton, ‘A hierarchy of boundary-based shape
descriptors’, in Proc. of IJCAL pp. 1359-1364, (2001).

T. Morita, J. Takamatsu, K. Ogawara, H. Kimura, and K. Ikeuchi, ‘Knot
planning from observation’, in Proc. of the IEEE Int. Conf. on Robotics
and Automation, pp. 3887-3892, (2003).

D. Randell, Z. Cui, and A. Cohn, ‘A spatial logic based on regions and
connection’, in Proc. of the KR, pp. 165-176, Cambridge, U.S., (1992).
D. A. Randell, A. G. Cohn, and Z. Cui, ‘Computing transitivity tables:
A challenge for automated theorem provers’, in Proc. of CADE, LCNS,
Saratoga Springs, U.S., (1992). Springer Verlag.

K. Reidemeister, Knot Theory, BCS Associates, 1983.

P. Santos and M. Shanahan, ‘Hypothesising object relations from image
transitions’, in Proc. of the 15" European Conference on Artificial
Intelligence (ECAI-02), ed., Frank van Harmelen, pp. 292-296, Lyon,
France, (2002).

M. Shanahan, ‘Default reasoning about spatial occupancy’, Artificial
Intelligence, 74(1), 147-163, (1995).

Spatial and Temporal Reasoning, ed., Oliviero Stock, Kluwer Aca-
demic Publishers, 1997.

A. C. Varzi, ‘Reasoning about space: The hole story’, Logic and Logical
Philosophy, 4, 3-39, (1996).

