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Abstract Spatial puzzles composed of rigid objects, flexible strings and holes offer
interesting challenges for reasoning about spatial entities that are common in the hu-
man daily-life’s activities. This motivates the use of spatial puzzles as domains of
study in this work. The goal of this paper is to investigate the automated solution
of this kind of problems by extending an algorithm that combines Answer Set Pro-
gramming (ASP) with Markov Decision Process (MDP) and Reinforcement Learning
(RL), called oASP(MDP). This method is capable of constructing the set of domain
states online, i.e., while the agent interacts with a changing environment. The aim of
the extension proposed in this work is to add heuristics as a mechanism to accelerate
the learning process, resulting in the main contribution of this paper: the Heuristic
oASP(MDP) (HoASP(MDP)) algorithm. Experiments were performed on determin-
istic, non-deterministic and non-stationary versions of the puzzles. Results show that
the proposed approach can considerably accelerate the learning process, outperforming
other state-of-the-art methods.
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1 Introduction

The capacity of learning actions and sequences of actions, from domain interactions,
to solve complex tasks is an essential ability for any intelligent agent immersed in the
physical world. This is particularly critical with respect to spatial domains containing
rigid, as well as flexible (or holed) objects, whereby the actions and their effects are
non-trivial. This is the main challenge considered in this work, namely, learning se-
quences of actions necessary to solve a given task from the interaction with physical
objects. In this paper, the task of interest is finding solutions for a set of spatial puzzles
composed of rigid objects, flexible strings and holes. Not only are these types of ele-
ments the composing parts of common human scenarios, but they are also of interest
to application areas such as robot surgery and machine maintenance, in which objects
with distinct (or contrasting) characteristics must be carefully manipulated in order
to achieve a particular goal (that could be the removal of a tumor, or the repair of a
broken mechanism).

Previous work has considered the automated solution of this kind of spatial puzzles
from a logical perspective [3,4,29], where the actions and their effects were explicitly
formalized, allowing the definition of a simple planning system capable of solving a
number of such puzzles [3]. These earlier approaches, however, did not have a learn-
ing component and could not cope with more complex, stochastic or non-stationary
versions of the puzzles (i.e., versions in which the effect of actions is non-deterministic
– stochastic; or versions in which the domain rewards, transitions, actions and states
may change in unexpected ways as an agent interacts with the environment – non-
stationary). These challenges are addressed in the present work by considering the
spatial puzzles as a Reinforcement Learning optimization problem, in which actions
that lead to the solution are strongly rewarded, whereas unfruitful actions are severely
punished. To this end, the present paper investigates a combination of Answer Set
Programming (ASP) [9] and Markov Decision Process (MDP) [34] in a novel algorithm
called oASP(MDP) (presented in Section 2.4), that is applied to find solutions to non-
deterministic and non-stationary variations of two spatial puzzles, named Fisherman’s
Folly and Rope Ladder (Section 2.1). In this algorithm, ASP is used to represent the
domain as an MDP, while Q-Learning is the Reinforcement Learning (RL) algorithm
used to find an optimal policy1 for this MDP [11,16,19,28,31]. The proposed combi-
nation of MDP, RL and ASP has the following main advantages: (1) it creates a table
(s, a, s′) of possible transitions between states, given an action, as the agent interacts
in the world; (2) it learns a list of constraints on the action execution with respect to
certain states (optimizing the execution); and (3) it facilitates a heuristic extension of
the RL procedure, accelerating the action-selection procedure.

This paper extends our previous work (reported in [11,31]) with two main novel
contributions: 1) the introduction of heuristics defining a new method capable of ac-
celerating the learning procedure of the oASP(MDP) algorithm (Section 3); and 2) the
automated solution of spatial puzzle domains considering non-deterministic actions and
interactions in a non-stationary environment (where states and actions can change in
unexpected ways as the agent interacts with the world).

Experiments (Section 4) and results (Section 5) show that our approach outper-
forms the non-heuristic version of the oASP(MDP) and a heuristic-accelerated version

1 An optimal policy in this context is an assignment of an action to each state maximizing
the return values.
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of Q-Learning, showing the advantage of our proposed combination of MDP, RL, ASP
and heuristics to solve challenging spatial problems.

A preliminary version of this paper is available as an arXiv preprint [32].

2 Background

This section presents a description of the base concepts used in this work. Starting
with the description of the spatial puzzles explored, we then present a brief description
of Answer Set Programming (ASP), used to represent the Markov Decision Process
(MDP), and the Reinforcement Learning technique used to find an optimal solution for
this MDP. Finally, the non-heuristic version of the oASP(MDP) algorithm is presented
(its heuristic version, which is the novel contribution of the present paper, is described
in Section 3).

2.1 Domain

There is a large number of problem domains with the spatial characteristics we want
to explore, ranging from tying shoelaces and simple sewing routines to complex topo-
logical knot untangling tasks applied to describe DNA replication [30]. The present
work considers two problem domains containing flexible and holed objects: the Fish-
erman’s Folly and the Rope Ladder puzzles; as well as their non-deterministic and
non-stationary variants, first introduced in this paper (as we shall see in Section 4).

Both puzzles (Figure 1a and Figure 1c) are composed of the following elements: a
Post with a Hole; a String; a Ring; a pair of Spheres, that are crossed by the String;
a pair of Disks, fixed to the two tips of the String. The goal of these puzzles is to free
the Ring from the entanglement of objects (Figure 1b and Figure 1d) by executing a
sequence of actions. In this paper we consider the basic actions defined in [3], that is,
passing an object or a tip of a long object through some hole in a given direction. An
example can be the operation: “pass the Disk through the Post Hole from left to right".
These passing operations are assumed to be complete: intermediate states in which the
object is still partially crossing the hole are disregarded. This assumption was later
removed in [4], but keeping it is still more convenient for finding the solution, since it
avoids the explosion of irrelevant states.

In the Fisherman’s Folly puzzle, the String crosses the Post in such a way that each
Sphere and each Disk stays at one side of the Post. Besides, the Spheres can slide along
the String, in contrast to the Disks that are fixed to the String’s tips. The Spheres are
larger than the Post Hole, so they cannot pass through the Post Hole without breaking
the puzzle. However, the Spheres can pass through the Ring Hole. The Disks can cross
the Post Hole, but they cannot pass through the Ring Hole, whereas the Ring can
cross the Post Hole. These interactions between the elements of the puzzle can lead to
some complex situations, such as the possibility of winding the String through the Post
Hole (or through the Ring Hole) several times, which increases the state space and,
consequently, the time needed to find the solution (this will be explored in Section 5).

The Rope Ladder puzzle has two Holed Posts, and the String crosses these Holes in
four different points (see Figure 1c). In this puzzle there is a similar set of possibilities
of interaction as in the Fisherman’s Folly, with the addition that in the Rope Ladder
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(a) The Fisherman’s Folly puzzle. (b) The goal of the Fisherman’s Folly puz-
zle.

(c) The Rope Ladder puzzle. (d) The goal of the Rope Ladder puzzle.

Fig. 1: Initial states and the goal states of the Spatial Puzzles studied in this work.

puzzle it is possible to pass the Post through both faces of the Ring Hole, in this case,
the Post is not fixed to a base (as is the case with the Fisherman’s Folly).

With these elements in mind, it is possible to categorize the puzzle’s objects follow-
ing the work reported in [3] that proposes three different categories for the elements:

1: Regular (or simple) Objects: Disk1, Disk2, Base.

2: Objects with Holes: Ring, Sphere1, Sphere2, PostHole1, PostHole2.

3: Long Objects: String, Post1, Post2.

The spatial puzzles are represented and manipulated by the agent by means of
the PROLOG program introduced in [3], that is used in the paper as an oracle (a
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simulation of the puzzle) such that, given an action executed in a particular state of
the puzzle, the oracle returns the description of the resulting state.

2.2 Answer Set Programming (ASP)

Answer Set Programming (ASP) [9] is a declarative logic programming language that
facilitates non-monotonic reasoning. It has been successfully used to solve NP-Complete
problems, such as the Traveler Salesman Problem, and it is designed to model and solve
problems that deal with commonsense reasoning, such as spatial puzzles [31] or spatial
non-monotonic reasoning [36].

According to Eiter et al. [9], ASP presents some advantages that justify its use,
such as: the possibility to define which solutions are more desirable than others using a
quality criterion, making it suitable for domains involving preference manipulation; the
capability to work with missing information; and the so-called choice rules, which in
practice, allows for the mapping between one input and several outputs. One important
feature of ASP is that it relies on a declarative semantics based on the definition of
stable models [20]. Gelfond and Lifschitz [13] define a stable model as “a possible set of
beliefs the agent has, taking into consideration the premises of the program”.

Lifschitz [20] defines an ASP program as a set of rules of the form:

A :- L1, L2,..., Ln. (1)

where A is an atom, the rule head, and L1,...,Ln is the rule body consisting of literals,
that is, either atoms B or their default negation not B. The symbol “:-” can be read as
“if” and represents a (backwards) logical implication so that (1) stands for L1∧· · ·∧Ln→
A. The algorithm applied in this paper uses ASP choice rules, whose effect is non-
deterministic and allows one input to have several outputs [11]. More formally, given
one state “s” and one action “a”, it is possible to have the states “s1” and “s2” as possible
outputs when the action “a” is executed in state “s”. This rule can be represented in
ASP with the following formula:

1 {s1, s2} 1 :- a, s. (2)

Formula 2 can be read as: given that the action “a” was executed in the state “s”, one
and only one state (between “s1” and “s2”) can be chosen as a consequence of executing
this action.

The premise of this work is that for each state s ∈ S (a set of possible states of a
domain) there is an ASP program that describes the effects of executing an action a ∈
A (a set of possible actions that can be executed) using choice rules. The answer sets
from these ASP programs represent the possible next states.

ASP represents constraints as headless rules. This kind of formula is mainly used
to remove possible solutions that violate some rules. In the context of this work, these
constraints are related to the description of forbidden states (that cannot be physically
achieved), forbidden actions (that cannot be physically executed) and forbidden state-
action pairs (actions that cannot be physically executed in a specific state). ASP is used
in this work to find a set of states S of a Markov Decision Process (MDP), and then,
to find all answer sets for each state an agent has permission to visit: all transitions
allowed for the state-action (s, a) pair. Also, since ASP can revise (or update) previously
obtained knowledge, and describe the transition rules of the domain, it is suitable to
represent an MDP in a non-stationary domain, as we shall see further in this paper.
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2.3 Reinforcement Learning (RL)

The algorithm proposed in this work applied Reinforcement Learning (RL) to find op-
timal solutions to the chosen domains. RL is a machine learning method in which the
learning process happens through the interaction between an agent and the environ-
ment. Sutton and Barto [34] define RL over Markov Decision Process (MDP) that can
be expressed as the tuple 〈S,A, T,R〉, in which:

S is the set of possible states in the domain;
A is the set of actions that can be executed by the agent;
T is the transition function that defines the probability of reaching a successor state
s′ ∈ S when the agent executes action a ∈ A starting from state s ∈ S:

Transition (T ) : S ×A× S 7→ [0, 1]

R is the reward function responsible for providing the reward to the agent, when the
agent is in a state s ∈ S and executes action a ∈ A to move to successor state
s′ ∈ S:

Reward (R) : S ×A× S 7→ R

Besides this, Sutton and Barto [34] point out that an MDP assumes a first-order
Markov property, which states that any state s contains all the information needed by
the agent to decide the next action a to be executed.

In RL there are two main entities, the agent and the environment. The agent is
responsible for learning and making decisions (executing actions), and the place (or
world) in which the agent executes these actions is part of the environment. This RL
framework of interaction is defined as follows [34]:

1. First, the agent chooses an action a ∈ A at an instant t to be executed in the
environment in a state s ∈ S;

2. Then, the environment answers the agent with the next state s′ ∈ S at the next in-
stant t+1 together with the corresponding reward (a numerical value that describes
the value of the action executed).

3. Finally, the agent updates the value of executing this action based on the received
reward, using a formula defined by the specific RL algorithm being used.

In a nutshell, an MDP is used to formalize decision making processes in which a
priori information about the transition and reward functions does not need to be fully
specified. In this work an optimal policy for the MDP is obtained from the model-free
online off-policy algorithm called Q-Learning [34].

The Q-Learning algorithm can learn an optimal policy following the RL framework
of interaction defined above. To learn this policy, the algorithm uses an action-value
function Q(s, a) that is updated by selecting the action that maximizes the future gains
at the end of each interaction between agent and environment. This is accomplished
by the update function shown in Formula (3):

Qnew(st, at) ← Q(st, at) + α · (r + (3)

γ ·max
a∈A

Q(st+1, a)−Q(st, at)),

where α and γ represent the learning rate and the discount factor, respectively, which
(in this work) can be constant or set to decrease as the number of learning episodes
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increase. These interactions happen several times, and it is proven that at the limit (af-
ter infinitely many interactions) Q-Learning obtains an optimal policy for the problem.
Although Equation 3 uses the max function, Q-Learning as proposed by Watkins [37]
and used in this paper, is an online RL method since the learning occurs while the
agent interacts with the environment. As it is an iterative process, the max function is
applied on the current values of Q, generating a new value at each visited state-action
pair (Qnew).

Informally, the Q-learning algorithm is based on a function that provides the qual-
ity (Q) of state-action pairs (Q : S × A → R). From a randomly initialized table
Q(s, a) (Q table), at each time t and state st an action at is defined Q. This action
executes a transition from st to st+1, whose associated reward rt(st, at, st+1) is ob-
served. The updated value of Q for (st, at) (Qnew(st, at)) is calculated from the value
obtained considering previous interactions with the environment (weighted average of
the previous value) and the value associated to the action that maximizes future gains
(maxa∈AQ(st+1, a)). An episode of Q-Learning ends when a terminal state is reached,
or a predetermined number of interactions is executed.

One important point to highlight is that at the beginning of the interaction the Q-
Learning agent has no knowledge about which action to choose, the choice is random.
This lack of initial knowledge can lead to a poor initial performance for the agent,
so it is possible to conceive a method to accelerate this learning procedure by reusing
previously obtained knowledge. That is where the work reported in [1] becomes relevant
for this paper. Bianchi et al. [1] present a new approach to the Q-Learning process, the
Heuristically Accelerated Q-Learning (HAQL), with the possibility of adding heuristics
to guide the learning process when the agent has previous knowledge about the task.
The heuristics guide the learning process by helping the agent to choose an action
in the action-selection phase, this is the only difference between the HAQL and the
traditional version of Q-Learning, considering that the choice selection is using the ε-
greedy strategy (i.e., a strategy in which the agent has a probability (1 - ε) of choosing
an action that maximizes the value of the policy and a probability (ε) of choosing a
random action). This is represented in Equation 4 below:

π(s) =

{
argmaxa∈A{Q(s, a) + ξH(s, a)β}, if q ≤ (1− ε);
random(A), otherwise,

(4)

where H(s, a) is the heuristic function that guides the choice of action, ξ and β are
constant parameters that control the influence of the heuristic function, q is a random
value between 0 and 1, responsible for defining the exploitation/exploration trade-off
in the Q-Learning algorithm, random(A) chooses some random action a ∈ A.

One limitation of Reinforcement Learning methods such as Q-learning, that is also
inherited by HAQL, is that the set of states and the set of actions should be given
as input. In the next section, we present the oASP(MDP) algorithm, combining ASP
with Reinforcement Learning, that does not share these limitations. This algorithm is
extended in Section 3 to solve the spatial puzzles considered in this work.

2.4 Online Answer Set Programming for Markov Decision Process

Ferreira et al. [11] define the Online ASP for MDP (oASP(MDP)) as an algorithm that
combines the concepts described previously. In this algorithm, ASP is used to describe
the MDP while Q-Learning is used to find the optimal policy for this MDP.
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In this context, each transition t(s, a, s′) in the MDP is represented as an ASP
choice rule of the form:

1 {s′, s2′, s3′} 1 :- a, s. (5)

In this way every new state transition discovered by the agent (e.g., s′, s2′ and s3′)
is added to the choice rule related to an action. This is obtained with respect to all
actions and states visited by the agent in the domain [11]. So, having the description
of possible transitions for each action and each state that has been visited as an ASP
program, an ASP solver can be used to generate the set of states, actions and tran-
sitions. Therefore, the underlying MDP is approximated by the answer sets at each
iteration of the algorithm in the following sense: if the ASP program contains a rule
1{s1, s2}1 : −a, s, then the MDP has non-zero probability in the transitions 〈s, a, s1〉
and 〈s, a, s2〉, although the transition probability value is unknown to the agent. Fi-
nally, through the interactions between the Q-Learning agent and the environment, the
agent can define the action-value function Q(s, a) for each state-action pair (s, a).

1 Algorithm: oASP(MDP)
2 Input: The set of actions A, any action-value function approximation method M (in

this work, in particular, M is Q-learning) and a number of episodes n.;
3 Output: The approximated Q(s, a) function.

4 Initialize the set of observed states S = {}
5 while number of episodes performed is less than n do
6 repeat
7 Observe the current state s
8 if s 6∈ S then
9 Add s to the set of states S.

10 Choose and execute a random action a ∈ A.
11 Observe the future state s′.
12 Update the (ASP) logic program for state s by adding the observed

transition as a choice rule.
13 Find the answer set of the ASP program representing (s, a)
14 Update the description of Q(s, a) with new state-action pairs that are not

restricted and the states that are achievable from (s, a), given by the
answer sets of the ASP program related to s.

15 else
16 Choose an action a ∈ A as defined by M .
17 Execute the chosen action a.
18 Observe the future state s′.
19 end
20 Update the value of Q(s, a) as defined by M .
21 Update the current state s← s′.
22 until the end of the episode
23 end

Algorithm 1: The oASP(MDP) Algorithm [11].

Algorithm 1 presents the pseudo-code for oASP(MDP). First, the algorithm receives
three different parameters (line 2, algorithm 1) as input: the set of possible actions A
the agent can execute in the environment; the RL method M (such as Q-learning,
SARSA, MCMC etc.) that is used to approximate the action-value function Q(s, a);
and the number of episodes n to be executed. It is worth mentioning that, although
the set of actions A is fixed, the action definitions (and, therefore, their effects) may
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change as the agent interacts with the world, since oASP(MDP) allows for knowledge
revision.

After the initialization, the set of observed states is assigned to an empty list (line
4, Algorithm 1), since this set is built in an online fashion while the agent interacts with
the domain. Next, the algorithm starts a loop (lines 5-22). In each repetition of this
loop, the oASP(MDP) observes the current state s, and then it can take two different
actions (depending if the current state s is in the set of observed states S or not): if s
6∈ S (line 8, Algorithm 1), then s is added to S and a random action from the set A is
executed. As a result of this, the observed transition is added as a choice rule (line 12),
that is used to construct the MDP as answer sets (line 13). To finalize this branch, the
description of the action-value function Q(s,a) is updated (line 14).

On the other hand, if s ∈ S (line 15, Algorithm 1), then the action is chosen by
the RL method M , with no update of the choice rule describing the transition, since
this description was already obtained when the state was first added to set S.

Finally, after these two conditions are met, the update of the values in the action-
value function Q(s, a) happens according to the RL method M . The current state s is
also updated. Now, the current state is the successor state s′ that was observed when
the action was executed.

Regarding the changes in the set of actions A, if the action executed by the agent
in the environment was one that is illegal to be executed (e.g., trying to pass Sphere1
through PostHole1), the environment informs this to the agent, that does not take this
action into consideration.

The capability of oASP(MDP) to handle non-stationary domains resides essentially
in lines 12, 13 and 14 of Algorithm 1. Since the underlying MDP is obtained as answer
sets of the ASP programs representing the transitions, a change in the states and
actions would just imply the generation of new answer sets. It is worth noting also
that this change does not affect the entire MDP, but only a localized portion of the
domain. In contrast to Q-Learning, that needs to re-initialize the obtained values each
time a change happens in the environment, oASP(MDP) can still use and apply the
previously learned knowledge, even when a change in the environment happens.

By combining ASP with RL, we do not alter how the underlying RL algorithm
works but only which states it explores. As the set of state-action pairs is built in an
online fashion, and represented as ASP programs (that can be revised), the proposed
algorithm uses only a minimal (relevant) subset of all state-actions pairs in the RL step.
In other words, oASP(MDP) has at least the same optimal behavior as the underlying
RL method used. However, by creating the set of state-action pairs as the agent explores
the domain, oASP(MDP) is in average more efficient than its underlying RL method.

3 Heuristic oASP(MDP): The HoASP(MDP) algorithm

This section presents the adaptation of the oASP(MDP) algorithm to work with heuris-
tics: the HoASP(MDP) algorithm. Heuristics are taken into consideration at the action
choice (line 16 of Algorithm 1), replacing the ε-greedy strategy by the heuristic strat-
egy represented in Formula 4. In order to illustrate the use of heuristics, an example
applying HoASP(MDP) algorithm when dealing with the Fisherman’s Folly puzzle
is presented next. HoASP(MDP) is initialized with the set of actions A, a learning
method M and the number of episodes n. After that, the agent initializes the set of
observed states S to empty, which is the starting point of the current episode. Next,
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the agent verifies if the initial state s0 (Figure 1a) is in the set S (line 6, Algorithm 1),
since in the beginning of the learning procedure S is empty, the agent must execute a
random action (line 10, Algorithm 1), for example, pass Disk1 through PostHole1 from
right to left. Following the action execution, the agent goes to the successor state s1,
whereas s0 is added to S and the agent receives the corresponding reward. In the case
of the spatial puzzles considered in this work, as we shall see further in this paper, the
reward function strongly rewards actions that lead to the goal, strongly punishes illegal
actions and is (almost) neutral in the other cases. Now the agent has knowledge about
a transition in the domain, that can be translated to a choice rule (line 12, Algorithm
1) in ASP as:

1 {s1} 1 :- a(ExecutedAction), s0.

Where, ExecutedAction is the action pass Disk1 through PostHole1 from right to left
executed by the agent. Each state s ∈ S has an ASP file with all these transition
rules, that is updated each time a new transition in that state is detected. With these
transition rules, ASP obtains all answer sets for that state, representing the possible
next states. The action-value function Q(s, a) is, then, updated with new state-action
(s, a) pairs that were obtained as answer sets of the related ASP program.

The agent is now in s1, all the steps described above are repeated in the same way.
However, the following situation can happen: assuming the randomly chosen action was
to undo what was done in state s0, executing the action pass Disk1 through PostHole1
from left to right leads the agent to s0 again. Since the agent is back in s0, and s0 ∈
S, then a new iteration of HoASP(MDP) occurs. The agent now is going to use the
learning method M (line 16, Algorithm 1) to choose the action to be executed, and it
is also at this instant that the heuristic guiding process takes place. Given a mapping
between the state in the heuristic task and the original task, the agent chooses an
action to be executed using Equation (4).

In the end of each episode, the received reward is used to update the values of
the action-value function Q(s, a), which, after several episodes, is the Q-Table that
contains the optimal policy [34].

3.1 Heuristic oASP(MDP) to Solve Spatial Puzzles

After defining the general principles of the HoASP(MDP) problem solving method,
this section describes how this method was adapted to solve the spatial puzzles (of
increasing complexity) considered in this paper: simplified puzzles (relaxed versions
of spatial puzzles), Non-Deterministic (spatial puzzles with non-determinism when an
action is executed) and Non-Stationary (spatial puzzles where changes occur in the
domain while the interaction happens).

In the deterministic and non-deterministic versions of the Fisherman’s Folly puzzle,
an admissible heuristic was obtained from a simplification of the puzzle solved using
the original oASP(MDP). The Q-Table obtained in this case was used as heuristics to
accelerate the learning process of the original (non-simplified) version of the puzzle. The
Fisherman’s Folly simplification kept the same configuration and relations of objects
as in the original puzzle. The simplification was a constraint imposed on the quantity
of string winding around the Post Hole. In this setting, the String cannot wind through
the Post Hole more than twice.

The solution for a simplified of the Rope Ladder puzzle was also used as heuristics,
but there are differences to consider since a distinct strategy was applied to obtain
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these heuristics. In the simplified Rope Ladder, the String is initially crossing the two
Post Holes only once, which is enough to simplify the puzzle and its optimal policy.
Another point of adaptation was the introduction of a function that maps a state in
the simplified Rope Ladder to a state in the original Rope Ladder. Since the set of
actions on both puzzles were the same, this mapping function matches the actions that
lead the agent to a certain state in the simplified puzzle to the actions that lead the
agent to the corresponding state in the original puzzle. In other words, the agent takes
into consideration that the simplified puzzle, used as heuristic, starts from the same
state as the original puzzle. Thus, each state visited by the agent in the original puzzle,
through the execution of any action a, is a corresponding state in the simplified puzzle
by executing the same action a.

With respect to the actions’ formalization in the algorithm, the tuple 〈CE,HE,HF〉
was used, where:

1. CE is a set of Crossing Elements, ce ∈ CE is an element of the puzzle that is going
to pass through a hole.

2. HE is a set of Host Elements, he ∈ HE is an element of the puzzle that hosts a
hole.

3. HF is a set of Hole Faces, hf ∈ HF is a face of a hole ce towards which he is going
to pass. There are two possible faces: positive (+) and negative (-).

Any action is the manipulation of a CE that passes through a HE toward a direction
(HF). This representation is general enough to describe the actions for all puzzles (and
configurations) considered in this work. Since an action is the combination of a CE, a
HE and a HF, the agent cannot choose an action with the same element as CE and
HE. It is worth mentioning that the agent does not have initial knowledge about which
CE is able to be passed through a HE due to size or shape constraints: for instance,
the agent does not know whether Sphere1 can pass through PostHole1, or any other
restriction. The agent learns these constraints by means of the accumulated negative
rewards it receives while interacting with the environment.

In the Fisherman’s Folly there is a set of 20 actions over the following elements: 6
CE elements {Sphere1, Sphere2, Post, Disk1, Disk2, Ring}; 2 HE elements {PostHole1,
Ring}; and 2 HF {Positive, Negative}.

The formalization of the actions for the Rope Ladder is very similar to the Fish-
erman’s Folly: the only difference is in the crossing and host elements, that in this
case correspond to CE={Sphere1, Sphere2, Post1, Post2, Disk1, Disk2, Ring}, HE=
{PostHole1, PostHole2, Ring}, leading to 28 possible actions to be chosen by the agent.

Like the work described in [29], the states of the puzzles are represented with a list
of crossings per each long object in the puzzle. So, in the Fisherman’s Folly, we have a
list for the objects being crossed by String, and another for the objects being crossed
by Post. For example, for the initial state shown in Figure 1a, the lists of crossings can
be represented as follows:

1. chain(String) = [+Sphere1, +Post, +Sphere2]

2. chain(Post) = [+Ring]

where each list element is some object name from HE preceded by a hole face sign (the
“exit” of the crossing). For instance, the crossing +Ring in the Post list means that the
Post is crossing the Ring towards the positive face of the Ring Hole.

We conjectured in [29] that the complexity of the kind of problems considered
in this paper is related to the complexity of the unknotting problem in knot theory,
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which falls in the complexity class NP [15]. A formal assessment of the complexity of
such spatial puzzles and their computational solutions are still open issues. In terms of
the relative search space, considering that this work assumed no previous information
about how the actions are applied on which objects, given that Fisherman’s Folly has
20 actions over 8 distinct elements and the size of the shortest solution is 5 steps, and
Rope Ladder has 28 actions over 10 elements and the size of the shortest solution is
12 steps, in the worst case the former has a search space of order O(5(20×8)) whereas
the latter has a search space of order O(12(28×10)). In the most general case, where
winding the string around holes indefinitely is allowed, the search space of both puzzles
is infinite in the worst case.

4 Experiments

The goal of this section is to evaluate how distinct RL approaches work with variants
of the two spatial puzzles considered in this work, Fisherman’s Folly and Rope Ladder,
under distinct configuration settings. Four RL algorithms were applied to the puzzles,
as described in Sections 2 and 3. Q-Learning [34], the original oASP(MDP) [11], the
Heuristically Accelerated Q-Learning (HAQL) [1] and the Heuristic oASP(MDP) (Ho-
ASP(MDP)), proposed in this paper. For the comparison among these methods, some
parameters were fixed for all four algorithms in all experiments as follows: the discount
factor was set to 0.9; ε (trade-off between exploitation and exploration) was fixed to
0.1 until the 4000th episode, after that the value was decreased with a rate of 0.01 at
each 250 episodes, down to the value of 0.03; the learning rate was fixed to 0.2; the
heuristic control value was set to 0.25. The rewards were defined as: -100 to illegal
actions (those actions that do not change the current state), 1000 to actions that lead
to the goal state and -1 to each action performed by the agent that leads to a different
state. The agent can execute 500 actions per episode and the total number of episodes
per trial is 6000. To produce statistically relevant results, 30 trials were executed for
each experiment.

This paper considers the following distinct configurations of the puzzles:

– Simplified Fisherman’s Folly: In this configuration, the elements of the puzzle
are the same as in the original Fisherman’s Folly (Figure 1a), but the agent cannot
wind the String through the Post Hole (this is the only element with this restric-
tion), simplifying the state space. Two algorithms were applied in this domain, the
original oASP(MDP) and Q-Learning.

– Original Fisherman’s Folly: This is the original Fisherman’s Folly puzzle, pre-
sented in Figure 1a. All four RL algorithms assumed in this article were applied
to this domain (cf. Sections 2 and 3). Regarding the algorithms that use heuris-
tics, the Q-Table of the previous puzzle (Simplified Fisherman’s Folly) was used
to guide the learning procedure. This task extends the work presented in [31] with
the application of oASP(MDP) to Fisherman’s Folly with different configurations,
exploring a distinct set of RL parameters.

– Non-Deterministic Fisherman’s Folly: In this version, when an agent chooses
an action to execute, there is an 80% chance of that action achieving the expected
effect, a 10% chance of the action to be executed, but mistakenly aiming at the
opposite hole face and a 10% chance that the agent executes no action (staying
in the same state). All four RL algorithms described in this article were applied
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to this domain. As in the original Fisherman’s Folly, the solution to the simplified
Fisherman’s Folly was used as heuristics in the non-deterministic case.

– Non-Stationary Disk Fisherman’s Folly: Although the work in [10] presents
the application of the offline ASP(MDP) to Non-Stationary domains, in the present
paper, we wanted to evaluate how the oASP(MDP) algorithm deals with environ-
ment changes when a previous learned policy can be a drawback for a new task. In
this domain, only the original oASP(MDP) and traditional Q-Learning algorithms
were executed, without heuristics. In the beginning, the domain allows for both
Disk1 and Disk2 to cross through the Ring, but not through the Post Hole. The
change happens after the 2000th episode, when the puzzle becomes the original
Fisherman’s Folly (where the Disks cannot pass through the Ring).

– Original Rope Ladder: This is the most complex puzzle in the set, since there
are more elements connected in a more challenging configuration when compared
to the Fisherman’s Folly puzzle. The optimal sequence of steps to solve the Rope
Ladder has 12 actions. All four RL algorithms described in this article were applied
in this domain. Regarding the algorithms that use heuristics, the Q-Table of a
simplified version of the Rope Ladder was used to guide the learning procedure. In
the simplified version, there is only one crossing between the String and PostHole1
and PostHole2. Another constraint applied to both configurations of the Rope
Ladder puzzle is that the agent cannot pass Disk1 through PostHole2 nor Disk2
through PostHole1 and it cannot wind the String through the Posts’ Hole two (or
more) consecutive times.

To evaluate and compare the algorithms considered in this work, four metrics were used:
the number of steps to solve the puzzle; the accumulated return values; the number
of states visited by the agent; and the number of state-action pairs in the Q-Table
obtained during the learning process. The results and discussions of these experiments
are presented in the next section.

5 Results and Discussion

This section presents the results of applying the algorithms considered in this work to
distinct configurations of spatial puzzles. This facilitates a comparison of Q-Learning
and oASP(MDP) with respect to their heuristically accelerated versions.

5.1 Simplified Fisherman’s Folly (SFF)

On the Simplified Fisherman’s Folly (SFF) puzzle, only the algorithms that do not use
heuristics were executed: oASP(MDP) and Q-Learning. Since, providing heuristics for
this puzzle would trivialize its solution. Besides, it is the solution of SFF that is used
as heuristics to the more complex domains.

Figure 2a (summarized in Table 1) and Figure 2b show the graphs for the Number of
Steps to solve the puzzle and the accumulated return values, respectively. It is possible
to see that the learning curves of both algorithms are similar, this is due to the fact
that the learning algorithm used by oASP(MDP) is Q-Learning.

Figure 3a and Table 3 show the number of visited states. The oASP(MDP) agent
visits more states because it can remove illegal actions, leading the agent to execute
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more valid actions with new states as outcome. On the other hand, Q-Learning keeps
these illegal actions, which implies in a lower exploration of the environment.

Finally, Figure 3b and Table 5 present the number of state-action pairs contained in
the Q-Table, showing that Q-Learning accumulated more pairs. The graph in Figure 3b
shows a distinction with respect to the graph of visited states (Figure 3a) because all
the actions are already in the Q-Table once the state is visited. Since the Q-Learning
algorithm does not revise its knowledge about actions, it does not remove illegal actions
from the Q-Table, it only assigns negative rewards to them.

5.2 Original Fisherman’s Folly (OFF)

All 4 algorithms were executed on the Original Fisherman’s Folly (OFF). Figure 4a
(summarized in Table 1) shows the graph with the Number of Steps to solve the puzzle.
We can also see that using the solution of a simplified version as heuristics to a more
complex domain accelerates the learning process from the beginning, this is because
the solution of the SFF puzzle is part of the solution of the OFF puzzle. The Student’s
T Test in Figure 4c shows that these two curves present differences that are statistically
relevant.

Figure 4b represents the graph for the accumulated return values, which also shows
a better performance for the heuristic algorithms compared to their non-heuristic ver-
sions.

Figure 5a and Table 3 show the number of states visited by the agent, oASP(MDP)
visits more states than the other 3 algorithms. Comparing the number of interactions
that is necessary to learn the optimal policy (Figure 4a and Table 1) and the number
of visited states, it is possible to see that the possibility of winding the String through
the Post Hole increases the complexity to solve the OFF puzzle, in contrast with the
SFF puzzle (Figure 2a and Figure 3a). Considering the state space of the SFF puz-
zle, the oASP(MDP) agent visits around 6,000 states, whereas in the OFF puzzle the
oASP(MDP) agent visits around 25,000 states. Heuristic algorithms explore a smaller
portion of the State Space than their non-heuristic versions, this is because the heuris-
tics are responsible for guiding the learning process from the beginning, indicating to
the agent which actions to execute and, consequently, which states to visit, accelerating
these algorithms to find solutions.

Finally, Figure 5b and Table 5 show the number of state-action pairs present in the
Q-Table. Q-Learning is the algorithm with the highest number of state-action pairs.

5.3 Non-Deterministic Fisherman’s Folly (NDFF)

The number of steps to solve the Non-Deterministic Fisherman’s Folly (NDFF) is shown
in Figure 6a and Table 1. It is possible to see that, at the beginning of the learning pro-
cess, the heuristic algorithms perform better than their related non-heuristic versions.
Student’s T test in Figure 6c indicates that this difference is statistically relevant.

Figure 6b shows a graph with the accumulated return values, in which the heuristic
algorithms present higher return values at the beginning of the process. Another point
to consider is that oASP(MDP) has higher return values than Q-Learning in the be-
ginning of the interactions, but as the number of interactions increases, this difference
declines until they achieve the same level.
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The graph in Figure 7a (summarized in Table 3) shows that oASP(MDP) explores
more valid states than all the other algorithms, while Figure 7b and Table 5 show that
Q-Learning has more state-action pairs in the Q-Table. Since, in this configuration,
it is also possible to wind the String through the Post Hole, the oASP(MDP) agent
explores a higher number of states than in any other configuration of this puzzle (Ta-
ble 3), visiting around 80,000 different states. Thus, the algorithms take longer to learn
(Table 1).

Although this is a non-deterministic problem, the algorithms were still able to use
heuristics to accelerate the learning process, because the action choice procedure de-
pends on the heuristics influence only at the moment the agent is actually choosing the
action to be executed. Thus, even though these actions have non-deterministic effects,
in the overall learning process, this non-determinism does not present a complication
in terms of heuristics choice.

5.4 Non-Stationary Disk Fisherman’s Folly (NSFF)

Considering the results related to the Non-Stationary Disk Fisherman’s Folly (NSFF)
puzzle, Figure 8a and Table 2 show that Q-Learning and oASP(MDP) algorithms have a
similar performance until the change in the environment happens (at interaction 2000).
After that, Q-Learning performs better than oASP(MDP), because the latter does not
achieve the optimal policy. This is a statistically relevant difference as demonstrated
by the Student’s T Test in Figure 8c. The way the change happens in the environment
impacts the performance of the oASP(MDP) agent since (unlike Q-Learning), in order
to improve performance its Q-Table is not re-initialized, so the previously learned
optimal policy negatively influences the agent’s behavior in the new environment after
the change. In our experiments, the oASP(MDP) agent did not receive enough negative
reward in order to overturn the old policy, which led the agent to converge to a sub-
optimal policy for the second part of the learning process.

Although there is a difference in the number of steps (Table 2) to solve the puzzle
after the change occurs, this difference cannot be observed in the accumulated return
values graph (Figure 8b) because the reward at each step is small (-1) when compared
to the reward for achieving the goal (+1,000).

Regarding the behaviour related to the Visited States (Figure 9a and Table 4), the
oASP(MDP) keeps the Q-Table, even though there is a change in the environment,
while Q-Learning needs to re-initialize its values. Figure 9b and Table 6 show that
Q-Learning has more state-action pairs, even though it re-initializes the Q-Table. The
number of Visited States and state-action pairs just grow for the oASP(MDP) agent
because the Q-Table is not re-initialized, in contrast with its Q-Learning agent.

5.5 Rope Ladder

Results related to the Number of Steps to solve the Rope Ladder puzzle are depicted in
Figure 10a and Table 1, showing that heuristics greatly accelerate the learning process
with respect to the non-heuristic algorithm. This difference is statistically relevant as
shown by the Student’s T Test (Figure 10c). Besides, the HoASP(MDP) also presents,
for a brief number of interactions (around 300 interactions), a better performance
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than the Heuristically Accelerated Q-Learning, the Student’s T Test supporting this
difference is in Figure 11a.

Figure 10b presents the graph for the accumulated return values, it is worth noting
how these values change over time: at the beginning of the interaction, the non-heuristic
algorithms present higher return values than the heuristic algorithms, but this relation
changes as the number of interactions increase, since the heuristic algorithms start to
get higher return values.

One important observation that can be made about this domain is in relation to
the accumulated return values graph (Figure 10b) and the number of visited states
(Figure 11b). It is possible to see that at the beginning of the learning process (in
the zoomed part of the graph), the algorithms that do not use heuristics have a higher
return value than the algorithms that use heuristics. This happens because the number
of visited states does not increase in the same proportion as the reward value for the
non-heuristic algorithms. Since the non-heuristic algorithms visit the same states more
often, they take longer to explore the state space of the domain, which leads to the
execution of fewer illegal actions, as they have already received rewards indicating
which actions are better in those known states. This is true only at the beginning of
the interactions, after that, the heuristic algorithms explore the state space receiving
higher rewards. The return values are higher in the heuristic algorithms, while the
non-heuristic algorithms take longer to get to the same results.

Finally, the graph of the state-action pairs in Figure 11c and Table 6 show that
Q-Learning explored a higher number of state-action pairs than the other algorithms.

The results presented in this section are summarized in the tables below, each
of which representing one parameter used to evaluate the algorithms investigated in
this work. Tables 1, 3 and 5 summarize the results for the stationary puzzles, while
Tables 2, 4 and 6 summarize the results for the non-stationary puzzle. When a table
has a “X” value in a cell, it means that the related algorithm was not executed. In
the tables describing results for the non-stationary cases, the columns “oASP(MDP)
Change” and “Q-Learning Change” refer to the results obtained after the change in the
environment occurs.

Since the values for the “Number of Interactions” and the “Accumulated Return”
convey similar conclusions, tables for the latter were omitted in this paper.

Considering the “Number of Steps” parameter for the stationary puzzles (Table 1),
results show that both heuristically accelerated algorithms (HoASP(MDP) and HAQL)
present better performance than their non-heuristic versions (oASP(MDP) and Q-
Learning, respectively). In the non-stationary domain, Table 2 shows that oASP(MDP)
and Q-Learning algorithms achieved a similar performance. However, this is true only
during the interactions that happened before the change is detected in the environment,
after that just Q-Learning finds the optimal policy, while oASP(MDP) converges to a
sub-optimal one.

The “Number of Visited States” parameter is presented in Tables 3 and 4. For the
stationary puzzles, while oASP(MDP) explores a larger portion of the state space,
the HAQL algorithm is the one that explores it the least. In the non-stationary case,
oASP(MDP) never re-initializes its Q-Table, thus keeping all states visited in past
interactions, in contrast to Q-Learning whose re-initialiazation removes all states that
were previously visited. This distinction led oASP(MDP) to visit more states after the
change occurs (cf. Table 4).

Tables 5 and 6 summarize the values for the "Number of State/Action Pairs"
parameter. Similarly to the “Number of Visited States” parameter, Tables 5 and 6
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highlight the fact that, although the oASP(MDP) algorithms (original and heuristically
accelerated versions) explore more of the state space, these algorithms do not present
the highest numbers of State/Action pairs in the Q-Table. This is due to the fact
that oASP(MDP) removes all illegal actions from the Q-Table, while Q-Learning keeps
them.

Table 1: Approximated number of steps needed for the agent to start learning the
optimal policy (and consequently the maximum reward) for the stationary puzzles.

Puzzle Algorithms
oASP(MDP) HoASP(MDP) Q-Learning HAQL

SFF 226 X 185 X
OFF 541 13 476 2
NDFF 2197 179 3388 91
Rope Ladder 1898 1022 2134 1242

Table 2: Approximated number of steps needed for the agent to start learning the
optimal policy (and consequently the maximum reward) for the non-stationary puzzle.

Puzzle Algorithms
oASP(MDP) oASP(MDP) Change Q-Learning Q-Learning Change

NSFF 119 Optimal Policy not found 142 2213

Table 3: Number of visited states, during the interaction with the environment for the
6000 trials for the stationary puzzles.

Puzzle Algorithms
oASP(MDP) HoASP(MDP) Q-Learning HAQL

SFF 5895 X 4358 X
OFF 28379 4080 17117 1328
NDFF 79565 13455 61315 5705
Rope Ladder 15721 11967 14005 10235

Table 4: Number of visited states, during the interaction with the environment for the
6000 trials, for the non-stationary puzzle.

Puzzle Algorithms
oASP(MDP) oASP(MDP) Change Q-Learning Q-Learning Change

NSFF 4384 9710 3719 4366

The experiments were run on a 3.2GHz Intel Core I7-8700 with 16GB of RAM, in
Ubuntu 16.04 LTS. The algorithms were implemented using Python 3.5, using ZeroMQ
to provide message exchange between the environment and the agent. SWI-Prolog
was used as the environment oracle and clingo was the ASP engine. The source
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Table 5: Number of State/Action pairs present in the Q-Table for the stationary puzzles.

Puzzle Algorithms
oASP(MDP) HoASP(MDP) Q-Learning HAQL

SFF 39600 X 87157 X
OFF 253855 38570 342358 26573
NDFF 682128 126103 1226319 114118
Rope Ladder 92426 85005 392163 28660

Table 6: Number of State/Action pairs present in the Q-Table for the non-stationary
puzzles.

Puzzle Algorithms
oASP(MDP) oASP(MDP) Change Q-Learning Q-Learning Change

NSFF 36101 68303 59509 87322

code for the experiments is available at: https://bitbucket.org/thiagomestrado/
journalarticle/src

https://bitbucket.org/thiagomestrado/journalarticle/src
https://bitbucket.org/thiagomestrado/journalarticle/src
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(a) Number of Steps to solve the puzzle.

(b) Total accumulated Return received per episode.

Fig. 2: Number of Steps and Accumulated Return results for the Simplified Fisherman’s
Folly puzzle.
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(a) Number of States visited by the Agent.

(b) Number of state-action pairs.

Fig. 3: States results for the Simplified Fisherman’s Folly puzzle.
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(a) Number of Steps to solve the puzzle.

(b) Total accumulated Return received per episode.

(c) T Test comparing the oASP(MDP) with Heuristic and the traditional
oASP(MDP) .

Fig. 4: Number of Steps and Return results for the Original Fisherman’s Folly puzzle.
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(a) Number of States visited by the Agent.

(b) Number of state-action pairs.

Fig. 5: States results for the Original Fisherman’s Folly puzzle.
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(a) Number of Steps to solve the puzzle.

(b) Total accumulated Return received per episode.

(c) T Test comparing the oASP(MDP) with Heuristic and the traditional
oASP(MDP).

Fig. 6: Number of Steps and Return results for the Non-Deterministic Fisherman’s
Folly puzzle.
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(a) Number of States visited by the Agent.

(b) Number of state-action pairs.

Fig. 7: States results for the Non-Deterministic Fisherman’s Folly puzzle.
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(a) Number of Steps to solve the puzzle.

(b) Total accumulated Return received per episode.

(c) T Test comparing traditional oASP(MDP) and the traditional Q-
Learning.

Fig. 8: Number of Steps and Return results for the Non-Stationary Disk Fisherman’s
Folly puzzle.
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(a) Number of States visited by the Agent.

(b) Number of state-action pairs.

Fig. 9: States results for the Non-Stationary Disk Fisherman’s Folly puzzle.
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(a) Number of Steps to solve the puzzle.

(b) Total accumulated Return received per episode.

(c) T Test comparing the oASP(MDP) with Heuristic and the traditional
oASP(MDP).

Fig. 10: Number of Steps and Return results for the Rope Ladder puzzle.
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(a) T Test comparing the oASP(MDP) with Heuristic and HAQL.

(b) Number of States visited by the Agent.

(c) Number of state-action pairs.

Fig. 11: States results for the Rope Ladder puzzle.
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6 Literature Review

This section presents related work to the research reported in this paper. Specifically,
we cite literature on the combination of logic with MDPs and related to the use of
heuristics in Reinforcement Learning. Additionally, considering non-stationary MDPs,
we focus instead on the literature about changes with respect to state and action sets.

In order to find a solution to the Fisherman’s Folly and Rope Ladder puzzles, the
oASP(MDP) algorithm was used in this paper, an algorithm that combines logic pro-
gramming and MDPs. One of the first works exploring a similar combination is [27]
that describes a system integrating Relational Reinforcement Learning (RRL) with
ASP and Event Calculus. In the context of [27], RRL can be implemented using varia-
tions of RL algorithms, e.g., SARSA and Q-Learning, to approximate the action-value
function Q(s, a), while ASP and Event Calculus are used to represent, compute and
constrain the set of states and actions, and the learning task, providing the agent’s
background knowledge. As in our work, the results show that ASP can leverage the
learning performance of RL based algorithms. In [27], the goal of the system is to solve
the learning task while an agent interacts with deterministic and non-deterministic
domains (the authors evaluate the system by using different deterministic and non-
deterministic configurations of the Block’s World). However, the system does not han-
dle non-stationary environments, since it applies ASP after a determined action was
chosen and the Q(s, a) function was updated. In contrast, oASP(MDP) generates the
answer sets before the action-selection phase and before the Q(s, a) function updates,
which makes our algorithm tolerant to changes in non-stationary settings. If on one
hand RRL does not handle non-stationary domains, on the other hand the goal of RRL
is to provide means for the agent to learn variations of the same problem (e.g., if it can
solve the Block’s World with 3 blocks, then it can reason about the optimal policy and
solve a 5 blocks puzzle), which is a feature that oASP(MDP) lacks since it compares
the description of states and actions to solve changes in the domain.

Garnelo et al. [12] present an architecture that combines Deep Reinforcement
Learning (DRL) with Symbolic Reasoning (SR) separating it in two main blocks. The
first is a Neural Network (NN), which gives as output a symbolic representation that
is used as input to the second block of the architecture, responsible for the action
choice process. In this context, Deep Learning (DL) is used to find a description of a
set of states that can be described as rules for a probabilistic logic program. Similar
to the work reported in the present paper, the inclusion of a reasoning component in
the RL framework proposed in [12] leverages the learning task of the intelligent agent.
However, where we use ASP for representing the set of state and actions, Garnelo et
al. [12] use DL, thus, while the NN approach may be more robust than oASP(MDP)
when considering small changes in the environment, it requires more processing time
and computational power.

The work described in [18] explores the combination of ASP and RL in an al-
gorithm called DARLING, which uses ASP for planning and reasoning, while RL is
used to make the agent adaptive to changes in the environment. Since the RL learning
process might require an unfeasible number of interactions between the agent and the
environment to learn the optimal policy, DARLING uses planning to constrain the
behavior of the agent, thus leading the agent to choose reasonable actions efficiently.
As in oASP(MDP), DARLING can also be applied to changing environments, this
can be achieved because both algorithms influence the learning task by adding a log-
ical component that provides information (by constraining) which actions the agent
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should take. DARLING was tested on a service robot in an office-like environment,
allowing the authors to show that, when DARLING is used, the robot can learn tasks
faster, improving its performance over time. The difference between DARLING and
oASP(MDP) is that while our approach does not need a preliminary phase (planning)
to start learning and the answer sets are updated as the agent interacts with the envi-
ronment, DARLING does not focus on finding the optimal solution of a problem and
may be able to solve a problem faster than oASP(MDP), although in a suboptimal
way.

Yang et al. [39] present a framework that integrates symbolic planning with hier-
archical reinforcement learning (HRL), which deals with decision making processes in
a non-deterministic domain. The idea is to use symbolic planning for option discovery
in HRL, aiming at improving the learning and planning capabilities of an RL agent.
In this case, the symbolic plans are used to guide the learning procedure. After this
step, the learned experience is used again to further improve the provided plan for the
HRL algorithm. Thus, the planning is constantly updated by the RL procedure. This
approach is defined as Planning, Execution, Observation and Reinforcement Learning
(PEORL), with the BC language being used to represent commonsense knowledge. The
experiments were performed in traditional RL domains (the grid world and the taxi
domain). There are two main results achieved in [39]: 1) the framework presents higher
return values than traditional versions of RL and HRL; 2) and it is possible to obtain
the optimal symbolic plan with PEORL, which is task not executed by oASP(MDP).
This approach was applied only to deterministic domains, in contrast to the solution
investigated in the present paper. Besides, we are focusing on constraining the actions
by means of answer sets built incrementally as the interaction occurs, not by generating
a plan. Using similar ideas, the work in [17] creates a specialized RL algorithm based
on symbolic planning. Experiments show that this proposal can learn effective policies
faster than traditional RL methods. The main goal of [17] is to use planning models
and solutions calculated for them as guidance for solving RL tasks. To do that, the
authors associate symbolic models to taskable RL environments. The HRL methods
presented in [17] can at best converge to the hierarchically optimal policy, since the can
(unintentionally) prune optimal policies. Hierarchies impose constraints over policies,
but they allow for better description of the problem and a finer control of the agents’
final behavior. Different from our approach that handles change in the state and action
sets, taskable RL considers an environment with fixed dynamics, allowing for change
only on goal conditions.

The work by Sridharan et al. [33] describes a combination of non-monotonic log-
ics, using Answer Set Prolog, and probabilistic graphical models, with POMDP. This
combination integrates an architecture named REBA that is useful to represent the
domain knowledge and the agent’s abilities and beliefs. POMDP is responsible for rea-
soning about the domain using data related to the agent’s sensors and actuators, while
the non-monotonic part of the architecture is used to provide a high-level description
of the domain, that includes commonsense knowledge. In contrast to oASP(MDP), a
REBA agent has initial knowledge about the task, allowing the use of ASP to create
an abstract plan, which enables the agent to create and solve a POMDP for the given
task. Although experiments were executed in a non-deterministic domain, there were
no experiments performed in non-stationary settings. The authors take into consider-
ation the history of a dynamic domain, which typically includes a record of actions
executed and observations obtained (by the robot), which bears some similarity with
the oASP(MDP), that uses the observations from the agent to build the answer sets
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responsible for constraining the action set. However, unlike oASP, REBA can not be
applied to some of the domains used in this work. In contrast, REBA’s algorithm has
the ability to re-plan when the agent fails to achieve its goals, whereas oASP(MDP)
needs to re-explore the search space in this case, loosing in efficiency.

The work reported in [40] combines Deep Q-Networks with symbolic representa-
tion of spatial relations between two objects. These relations make the Q-table an
interactive relational model where the predicates representing the states are passed
from the environment to the learning agent. The main difference with respect to the
oASP(MDP) is in the state generation phase, since this phase in oASP(MDP) is the
responsibility of the environment, with no use of an intermediate system that maps a
set of predicates to a state. However, [40] uses a richer representation that is trained on
a language corpus. Experiments were performed in the domain of mapping a person’s
intention to a goal.

Another related approach is presented in [43], where Answer Set Programming is
combined with POMDP as a framework for a robot executing non-deterministic actions.
In that work POMDP is used to describe actions and to deal with uncertainty about the
robot’s sensor readings. This is different from the algorithm investigated in the present
paper mainly due to the base formalism used in the domain description. Regarding the
process of providing information about similar tasks performed in comparable domains,
the work in [43] also uses historical data to leverage this process, with the difference
that we are using heuristics (extracted from the interactions with the environment but
without historical data) and Zhang et al. [43] use hand-coded rules.

Also interested in the problem of combining a RL agent with explicit knowledge
representation in order to avoid the execution of implausible actions, the work described
in [26] explores the problem of adding commonsense knowledge to RL agents. The au-
thors created a text-based game scenario to train and evaluate RL agents equipped
with explicit knowledge about objects, their attributes and affordances. Results show
that the use of commonsense knowledge implied a boost in performance as the agents
explored the environment more efficiently. Analogous to the use of answer set pro-
gramming in the present paper, the commonsense knowledge used in [26] could also
prune the space state, thus reducing unfruitful and time-consuming exploration. The
difference, with respect to the work described in the present paper, rests in the fact
that Murugesan et al. [26] use manually annotated objects with qualifying properties
for common sense, whereas the present work obtains a simpler description of the en-
vironment (responsible for pruning the state space and the set of actions) from the
interaction between the agent and the environment without the use of common sense.

Problem solving in non-stationary domains is an important part of our study. To
tackle the problem of obtaining an optimal solution to a non-stationary domain, the
work in [28] presents an adaptation of a change-point algorithm that detects changes in
the statistics of the environment, facilitating a RL agent to maximize the accumulative
reward. Although the non-stationary rewards assumed in [28] are similar to the work
presented here, the research reported in [28] does not consider changes in the domain
states and actions, as well as in the effects of these actions.

A related approach to non-stationary MDPs, where change occurs in the set of
states, is presented in [22] with the introduction of Continual Reinforcement Learning
(CRL) methods. Lomonaco et al. [22] use Deep Reinforcement Learning (DRL) meth-
ods derived from A2C for a robotic agent to learn to navigate in a 3D maze. This maze
can suffer changes on the light conditions, on the wall textures, as well as on the shapes
and colors of objects or a combination of these. By measuring the average return, CRL
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can determine when the environment changes and adapts its Q-function representa-
tion to the new environment, without re-starting the Q-function learned in the previous
configuration of the environment. Thus, the agent’s description of the environment in-
creases as the environment changes in a way that is similar to oASP(MDP). While, our
use of answer sets makes the representation more flexible and compact, their approach
is less prone to errors due to small changes in the environment.

In [23] the authors deal with the shortcomings of Reinforcement Learning and
Knowledge Representation and Reasoning (KRR) by combining knowledge from hu-
mans with policies learned from a RL agent to dynamically compute task-specific
planning models under unexplored new environments. Results show that there is an
improvement in the model based RL, with experiments performed using a mobile robot
working on dialog, navigation and delivery tasks. Like our work, Lu et al. [23] also rep-
resent the knowledge about the dynamics of the environment in a declarative form. In
our case, since the set of state-action pairs is built in an online fashion and represented
as ASP programs, our algorithm uses only the relevant subset of state-action pair to
decide which action to take (in the RL step), but it is currently not expressive enough
to represent the environment dynamics explicitly.

The oASP(MDP) algorithm is adapted in this paper to consider heuristics (in
a transfer learning setting) following the ideas developed in our previous work. The
Heuristically Accelerated Reinforcement Learning (HARL) is proposed in [1] that ap-
plies heuristics to accelerate and guide the reinforcement learning procedure. The au-
thors show that good heuristics are very useful to guide the action-selection phase in
RL, when an agent has little knowledge (especially at the beginning of the learning
procedure). Moreover, as the interactions happen, the agent presents a better global
performance due to the initial acceleration (which was also shown in other studies [6,
24,25,38]).

There are a variety of domains that can profit from transferring the knowledge
learned in a source task to a target task. Morozs et al. [25] applies HARL to the
domain of dynamic secondary spectrum-sharing in cellular systems2. As in our study,
experiments showed that the use of heuristics can help to achieve high control of the
sharing patterns in a totally autonomous way.

Another work describing the applicability of HARL is presented in [2], in which a
class of algorithms that use Case-Based Reasoning (CBR) as heuristics in a transfer
learning setting is studied. This approach was applied to two different robotic domains.
First, the RL algorithm is applied to a source task (the task used to extract the
heuristics); and after the learning stabilizes, the case base is built. Finally, the learned
cases are transferred to be used in the target task. Similarly, the use of heuristics in our
work is linked to a transfer learning process, since we obtain the heuristics by solving
simpler versions of the domains, then reusing the knowledge in the new task (which
is a more complex version of the puzzle). Zhang et al. [41] presents another related
approach where the HARL algorithm is combined with a RBF Network. Experiments
were performed in a grid world, showing that the use of the HARL approach improved
the RL learning process.

HARL is used in [7] in order to find a pricing strategy that maximizes the total
revenue in the commercialization of private data. The reported experiments show that

2 A problem that deals with how to share the available spectrum, in the radio networks
context, allowing for better voice calls and data transmissions, besides providing a good quality
of service to the users.
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the heuristics help to get higher returns in personal data transactions. Similarly, Liu
et al. [21] present an application of HARL to the task of highway overtaking for an
autonomous vehicle, where three heuristics were defined based on: 1)reward; 2)safety;
and 3)efficiency. In contrast to our approach, that uses heuristic in the action choice
step, in Liu et al. [21] the agents use the heuristic functions to decide the worst actions,
that are ignored in the next iterations.

Although our approach focuses on heuristics as the basis for the transfer learning
process, there are also other ways to handle this issue ([8,35]). The work in [42] presents
an approach to train the agent in a simple combat task (in this case, the context is
for the Multi-Agent RL) and then to reuse this knowledge in a more complex task,
a process that is similar to that proposed in the present paper; however, applied to
multi-agent systems. These heuristics are also used to continuously train the model
through self-play. Glatt et al. [14] propose an algorithm (called DECAF) to accelerate
learning by building a library of cases that are reused in the moment of a new policy
training. DECAF guides the training by dynamically selecting and blending policies
according to their usefulness for the current target task, whereas in the work presented
in this paper the state of the environment dictates the use of heuristics.

Focusing on target recognition underwater, the work in [5] presents an approach
to transfer learning that includes a Neural Network (NN) to extract features of the
task and then calculate the similarities between these features. The goal is to learn
the feature data in the source task and then apply that to the target task, in order to
reduce the repetition of similar data calculation in the reinforcement learning process.
Instead of using a NN to map the task source to the target task, the research reported
in the present paper use the components described by a logical program to transfer
heuristics across tasks. Thus, although oASP(MDP) can learn a representation of the
environment, the approach presented in [5] might be better at finding patterns from
the environment observations, given its use of a NN.

7 Conclusion

This paper explored the use of heuristics in a method that combines Answer Set Pro-
gramming with Reinforcement Learning in a Markov Decision Process (oASP(MDP))
applied on a set of spatial puzzles. This work considered two base puzzles composed of
entanglements involving flexible strings, rigid objects and holes: the Fisherman’s Folly
and the Rope Ladder, where the latter has more objects submitted to more challenging
relations than the former. Experiments were executed on distinct versions of these puz-
zles, defining deterministic, non-deterministic, and non-stationary domains. With these
domains, the following four algorithms were compared in this paper: the traditional
Q-Learning, the Heuristically Accelerated Q-Learning (HAQL), oASP(MDP) and the
main contribution of this work: the heuristic version of oASP(MDP) (HoASP(MDP)).

Heuristics used in this work were obtained from the solution of relaxed versions
of the domains considered. The results obtained show that these heuristics provided
suitable information to guide and accelerate the learning process, where the heuristic-
accelerated algorithms outperformed their relative non-heuristic versions with Ho-
ASP(MDP) showing the best performance overall. In particular, the oASP(MDP) and
HoASP(MDP) algorithms demonstrated to be capable of exploring a larger portion
of the valid state space by executing fewer illegal actions than their base learning al-
gorithms (Q-Learning and HAQL, respectively). Last but not least, as HoASP(MDP)
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only needs the Q-table of a solved problem as heuristic, it can be used as a general-
purpose problem solving method.

In order to explore further the use of ASP applied to Markov decision processes,
future work will focus on using ASP to extract general domain rules (constraints, for
example) and then apply these rules to reason about the domain, possibly guiding
the learning process. In this way, we can have a more general framework for reusing
previously learned knowledge while also exploring explicit descriptions of the domain
states, allowing for readable (or explainable) outputs and elaboration tolerant solutions.
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