
A Free Logic for Stable Models with Partial
Intensional Functions?

P. Cabalar1, L. Fariñas2, D. Pearce3, and A. Valverde4

1 Department of Computer Science
University of Corunna, Spain

cabalar@udc.es
2 University of Toulouse IRIT, CNRS, France

farinas@irit.fr
3 Universidad Politécnica de Madrid, Spain

david.pearce@upm.es
4 Universidad de Málaga, Spain

a valverde@ctima.uma.es

Abstract. In this paper we provide a new logical characterisation of
stable models with partial functions that consists in a free-logic exten-
sion of Quantified Equilibrium Logic (QEL). In so-called “free” logics,
terms may denote objects that are outside the domain of quantification,
something that can be immediately used to capture partial functions. We
show that this feature can be naturally accommodated in the monotonic
basis of QEL (the logic of Quantified Here-and-There, QHT) by allowing
variable quantification domains that depend on the world where the for-
mula is being interpreted. The paper provides two main contributions: (i)
a correspondence with Cabalar’s semantics for stable models with partial
functions; and (ii) a Gentzen system for free QHT, the monotonic basis
of free QEL.

1 Introduction: Functions in ASP

Answer Set Programming (ASP) [21, 22, 5] constitutes nowadays one of the most
popular paradigms for practical Knowledge Representation (KR) and problem
solving, being regularly present in mainstream conferences on KR and Artificial
Intelligence (AI). This popularity can be attributed not only to its practical ap-
plicability, with available state-of-the-art solvers5 and an increasing number of
applications, but also to its robust formal basis, relying on the stable model se-
mantics for logic programs [15]. Although stable models were originally defined
for propositional logic programs, their logical characterisation in terms of Equi-
librium Logic [23] paved the way for their extension to more general syntactic

? This research was partially supported by: European French-Spanish Lab IREP; MEC
project TIN2012-39353-C04; Junta de Andalućıa project TIC115; Xunta de Galicia,
Spain, grant GPC2013/070; and Universidad de Málaga, Campus de Excelencia In-
ternacional Andalućıa Tech.

5 See, for instance the report from the fourth ASP Competition [1]

classes. In particular, the first-order extension of this logic, Quantified Equilib-
rium Logic (QEL) [24], allows the definition of stable models for any arbitrary
first-order theory [13] and became a powerful theoretical tool for analysing fun-
damental properties such as strong equivalence [19], safety [9], interpolation [14]
or synonymy [25], being in this way a salient, successful case of Logics in AI.

The extension of stable models to an arbitrary first-order syntax has brought
into focus a feature traditionally excluded from ASP: the treatment of functions.
Although most ASP solvers are propositional, their input language allows the
use of variables that, in an initial grounding phase, are replaced by their possible
ground instantiations, under the assumption (inherited from logic programming)
of an Herbrand domain. Due to grounding limitations, ASP has traditionally
forbidden the use of functions because the simple introduction of one function
symbol makes the Herbrand universe infinite. This distinctive difference between
ASP and Prolog has been overcome with DLV-complex [11], a tool that allows
the grounding of ASP programs with arbitrarily nested Herbrand functions that
satisfy a given property of being finitely-ground [10] (although checking that
property is undecidable).

Apart from Herbrand functions, a less explored possibility that has recently
attracted attention is the use of evaluable functions in ASP. While an Her-
brand function is expected to act as a syntactic constructor for defining objects
in the universe, such as a tuple or a list, an evaluable function is expected
to behave with its usual mathematical meaning, that is, as an operator6 that
returns a value, as, for instance, the standard arithmetic operations for inte-
ger numbers. Dealing with evaluable functions may have two main advantages.
First, from the KR perspective, the use of nested functions usually allows a
more compact and natural reading, avoiding the introduction of auxiliary vari-
ables that may become a potential source of error. To give an example, saying
that X is a patrilineal great grandfather of Y could be naturally represented
as X = father(father(father(Y))) whereas in predicate notation, we would
need a rule body of the form father(Y, Z), father(Z, T), father(T,X) whose
meaning is not so easily recognisable at a first sight, apart from requiring two
extra auxiliary variables. Second, evaluable functions can be computationally
exploited both at the grounding phase, reducing the ground program size, and
at the solving phase, avoiding an overload of constraints.

An immediate interpretation for evaluable functions in ASP was already pro-
vided by QEL, since this logic was not necessarily restricted to Herbrand func-
tions. As shown in [20], QEL semantics for evaluable functions7 can be exploited
for a more efficient grounding on scenarios with functional dependences, if we
replace propositional ASP solvers by a CSP tool as a backend. Unfortunately,
the other potential advantage of using functions, namely, their adequacy for a
flexible KR, is not achieved by this approach. In particular, functions in QEL

6 This distinction between constructors and operators is, in fact, part of the motivation
from the area of Functional Logic Programming [16].

7 Although Lin and Wang’s approach was independently established, its correspon-
dence to QEL was proven in [7].

are somehow asymmetrical with respect to predicates, since they do not allow
non-monotonic reasoning (NMR). A reasonable requirement for a functional se-
mantics is that replacing all predicates by Boolean functions should have no
particular effect on the results excepting the minor changes in notation – each
atom p(X) would be replaced by the expression p(X) = true. However, predi-
cates in ASP are intensional : we can just provide the rules for which they hold,
assuming that anything else is false. Furthermore, thanks to default negation, we
can further specify default rules for a predicate that are applied in the absence of
exceptions. As an example, a graph can be described by merely asserting a fact
edge(i, j) for each edge, while remaining atoms for that predicate will be false
by default. Moreover, we can inductively define a reachability predicate with the
pair of rules:

reach(X,Y)← edge(X,Y) reach(X,Y)← edge(X,Z), reach(Z, Y)

something that is well-known to be non-representable in classical first-order logic.
Unfortunately, under QEL semantics, functions behave “classically” and there
is no way of defining a function default value without resorting to predicate-
based representations. In our example, if we replace predicates edge and reach
by Boolean functions, the stable models we obtain correspond to the classical
models of the original predicate-based theory.

1.1 Approaches to intensional functions

Although the idea of default values for functions is not new [8], Lifschitz sug-
gested the name intensional functions [18] to refer to evaluable functions that
allow NMR features analogous to those obtained with intensional predicates.
There currently exist two different ways of understanding intensional functions.
On the one hand, Bartholomew and Lee introduced a variant [3] (we will call
BL semantics) that repairs some counterintuitive features of Lifschitz’s approach.
Like the latter, BL semantics exclusively deals with total functions defining their
“stability” in terms of value uniqueness among values stemming from possible
models. On the other hand, a previous definition8 by Cabalar [7] considers in-
stead a minimal-information criterion for partial functions. To understand the
difference, take the example formula:

father(abel) = adam (1)

assuming abel and adam are Herbrand-constants. Under Cabalar’s semantics this
formula has a unique stable model where abel’s father is adam and adam’s father,
in turn, is left undefined by default. Notice how this interpretation is aligned to
the idea of minimal information from predicate-based representations. If we just
had a predicate fact father(abel, adam) the unique stable model would satisfy
¬∃x father(adam, x) underlining that adam’s father is undefined. In this sense,

8 As shown in [4], the recent approach by Balduccini [2] for logic programs with partial
functions is actually equivalent to Cabalar’s semantics.

Cabalar’s semantics can be seen as a “conversion” of predicate-based ASP into
functional notation whose main advantage is nesting functions: for instance, we
can conclude that Abel’s grandfather father(father(abel)) = father(adam) is
also undefined.

Under BL semantics, however, (1) has no stable models since the value of
father(adam) is not uniquely defined – in principle, with those two persons in
the domain, the possibilities are father(adam) = abel or father(adam) = adam
himself. In this way, the intuition behind BL intensional functions is clearly
different from predicate-based ASP and relies on an idea of selecting a function
value when there is no other way to vary that value. This idea was captured
in [4] and [12] defining in the latter a flexible extension of QEL together with a
Gentzen calculus for the “flexible” version of its monotonic basis, the so-called
logic of Quantified Here-and-There (QHT).

Apart from their different understandings for functions, one important dif-
ference in the behaviour of BL and Cabalar’s semantics has to do with the
treatment of nested functions. In particular, Cabalar’s semantics satisfies:

ϕ(f(x)) ≡ ∃y (f(x) = y ∧ ϕ(y)) (2)

for any term f(x) occurring in formula ϕ, where x is free in ϕ and y is not
free in ϕ. As a result, nested functions can be safely “unfolded” until all atoms
involving functions eventually have the form f(t) = t′ where t and t′ are function-
free terms. This syntactic form is called c-plain in [4] and there it was shown
that both BL and Cabalar’s semantics coincide for this form of theory, under
the assumption of total functions.9 Unfortunately, the unfolding transformation
(2) is not safe in BL semantics and the question whether any theory can be
equivalently reduced to c-plain form under BL is still unanswered.

1.2 Contribution of the paper

Although, as explained above, Cabalar’s semantics seems a promising alternative
for interpreting intensional functions, there was no axiomatisation for this logic
yet, and so its properties could only be proved at a semantic level. In this paper,
we consider an equivalent reformulation of Cabalar’s semantics in terms of a free-
logic extension of Quantified Equilibrium Logic (QEL). The term “free” logic
refers to a family of formalisms where syntactic terms may denote objects that
are outside the domain of quantification, something that can be used to capture
partial functions.10 We show that this feature can be naturally accommodated

9 In fact, as explained in [4], the difference total/partial between the two semantics is
not essential. In Cabalar’s semantics, any function can always be forced to be total
by adding an axiom ¬¬∃y f(x) = y. In BL semantics, we can always define a special
constant none to represent the fact that the function has no value. A comparison
like none = none would become true, but under c-plain syntax, such comparisons
never occur.

10 A useful reference is [26] that presents various approaches to free logic over intu-
itionistic logic.

in the monotonic basis of QEL (the logic of Quantified Here-and-There, QHT)
by allowing variable quantification domains that depend on the world where
the formula is being interpreted. Apart from capturing Cabalar’s semantics, this
free-logic characterisation also opens new possibilities for interpreting partial
intensional functions that will be explored in the future.

The main contributions of the paper are as follows. First, in Section 2 we
describe the free quantified logic of here-and-there, FHT, the monotonic basis
of free QEL. In Section 3 we then show that FHT-models are equivalent to the
semantics of Cabalar’s partial functions. And in Section 4 we present a Gentzen
calculus for FHT with corresponding completeness theorems.

2 The Free (Quantified) Here-and-There logic

We consider a first-order language with signature Σ = 〈C,F, P ∪ {=}〉, where
C is the set of constants (or 0-ary functions), F is the set of function symbols
and P is the set of predicate symbols. We assume that each predicate p ∈ P has
an associated arity, an integer denoting the number of arguments arity(p) ≥ 0.
Similarly, each function f ∈ F is associated with an arity(f) > 0.

First-order formulas are built up in the usual way, with the same syntax of
classical predicate calculus with equality =. Formally, we assume a countably
infinite set of variables, the constant ⊥, the connectives, ‘∨’, ‘∧’, ‘→’, ‘∃’, ‘∀’
and auxiliary parentheses. Negation is defined by ¬ϕ def

= ϕ → ⊥ and double

implication is denoted by ϕ↔ψ def
= (ϕ→ ψ)∧(ψ → ϕ). We use letters x, y, z and

their capital versions to denote variables, τ to denote terms, c to denote constants
and d objects in the domain. Overlined letters like x, τ , c, d, . . . represent tuples
(in this case of variables, terms, constants, and objects respectively). An atom
like τ = τ ′ is called an equality atom, whereas an atom like p(τ1, . . . , τn) with
n ≥ 0 for any predicate p different from equality is called apredicate atom. We
denote by At(C,F, P), or At for short, the set of ground predicate atoms over
the language. We also write Terms(C,F) to stand for the set of ground terms
formed with constants in C and functions in F .

We will be exclusively interested in closed formulas or sentences, that is, those
where each variable is bound by some quantifier. For the sake of readability,
however, we will sometimes allow free variables, but as an abbreviation for their
universal quantification. A set of sentences is called a theory.

Kripke semantics for intermediate logics relies on the idea of possible worlds
with an accessibility relation ≤ among them that, at least, satisfies reflexivity
and transitivity. The simplest case of intermediate logic strictly below classical
logic is known as the Logic of Here-and-There (HT) [17] where only two worlds
are considered, h (“here”) and t (“there”), so that h ≤ t. Apart from being
reflexive and transitive, the relation ≤ in intermediate logics must also satisfy an
important property called persistence or inheritance so that any accessible world
w′ ≥ w must have at least as much information (true assertions) as the current
one w. In the propositional case, this implies that the true atoms in w are a subset
of those in w′. In the first-order case, this is naturally extrapolated so that the

extent of any predicate p(x) in w is a subset of its extent in w′. For instance, in
HT we could have {p(0), p(1)} true in world h and {p(0), p(1), p(2), p(3)} true in
world t. When thinking of logic programs, it is somehow natural that all worlds
share a common domain, normally the Herbrand Universe, that in our example
would correspond to {0, 1, 2, 3}. When this happens, we say that the intermediate
logic has a static domain. This was, in fact, the choice taken in the original
definition of Quantified Here-and-There with Static domains [24], or SQHT for
short, where worlds h and t shared the same universe. In a more general setting,
however, each world w could have its own domain Dw provided that, for any
accessible world w′ ≥ w, we guarantee that the domain has at least as many
objects as in w, that is, Dw ⊆ Dw′ . In our example a possible situation could be,
for instance, Dh = {0, 1, 2} and Dt = {0, 1, 2, 3}. This immediately introduces a
way of representing the idea of undefined elements: for instance, 3 is undefined
in world h but becomes defined in world t whereas 4 is undefined in both worlds.
Using non-static domains has immediate consequences for quantification and
functional terms, since there may exist elements that cannot be denoted in the
current world, but that become denotable in an accessible world instead. To be
more precise, we use the Meinongiam approach for free semantics in intuitionistic
logic [6, 26], in which an outer domain D ⊇ Dt is considered. This is exactly the
semantic structure we introduce next for defining the Free logic of Quantified
Here-and-There, or FHT for short.

Given a function σ and a tuple of terms τ = τ1, . . . , τn we write σ(τ) to stand
for the tuple σ(τ1), . . . , σ(τn).

Definition 1 (FHT-interpretation). An FHT-interpretation M , is a tu-
ple M = 〈Dh, Dt, D,≡, I, σ〉 verifying the following conditions.

(F1) Dh ⊆ Dt ⊆ D are a triple of increasing domains.

(F2) ≡ is an equivalence relation on Dt, such that:

(a) There is no pair of elements d 6= d′ from Dh such that d ≡ d′;
(b) For all d ∈ Dt, there exists d′ ∈ Dh such that d ≡ d′.

σ : Terms(C ∪D,F)→ D, the interpretation for terms, is a mapping recursively
defined and verifying:

(F3) σ(d) = d if d ∈ D.

(F4) For any world w ∈ {h, t}, if σ(τ) ∈ Dw then σ(τ ′) ∈ Dw for each subterm
τ ′ of τ .

(F5) If di ≡ d′i for every i, then σ(f(d1, . . . , dn)) ≡ σ(f(d′1, . . . , d
′
n)).

I is an interpretation for predicates that assigns to each predicate p with arity n
at each world w ∈ {h, t} a set of tuples of elements I(p, w) following the rules:

(F6) I(p, w) ⊆ Dn
w

(F7) if d, d′ ∈ Dt, d ≡ d′, and (. . . , d, . . .) ∈ I(p, t), then (. . . , d′, . . .) ∈ I(p, t)

(F8) I(p, h) ⊆ I(p, t). �

Condition (F1) is standard for dynamic domains in intermediate logics – as
we explained before, they must contain an increasing set of elements to satisfy
the inheritance condition. Condition (F2) is necessary for capturing Cabalar’s
treatment of the equality predicate. While in the h world, an equality atom
τ1 = τ2 will just be interpreted by checking whether σ(τ1) and σ(τ2) coincide,
in the t world we will use instead a separate equivalence relation ‘≡’ among
elements in Dt. In this way, two different elements d 6= d′ can be equivalent
d ≡ d′ and so, they can be interpreted as “equal” in the t world. Given some
d ∈ Dt, we write [d] to represent its ≡-equivalence class. However, (F2) specifies
two strong restrictions: (a) says that if these two different elements d 6= d′ are in
Dh they cannot become equivalent in Dt. Intuitively, this will mean that if we
have two defined terms in h with a different value, they must remain defined and
different (equality is false) in world t. On the other hand, (b) means that all the
elements we use in Dt \Dh must have some “purpose” with respect to Dh. More
formally, any d ∈ Dt \Dh must be equivalent to some element in Dh ⊆ Dt. This
restriction allows us to capture an important condition in Cabalar’s semantics:
if a function is defined in world h, its value is maintained in world t. We will
see an example of this, once the satisfaction of formulas is defined. Since the ≡
relation must behave as a kind of equality, it must additionally satisfy (F5) and
(F7), so that replacement of equivalent terms preserves function values and truth
for predicates. Conditions (F4) and (F6) mean that evaluation of predicates and
terms at world w is “fixed” to elements in that world w, even through subterms.
Notice that the expanded language includes a constant for each object in D and
that (F3) evaluates any object constant to itself; for simplicity we do not make
a notational difference between the domain element and its name. (F8) is the
usual condition of persistence for predicate atoms from here to there.

We define when a FHT-interpretation M = 〈Dh, Dt, D,≡, I, σ〉 satisfies a
formula ϕ at world w ∈ {h, t}, written M,w |= ϕ, recursively as follows:

– M,w 6|= ⊥
– M,w |= p(τ) iff σ(τ) ∈ I(p, w).
– M,h |= τ1 = τ2 iff σ(τ1) = σ(τ2) ∈ Dh.
– M, t |= τ1 = τ2 iff σ(τ1), σ(τ2) ∈ Dt and σ(τ1) ≡ σ(τ2).
– M,w |= ϕ ∧ ψ iff M,w |= ϕ and M,w |= ψ,
– M,w |= ϕ ∨ ψ iff M,w |= ϕ or M,w |= ψ,
– M,h |= ϕ→ ψ iff M, t |= ϕ→ ψ and M,h 6|= ϕ or M,h |= ψ,
– M, t |= ϕ→ ψ iff, M, t 6|= ϕ or M, t |= ψ,
– M,w |= ∀x ϕ(x) iff M,w |= ϕ(d) for all d ∈ Dw.
– M,w |= ∃x ϕ(x) iff M,w |= ϕ(d) for some d ∈ Dw.

The concepts of validity, equivalence and semantic consequence are defined
as usual. To understand how these definitions work for undefined functions, let
us extend our Biblical genealogy example.

Example 1. Assume we have the Herbrand constants adam, cain, abel and take
the following situation that is compatible with Cabalar’s semantics. Suppose
that M,w |= father(abel) = adam in worlds w ∈ {h, t}, whereas father(cain)

is undefined in world h, M,h |= ¬∃xfather(cain) = x taking value adam in
world t, M, t |= father(cain) = adam. Besides, in both worlds, we still have
father(adam) undefined. To represent this situation in FHT we would fix Dh =
{abel, cain, adam}, Dt = Dh ∪ {cf} and D = Dh ∪ {af} with cf ≡ adam where
cf and af are unnamed elements that respectively stand for “Cain’s father” and
“Adam’s father.” Then σ(father(abel)) = adam ∈ Dh, σ(father(cain)) = cf ∈
Dt \Dh but cf ≡ adam and, finally, σ(father(adam)) = af ∈ D \Dt. �

To define equilibrium models, we say that an interpretationM = 〈Dh, Dt, D,≡
, I, σ〉 is smaller than M ′ = 〈D′h, D′t, D′,≡′, I ′, σ′〉, written M ≤ M ′, when
D\Dt = D′\D′t (elements that represent functions undefined both here and there
must coincide in both interpretations), I(p, t) = I ′(p, t) and I(p, h) ⊆ I ′(p, h)
for every predicate p, and finally, for every τ , one of these three cases holds: (1)
σ(τ) 6∈ Dt and σ′(τ) 6∈ D′t; or (2) σ(τ) = σ′(τ) ∈ Dh∩D′h; or (3) σ(τ) ∈ Dt \Dh,
σ′(τ) ∈ D′h ∩Dh, σ(τ) ≡ σ′(τ). Then a model M of a theory Γ is said to be an
equilibrium model iff there is no other model M ′ 6= M , M ′ ≤M of Γ .

3 Relation to Cabalar’s partial functions

In this section we recall the basic definitions from Cabalar’s extension [7] of
SQHT for dealing with partial functions. The main idea of this semantics re-
lies on keeping a static domain D, common for both worlds h and t, but the
interpretation of terms may map now to a special object u 6∈ D that stands for
“undefined.” Let us denote this variant as SQHTu and recall11 next its main
semantic definitions.

Definition 2 (SQHTu-interpretation). A SQHTu-interpretation is a tuple
M = 〈D, I, σh, σt〉 where σw with w ∈ {h, t} are functions σw : Terms(C ∪
D,F) → D ∪ {u} with u some new element u 6∈ D (standing for “undefined”)
and satisfying:

(U1) σw(d) = d for all d ∈ D.
(U2) The mappings σw are recursive and verify σw(f(τ)) = u if σw(τi) = u for

some τi in τ .
(U3) σh(τ) = σt(τ) or σh(τ) = u for all τ ∈ Terms(C ∪D,F).

and I is an interpretation for predicates satisfying:

(U4) I(p, w) ⊆ Dn, if arity(p) = n, and
(U5) I(p, h) ⊆ I(p, t). �

An interpretation M = 〈D, I, σh, σt〉 is total iff σh = σt and I(p, h) = I(p, t)
for every predicate p. We say that M = 〈D, I, σh, σt〉 is smaller than M ′ =
〈D, I ′, σ′h, σ′t〉, written M ≤M ′, when I(p, t) = I ′(p, t) and I(p, h) ⊆ I ′(p, h) for
every predicate p, σt = σ′t, and σh(τ) = u or σh(τ) = σ′h(τ) for every term τ .

11 For simplicity, we omit the distinction between Herbrand and non-Herbrand func-
tions made in the original definition of [7].

Definition 3 (Equilibrium model). A total SQHTu interpretation M is an
equilibrium model of a theory Γ iff M,h |= α for all α ∈ Γ and there is no
strictly smaller M ′ < M such that M ′, h |= α for all α ∈ Γ .

The satisfaction relation in SQHTu, written |=u, is defined as follows.

– M,w |=u p(τ) iff σw(τ) ∈ I(p, w);
– M,w |=u τ1 = τ2 iff σw(τ1) = σw(τ2) 6= u;
– ⊥, ∧ and ∨ are interpreted as usual;
– M,h |=u ϕ→ ψ iff M, t |=u ϕ→ ψ and either M,h 6|=u ϕ or M,h |=u ψ;
– M, t |=u ϕ→ ψ iff either M, t 6|=u ϕ or M, t |=u ψ;
– M,w |=u ∀x ϕ(x) iff M,w |=u ϕ(d) for all d ∈ D;
– M,w |=u ∃x ϕ(x) iff M,w |=u ϕ(d) for some d ∈ D.

To prove equivalence between SQHT and FHT we will use the next observation.

Proposition 1. Let L1 and L2 be two different Kripke logics for a common
syntax and set of worlds W , and let c be a correspondence assigning an L2

interpretation M c to any L1 interpretation M . If c is such that, at any world
w ∈W , both M,w and M c, w satisfy the same set of formulas, then L2 ⊆ L1.

We provide next a pair of correspondences that satisfy the conditions in
Proposition 1: mapping ‘∗’ from SQHT interpretations into FHT interpreta-
tions, and mapping ‘†’ in the opposite direction. In the sequel, if τ ∈ Terms(D∪
C,F), we write τ(d1, . . . , dn) to indicate that d1, . . . , dn are the elements of D
occurring in τ . Given an FHT interpretation M = 〈Dh, Dt, D,≡, I, σ〉 and as-
suming u 6∈ D, we define an SQHTu interpretation M∗ = 〈D∗, I, σ∗h, σ∗t 〉 as:

– D∗
def
= Dt/≡

– If τ([d1], . . . , [dn]) ∈ Terms(D∗ ∪ C,F) with di ∈ Dh and σ(τ(d1, . . . , dn)) ∈
Dh, then σ∗h(τ([d1], . . . , [dn])) = [σ(τ(d1, . . . , dn))];
otherwise, σ∗h(τ([d1], . . . , [dn])) =u.

– If σ(τ(d1, . . . , dn)) ∈ Dt, then σ∗t (τ([d1], . . . , [dn])) = [σ(τ(d1, . . . , dn))];
otherwise, σ∗t (τ([d1], . . . , [dn])) = u.

– If di ∈ Dh for every i, ([d1], . . . , [dn]) ∈ I∗(p, h) iff (d1, . . . , dn) ∈ I(p, h).
– I∗(p, t) = {([d1], . . . , [dn]) | (d1, . . . , dn) ∈ I(p, t)}, if n = arity(p).

The mappings σw are well defined, because if d ≡ d′ and τ(d) is a term
containing d, then by condition (F5), σ(τ(d)) ≡ σ(τ(d′)). The interpretation I∗

is also well defined by conditions (F2) and (F6).
As an example, consider Dh = {0, 1, 2}, Dt = {0, 1, 2, 3} and D = N. Any

σ in an FHT-interpretation will assign σ(i) = i for any natural number i ∈ N.
Then σ∗h(i) = i for i ∈ {0, 1, 2} and σ∗h(i) = u for all the rest. Similarly σ∗t (i) = i
for i ∈ {0, 1, 2, 3} and σ∗t (i) = u otherwise.

Proposition 2. If M is an FHT-interpretation, then M∗ is a well-formed
SQHT-interpretation. �

Theorem 1. Let M be an FHT interpretation and α an arbitrary sentence.
Then M,w |= α iff M∗, w |=u α for any w ∈ {h, t}. �

Given an SQHTu-interpretation M = 〈D, I, σh, σt〉 we provide now the cor-
respondence for the other direction, defining the associated FHT-interpretation
M† = (Dh, Dt, D

†,≡, I†, σ) as follows:

– D† = Terms(D ∪ C,F)/ ≡h, where τ1 ≡h τ2 if either τ1 = τ2, or σh(τ1) =
σh(τ2) 6= u.

– Dh = {[τ] | σh(τ) 6= u}
– Dt = {[τ] | σt(τ) 6= u}
– [τ1] ≡ [τ2] iff σt(τ1) = σt(τ2).
– σ([τ]) = [τ], σ(f([τ1], . . . , [τ2])) = [f(τ1, . . . , τ2)].
– I†(p, w) = {([τ1], . . . , [τn]) | (σw(τ1), . . . , σw(τn)) ∈ I(p, w)}, if n = arity(p).

The mapping σ is well defined, because if σh(τ1) = σh(τ ′i) for every i, then,
by recursion, σh(f(τ1, . . . , τn)) = σh(f(τ ′1, . . . , τ

′
n)). On the other hand, ≡ is well

defined: if σh(τ1) = σh(τ2) 6= u, then σt(τ1) = σh(τ1) = σh(τ2) = σt(τ2).

Proposition 3. Let M = 〈D, I, σh, σt〉 be an SQHTu-interpretation. Then
M† = 〈Dh, Dt, D

†,≡, I†, σ〉 is a well-formed FHT-interpretation. �

Theorem 2. Let M be an SQHTu-interpretation and α an arbitrary sentence.
Then M,w |=u α iff M†, w |= α for any w ∈ {h, t}. �

4 Gentzen calculus FHTG

In this section we introduce a Gentzen Calculus FHTG with multi-consequent
sequents of the form Γ ` ∆ where, Γ and ∆ are sets of formulas (respectively
understood as a conjunction and a disjunction). The soundness of the system is
guaranteed if the rules preserve the following property: for a rule Γ0`∆0

Γ1`∆1
if M is

a countermodel of Γ0 ` ∆0 then it is also a countermodel of Γ1 ` ∆1; and M
is a countermodel of Γ ` ∆ if M |= ϕ for every ϕ ∈ Γ and M 6|= ψ for every
ψ ∈ ∆. We begin by introducing the axioms and the rules of the basic system.

Axioms: Γ, ϕ ` ∆,ϕ; Γ, ϕ,¬ϕ ` ∆;

Rules for propositional connectives:

Γ, α, β ` ∆
Γ,α ∧ β ` ∆ (L-∧)

Γ ` ∆,α Γ ` ∆,β
Γ ` ∆,α ∧ β (R-∧)

Γ, α ` ∆ Γ, β ` ∆
Γ,α ∨ β ` ∆ (L-∨)

Γ ` ∆,α, β
Γ ` ∆,α ∨ β (R-∨)

Γ,¬α ` ∆ Γ ` ∆,α,¬β Γ, β ` ∆
Γ,α→ β ` ∆ (L-→)

Γ, α ` ∆,β Γ,¬β ` ∆,¬α
Γ ` ∆,α→ β

(R-→)

Γ,¬α,¬β ` ∆
Γ,¬(α ∨ β) ` ∆ (L-¬∨)

Γ ` ∆,¬α Γ ` ∆,¬β
Γ ` ∆,¬(α ∨ β)

(R-¬∨)

Γ,¬α ` ∆ Γ,¬β ` ∆
Γ,¬(α ∧ β) ` ∆ (L-¬∧)

Γ ` ∆,¬α,¬β
Γ ` ∆,¬(α ∧ β)

(R-¬∧)

Γ,¬β ` ∆,¬α
Γ,¬(α→ β) ` ∆ (L-¬ →)

Γ,¬α ` ∆ Γ ` ∆,¬β
Γ ` ∆,¬(α→ β)

(R-¬ →)

Γ ` ∆,¬α
Γ,¬¬α ` ∆ (L-¬¬)

Γ,¬α ` ∆
Γ ` ∆,¬¬α (R-¬¬)

Rules for quantified formulas: The Gentzen system works over the domain V , a
denumerable set of variables (or parameters); that is, the introduction of quan-
tifiers is always made from variables, not from terms of the original language.
In the following rules, y is a fresh variable, i.e. a variable which does not occur
free in Γ ∪∆ and τ ∈ Terms(C ∪ V, F):

Γ, y = τ, ϕ(y) ` ∆
Γ,∃xϕ(x) ` ∆ (R-∃), Γ, y = τ ` ∆,ϕ(y)

Γ ` ∆,∀xϕ(x)
(L-∀),

The atoms y = τ in the left-hand side introduce the elements y of the domain Dh.
In the following rules, y may be any variable in V (not necessarily fresh), but
we also need to include the atom y = τ in the left-hand side.

Γ, y = τ, ϕ(y),∀xϕ(x) ` ∆
Γ, y = τ,∀xϕ(x) ` ∆ (R-∀), Γ, y = τ ` ∆,ϕ(y),∃xϕ(x)

Γ, y = τ ` ∆, ∃xϕ(x)
(L-∃)

Substitution rules: If τ1, τ2 are terms in T erms(C ∪ V, F):

Γ, τ1 = τ2, ϕ(τ1) ` ∆
Γ, τ1 = τ2, ϕ(τ2) ` ∆ ;

Γ, τ1 = τ2 ` ∆,ϕ(τ1)
Γ, τ1 = τ2 ` ∆,ϕ(τ2)

;

Γ,¬ϕ(τ1) ` ∆,¬(τ1 = τ2)
Γ,¬ϕ(τ2) ` ∆,¬(τ1 = τ2)

;
Γ ` ∆,¬(τ1 = τ2),¬ϕ(τ1)
Γ ` ∆,¬(τ1 = τ2),¬ϕ(τ2)

;

Strictness rule (left side): The property (F4) for interpretations establishes the
strictness of the assignment mapping, i.e. if a term τ is defined, every subterm
τ ′ is also defined. The syntactic rule for this property is the following one:

Γ, x = τ, y = τ ′ ` ∆
Γ, x = τ ` ∆ (3)

The previous set of rules is basic for systems built to characterize free logics.
The rest of the rules are specific for our system.

Additional rule for equality: By (F2)-a, two distinct elements in Dh cannot be
equivalent in Dt. The property (F2)-a is syntactically characterized by the rule

Γ, x = y ` ∆
Γ, x = y ` ∆,¬(x = y)

(4)

On the other hand, by the property (F2)-b, every element of Dt, must be
equivalent to one from Dh. The atom ¬(y = τ) in the right-hand side introduces
the element y of the domain Dt, but does not determine any relation with Dh.
So, to comply with property (F2)-b, we need to modify the standard rules for
negated quantified formulas and strictness.

Rules for negated quantified formulas: In the following rules, y, z are fresh vari-
ables and τ ∈ Terms(C ∪ V, F):

Γ, z = τ,¬ϕ(y) ` ∆,¬(y = τ)
Γ,¬∀xϕ(x) ` ∆ (R-¬∀), Γ, z = τ ` ∆,¬ϕ(y),¬(y = τ)

Γ ` ∆,¬∃xϕ(x)
(L-¬∃)

The literal ¬(y = τ) says that y is a new element of Dt equivalent to τ , and the
presence of the atom z = τ in the left-hand side says that τ is an element of Dh,
as required by property (F2)-b; if we drop the condition (F2)-b in our models,
these atoms in the left-hand sides of these rules must be also dropped.

In the following rules, y may be any variable in V (not necessarily fresh).

Γ,¬ϕ(y),¬∃xϕ(x) ` ∆,¬(y = τ)
Γ,¬∃xϕ(x) ` ∆,¬(y = τ)

(R-¬∃)

Γ ` ∆,¬(y = τ),¬ϕ(y),¬∀xϕ(x)
Γ ` ∆,¬(y = τ),¬∀xϕ(x)

(L-¬∀)

Strictness rule (right side): Let τ ′ below be a subterm of τ and y, z fresh vari-
ables. We add the atom z = τ ′ in the left-hand side to comply with (F2)-b.

Γ, z = τ ′ ` ∆,¬(x = τ),¬(y = τ ′)
Γ ` ∆,¬(x = τ)

(5)

Auxiliary parameters elimination: As we have said, the quantifier rules only work
with variables and thus, to prove formulas involving terms, these terms must be
assigned to variables. This is done by auxiliary parameters elimination rules we
denote as (ParEl). In the following rules, α is either a predicate symbol or the
equality, every τi is a term in Terms(C ∪ V, F), and x, x1, . . . , xn are variables.

Γ, α(x1, . . . , xn), x1 = τ1, . . . , xn = τn ` ∆
Γ,α(τ1, . . . , τn) ` ∆

Γ, x1 = τ1, . . . , xn = τn ` α(x1, . . . , xn), ∆ Γ ` ∆,∃x(x = τi), i = 1..n
Γ ` α(τ1, . . . , τn), ∆

Γ ` ¬α(x1, . . . , xn),¬(x1 = τ1), . . . ,¬(xn = τn), ∆
Γ ` ¬α(τ1, . . . , τn), ∆

Γ¬α(x1, . . . , xn) ` ¬(x1 = τ1), . . . ,¬(xn = τn), ∆ Γ,¬∃x(x = τi) ` ∆, i = 1..n
Γ,¬α(τ1, . . . , τn) ` ∆

Example 2. The inference p(a) ` ∃x(x = a) is provable in FHT,

p(y), y = a ` y = a,∃x(x = a) (Axiom)
p(y), y = a ` ∃x(x = a) (L-∃)

p(a) ` ∃x(x = a) (ParEl)

because the truth of the atom p(a) in a model requires that a is defined. This
is a consequence of the condition (F6), I(p, h) ⊆ Dh, and syntactically of the
auxiliary parameters elimination rules. However, the inference ¬p(a) ` ∃x(x = a)
is not provable. If we try to construct a proof applying the rules upwards we can
deduce how to build a counterexample.

¬p(a) ` ∃x(x = a)
y = y,¬p(y) ` ¬(y = a),∃x(x = a) ¬∃x(x = a) ` ∃x(x = a)

y = y,¬p(y) ` ¬(y = a), y = a,∃x(x = a)

In the first step, we apply the parameter elimination rule; we would need to add
the atom y = y because y is a fresh variable and we need to define it as an
element of Dh. In the second step we apply R-∃; note that we would need the
presence of the atom y = y in the left-hand side to apply this rule. The sequent in
the left branch is not open and it can not be generated from other sequents (the
rule R-∃ has been applied using the unique parameter in the sequent). Moreover,
it is easy to construct a countermodel of this sequent,

Dh = {y}, Dt = {y, a}, y ≡ a, I(p, h) = I(p, t) = ∅

which also is a countermodel of ¬p(a) ` ∃x(x = a).

Theorem 3 (Soundness). If Γ and ∆ are lists of formulas such that Γ ` ∆
is deducible in FHTG, and I is a model of Γ , then I is a model of a formula
ψ ∈ ∆. In particular, if Γ ` ϕ, then Γ |= ϕ

As usual, the soundness proof consists in verifying that every rule preserves
the satisfiability of sequents.

Theorem 4 (Completeness). If Γ and ∆ are lists of formulas such that for
every model I of Γ there exists ψ ∈ ∆ such that I is a model of ψ, then Γ ` ∆
is deducible in FHTG. In particular, if Γ |= ϕ, then Γ ` ϕ.

5 Conclusions

We have provided an alternative characterisation of (the monotonic basis for)
Cabalar’s semantics for partial intensional functions based on free logic. This
characterisation allows us to establish a Gentzen calculus that can be used, for
instance, to check strong equivalence properties or make formal analysis for the-
ories involving partial functions. With respect to Cabalar’s original approach,
the current free-logic variant is more flexible: it can be modified in various ways
by relaxing some of the conditions we had to impose to capture Cabalar’s ap-
proach. Another interesting topic is the comparison to Flexible QHT and its
Gentzen calculus presented in [12] whose main differences rely on the treatment
of equality. We will study a formal comparison and explore the possibility of
capturing both Cabalar’s and BL functions in the same formal framework.

References

1. Mario Alviano, Francesco Calimeri, Günther Charwat, Minh Dao-Tran, Carmine
Dodaro, Giovambattista Ianni, Thomas Krennwallner, Martin Kronegger, Jo-
hannes Oetsch, Andreas Pfandler, Jörg Pührer, Christoph Redl, Francesco Ricca,
Patrik Schneider, Martin Schwengerer, Lara Katharina Spendier, Johannes Peter
Wallner, and Guohui Xiao. The fourth answer set programming competition: Pre-
liminary report. In Pedro Cabalar and Tran Cao Son, editors, Proc. of the 12th
Intl. Conf. on Logic Programming and Nonmonotonic Reasoning (LPNMR 2013),
Corunna, Spain, September 15-19, volume 8148 of Lecture Notes in Computer Sci-
ence, pages 42–53. Springer, 2013.

2. Marcello Balduccini. A “conservative” approach to extending answer set program-
ming with nonherbrand functions. In Esra Erdem, Joohyung Lee, Yuliya Lierler,
and David Pearce, editors, Correct Reasoning, pages 24–39. Springer-Verlag, 2012.

3. Michael Bartholomew and Joohyung Lee. Stable models of formulas with in-
tensional functions. In Proceedings of International Conference on Principles of
Knowledge Representation and Reasoning (KR’12), pages 2–12, 2012.

4. Michael Bartholomew and Joohyung Lee. On the stable model semantics for inten-
sional functions. In Proceedings of International Conference on Logic Programming
(ICLP’13), 2013.

5. Gerhard Brewka, Thomas Eiter, and Miroslaw Truszczynski. Answer set program-
ming at a glance. Commun. ACM, 54(12):92–103, 2011.

6. Tyler Burge. Truth and singular terms. Nous, 8(4):309–325, 1974.
7. Pedro Cabalar. Functional answer set programming. Theory and Practice of Logic

Programming, 10(2-3):203–233, 2011.
8. Pedro Cabalar and David Lorenzo. Logic programs with functions and default

values. In Proc. of the 9th European Conf. on Logics in AI (JELIA’04) (LNCS
3229), pages 294–306, 2004.

9. Pedro Cabalar, David Pearce, and Agust́ın Valverde. A revised concept of safety for
general answer set programs. In Esra Erdem, Fangzhen Lin, and Torsten Schaub,
editors, Proc. of the 10th Intl. Conf. on Logic Programming and Nonmonotonic
Reasoning (LPNMR 2009), Potsdam, Germany, September 14-18, volume 5753 of
Lecture Notes in Computer Science, pages 58–70. Springer, 2009.

10. Francesco Calimeri, Susanna Cozza, Giovambattista Ianni, and Nicola Leone. Com-
putable functions in ASP: Theory and implementation. In 24th Intl. Conf. on Logic
Programming, volume 5366 of Lecture Notes in Computer Science, pages 407–424.
Springer-Verlag, 2008.

11. Francesco Calimeri, Susanna Cozza, Giovambattista Ianni, and Nicola Leone. An
ASP system with functions, lists, and sets. In 10th Intl. Conf. on Logic Program-
ming and Nonmonotonic Reasoning, volume 5753 of Lecture Notes in Computer
Science, pages 483–489. Springer-Verlag, 2009.

12. Luis Fariñas del Cerro, David Pearce, and Agust́ın Valverde. FQHT: The logic
of stable models for logic programs with intensional functions. In Proceedings of
International Joint Conference on Artificial Intelligence (IJCAI’13), 2013.

13. P. Ferraris, J. Lee, and V. Lifschitz. A new perspective on stable models. In Proc.
of the International Joint Conference on Artificial Intelligence (IJCAI’07), pages
372–379, 2007.

14. Dov M. Gabbay, David Pearce, and Agust́ın Valverde. Interpolable formulas in
equilibrium logic and answer set programming. Journal of Artificial Intelligence
Research (JAIR), 42:917–943, 2011.

15. Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic
programming. In Proc. of the 5th Intl. Conf. on Logic Programming, pages 1070–
1080, 1988.

16. Michael Hanus. The integration of functions into logic programming: from theory
to practice. Journal of Logic Programming, 19,20:583–628, 1994.

17. Arend Heyting. Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte
der Preussischen Akademie der Wissenschaften, Physikalisch-mathematische
Klasse, pages 42–56, 1930.

18. Vladimir Lifschitz. Logic programs with intensional functions. In Proceedings of In-
ternational Conference on Principles of Knowledge Representation and Reasoning
(KR’12), 2012.

19. Vladimir Lifschitz, David Pearce, and Agust́ın Valverde. A characterization of
strong equivalence for logic programs with variables. In Proc. of the 9th Intl.
Conf. on Logic Programming and Nonmonotonic Reasoning (LPNMR’07), pages
188–200, 2007.

20. Fangzhen Lin and Yisong Wang. Answer set programming with functions. In Proc.
of the 11th Intl. Conf. on Principles of Knowledge Representation and Reasoning
(KR’08), 2008.

21. V. Marek and M. Truszczyński. Stable models and an alternative logic program-
ming paradigm. In The Logic Programming Paradigm: a 25-Year Perspective, pages
169–181. Springer-Verlag, 1999.

22. I. Niemelä. Logic programs with stable model semantics as a constraint program-
ming paradigm. Annals of Mathematics and Artificial Intelligence, 25:241–273,
1999.

23. David Pearce. A new logical characterisation of stable models and answer sets. In
Non monotonic extensions of logic programming. Proc. NMELP’96. (LNAI 1216).
Springer-Verlag, 1996.

24. David Pearce and Agust́ın Valverde. Towards a first order equilibrium logic for
nonmonotonic reasoning. In Proc. of the 9th European Conf. on Logics in AI
(JELIA’04), pages 147–160, 2004.

25. David Pearce and Agust́ın Valverde. Synonymous theories and knowledge repre-
sentations in answer set programming. Journal of Computer and System Sciences,
78(1):86–104, 2012.

26. Carl J. Posy. A free IPC is a natural logic: Strong completeness for some intuition-
istic free logics. Topoi, 1(1-2):30–43, 1982.

