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Abstract

Defined by Gelfond in 1991-94 (G94), epistemic specifications constitute an
extension of Answer Set Programming (ASP) that introduces subjective lit-
erals. A subjective literal allows checking whether some regular literal is true
in all (or in some of) the answer sets of the program, that are further col-
lected in a set called world view. One epistemic program may yield several
world views but, under the original G94 semantics, some of them resulted
from self-supported derivations. During the last eight years, several alterna-
tive approaches have been proposed to get rid of these self-supported world
views. Unfortunately, their success could only be measured by studying their
behaviour on a set of common examples in the literature, since no formal
property of “self-supportedness” had been defined. To fill this gap, we ex-
tend in this paper the idea of unfounded set from standard logic programming
to the epistemic case. We define when a world view is founded with respect
to some program. Accordingly, we define the foundedness property for an ar-
bitrary semantics, so it holds when its world views are always founded. Using
counterexamples, we explain that the previous approaches violate founded-
ness, and proceed to propose a new semantics based on a combination of
Moore’s Autoepistemic Logic and Pearce’s Equilibrium Logic. This combi-
nation paves the way for the development of an autoepistemic extension
of ASP. The main result proves that this new semantics precisely captures
the set of founded G94 world views.

Keywords: Answer Set Programming; Epistemic Specifications; Epistemic
Logic Programs; Autoepistemic Logic; Non-Monotonic Reasoning;
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Equilibrium Logic

1 Introduction

Epistemic reasoning [32, 18] constitutes a crucial feature for any agent to
be considered intelligent. The capacity of representing and reasoning about
knowledge and beliefs has proved to be a key property in different domains
such as planning under incomplete information, speech acts in natural lan-
guage understanding, software verification of security protocols, formalisation
of multi-agent systems or foundations of game theory (see [13, 17, 3, 15, 52,
60]). An important field in Knowledge Representation (KR) where epistemic
reasoning has played a relevant role since its inception is non-monotonic
reasoning. There, default rules have been frequently addressed in terms of
modal constructions expressing the agent’s own knowledge and beliefs, as a
kind of introspection. There exists a vast literature on non-monotonic modal
logics (see for instance [44, 40, 43, 38]) among which Moore’s Autoepistemic
Logic (AEL) [47] is perhaps the most prominent and well-studied approach
for non-monotonic epistemic introspection. Moreover, AEL has been com-
monly used in translations or encodings for other non-monotonic approaches,
like default negation in logic programming [28, 39].

Despite of its clear significance in KR, the impact of epistemic reasoning
in practical applications has been moderate so far. One possible reason is that
dealing with the agent’s knowledge normally implies an increase in compu-
tational complexity. However, a more important obstacle appears when we
extend an existing KR formalism with epistemic constructs and there exist
multiple options for their interpretation without a clear orientation or agree-
ment about which one preserves the main features of the extended formalism
in the best way. This is precisely the situation in the case of Answer Set
Programming (ASP) [42, 49], one of the most popular paradigms for prac-
tical KR and problem solving based on the stable model [25] semantics for
disjunctive logic programs.

The first steps towards an epistemic extension of answer set programming
can be traced back to the language of epistemic specifications. This language
was proposed by Gelfond in three consecutive papers [23, 26, 29] and extends
ASP with epistemic operators K and M. Using these constructs, it is possible
to check whether a regular literal l is true in every stable model (written K l)
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or in some stable model (written M l) of the program. For instance, the rule:

a← ¬K b (1)

means that a must hold if we cannot prove that all the stable models con-
tain b. The definition of a “satisfactory” semantics for epistemic specifications
has proved to be a non-trivial enterprise, as shown by the list of different at-
tempts proposed so far [21, 23, 24, 34, 56, 58, 59, 62]. The main difficulty
arises because subjective literals query the set of stable models but, at the
same time, occur in rules that determine those stable models. As an example,
the program consisting of:

b← ¬K a (2)

and (1) has now two rules defining atoms a and b in terms of the presence
of those same atoms in all the stable models. To solve this kind of cyclic
interdependence, the original semantics by Gelfond [23, 27, 29] (abbreviated1

as G94) considered different alternative world views or sets of stable models.
In the case of program (1)-(2), G94 yields two alternative world views2, [{a}]
and [{b}], each one containing a single stable model, and this is also the
behaviour obtained in the remaining approaches developed later on. The
feature that made G94 unconvincing, though, was the generation of self-
supported world views. A prototypical example for this effect is the epistemic
program consisting of the single rule:

a← K a (3)

whose world views under G94 are [∅] and [{a}]. The latter is considered
counter-intuitive by all authors3 because it relies on a self-supported deriva-
tion: a is derived from K a by rule (3), but the only way to obtain K a is
rule (3) itself. Although the rejection of world views of this kind seems nat-
ural, the truth is that all approaches in the literature have concentrated on

1As a notation convention, we abbreviate each semantics name using its original pub-
lication, with the initial of the first author’s last name followed by the last two digits of
the publication year.

2For the sake of readability, sets of propositional interpretations are embraced with [ ]
instead of { }.

3This includes Gelfond himself, who used this same example to propose a new variant
in [24], further modified in [34] later on.
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studying the effects on individual examples, rather than capturing the ab-
sence of self-supportedness as a formal property. To achieve such a goal, we
would need to establish some kind of derivability condition in a very similar
fashion as done with unfounded sets [61] for standard logic programs. To
understand the similarity, think about the (tautological) rule a ← a. The
classical models of this rule are ∅ and {a}, but the latter cannot be a stable
model because a is not derivable applying the rule. Intuitively, an unfounded
set is a collection of atoms that is not derivable from a given program and a
fixed set of assumptions, as happens to {a} in the last example. As proved
by Leone et al. [36], the stable models of any disjunctive logic program are
precisely its classical models that are founded, that is, that do not admit any
unfounded set. As we can see, the situation in (3) is pretty similar to a← a
but, this time, involves derivability through subjective literals. An immediate
option is, therefore, extending the definition of unfounded sets for the case
of epistemic programs – this constitutes, indeed, the first contribution of this
paper.

Once the property of founded world views is explicitly stated, the pa-
per proposes a new semantics for epistemic specifications, called Founded
Autoepistemic Equilibrium Logic (FAEEL), that satisfies that property. In
the spirit of [21, 58, 62], our proposal actually constitutes a full modal non-
monotonic logic where K becomes the usual necessity operator applicable to
arbitrary formulas. Formally, FAEEL is a combination of Pearce’s Equilib-
rium Logic [50, 51], a well-known logical characterisation of stable models,
with Moore’s AEL, one of the most representative approaches among modal
non-monotonic logics. The reason for choosing Equilibrium Logic is quite
obvious, as it has proved its utility for characterising other extensions of
ASP [1, 2, 4, 5, 7, 8, 9, 10, 12, 14, 20, 30, 53], including the already mentioned
epistemic approaches [21, 58, 62]. As for the choice of AEL, it shares with
epistemic specifications the common idea of agent’s introspection where Kϕ
means that ϕ is one of the agent’s beliefs. The only difference is that those
beliefs are just classical models in the case of AEL whereas epistemic speci-
fications deal with stable models instead. Interestingly, the problem of self-
supported models has also been extensively studied in AEL [35, 41, 48, 54],
where the formula K a→ a, analogous to (3), also yields an unfounded world
view4 [{a}]. Our solution consists in combining the monotonic bases of AEL

4Technically, AEL is defined in terms of theory expansions but each one can be char-
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and Equilibrium Logic (the modal logic KD45 and the intermediate logic of
Here-and-There (HT) [31], respectively), but defining a two-step models se-
lection criterion that simultaneously keeps the agent’s beliefs as stable models
and avoids unfounded world views from the use of the modal operator K. As
expected, we prove that FAEEL guarantees the property of founded world
views, among other properties lifted from standard ASP. Our main result,
however, goes further and asserts that the FAEEL world views of an epis-
temic program are precisely the set of founded G94 world views. We reach, in
this way, an analogous situation to the case of standard logic programming,
where stable models are the set of founded classical models of the program.
These results suggest that FAEEL is a solid formal basis for the development
of an autoepistemic extension of ASP.

The rest of the paper is organised as follows. Sections 2 and 3 respectively
revisit the background knowledge about equilibrium logic and epistemic spec-
ifications necessary for the rest of the paper. Section 4 introduces the found-
edness property for epistemic logic programs and then, Section 5 provides a
pair of counterexamples that suffice to prove that it does not hold for any
of the previously existing semantics. In Section 6 we introduce FAEEL and
explain some of its properties, making special emphasis on its relation to
G94, showing that the latter can be captured as a special subset of FAEEL
models. Section 7, contains the proof of the main result, that is, FAEEL-
world views are precisely the founded G94-world views. The proof relies on
an alternative characterisation of FAEEL that starts from G94 semantics
and imposes an additional semantic condition which can be considered as
a semantic counterpart of foundedness. In Section 8 we make a comparison
among the different semantics, using several examples from the literature and
including a table where, apart from foundedness, we also consider other four
formal properties recently proposed, showing that only FAEEL satisfies all
of them so far. Finally, Section 9 concludes the paper.

2 Background

We begin recalling the basic definitions of equilibrium logic and its re-
lation to stable models. We start from the syntax of propositional logic,
with formulas built from combinations of atoms in a set At with oper-
ators ∧,∨,⊥ and → in the usual way. We define the derived operators

acterised by a set of classical models with the same form of a world view [46, 55].
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ϕ ↔ ψ def= (ϕ → ψ) ∧ (ψ → ϕ), (ϕ ← ψ) def= (ψ → ϕ), ¬ϕ def= (ϕ → ⊥) and
> def= ¬⊥.

A propositional interpretation T is a set of atoms T ⊆ At . We write T |= ϕ
to represent that T classically satisfies formula ϕ. An HT-interpretation is
a pair 〈H,T 〉 (respectively called “here” and “there”) of propositional inter-
pretations such that H ⊆ T ⊆ At ; it is said to be total when H = T . We
write 〈H,T 〉 |= ϕ to represent that 〈H,T 〉 satisfies a formula ϕ under the
recursive conditions:

• 〈H,T 〉 6|= ⊥

• 〈H,T 〉 |= p iff p ∈ H

• 〈H,T 〉 |= ϕ ∧ ψ iff 〈H,T 〉 |= ϕ and 〈H,T 〉 |= ψ

• 〈H,T 〉 |= ϕ ∨ ψ iff 〈H,T 〉 |= ϕ or 〈H,T 〉 |= ψ

• 〈H,T 〉 |= ϕ→ ψ iff both:
(i) T |= ϕ→ ψ and
(ii) 〈H,T 〉 6|= ϕ or 〈H,T 〉 |= ψ

As usual, we say that 〈H,T 〉 is a model of a theory Γ, in symbols 〈H,T 〉 |= Γ,
iff 〈H,T 〉 |= ϕ for all ϕ ∈ Γ. It is easy to see that 〈T, T 〉 |= Γ iff T |= Γ
classically. For this reason, we will identify 〈T, T 〉 simply as T and will use ‘|=’
equally. By CL[Γ] we denote the set of all classical models of Γ. Interpretation
〈T, T 〉 = T is a stable (or equilibrium) model of a theory Γ iff T |= Γ and
there is no H ⊂ T such that 〈H,T 〉 |= Γ. We write SM[Γ] to stand for the
set of all stable models of Γ. Note that SM[Γ] ⊆ CL[Γ] by definition.

3 G94 semantics for epistemic theories

In this section we provide a straightforward generalisation of G94 allowing
its application to arbitrary modal theories. Formulas are extended with the
necessity operator K according to the following grammar:

ϕ ::= ⊥ | a | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 → ϕ2 | Kϕ for any atom a ∈ At .

An (epistemic) theory is a set of formulas. In our context, the epistemic
reading of Kψ is that “ψ is one of the agent’s beliefs.” Thus, a formula ϕ
is said to be subjective if all its atom occurrences (having at least one) are
in the scope of K. Analogously, ϕ is said to be objective if K does not occur
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in ϕ. For instance, ¬K a∨K b is subjective, ¬a∨ b is objective and ¬a∨K b
none of the two.

To represent the agent’s beliefs we will use a set W of propositional inter-
pretations, called belief view. Each interpretation I ∈W is further said to be a
belief set. The difference between belief and knowledge is that the former may
not hold in the real world. Thus, satisfaction of formulas will be defined with
respect to an interpretation I ⊆ At , possibly I 6∈ W, that accounts for the
real world: the pair (W, I) is called belief interpretation (or interpretation in
modal logic KD45). Modal satisfaction is also written (W, I) |= ϕ (ambiguity
is removed by the interpretation on the left) and follows the conditions:

• (W, I) 6|= ⊥,

• (W, I) |= a iff a ∈ I, for any atom a ∈ At ,

• (W, I) |= ψ1 ∧ ψ2 iff (W, I) |= ψ1 and (W, I) |= ψ2,

• (W, I) |= ψ1 ∨ ψ2 iff (W, I) |= ψ1 or (W, I) |= ψ2,

• (W, I) |= ψ1 → ψ2 iff (W, I) 6|= ψ1 or (W, I) |= ψ2, and

• (W, I) |= Kψ iff (W, J) |= ψ for all J ∈W.

Notice that implication here is classical, that is, ϕ → ψ is equivalent to
¬ϕ ∨ ψ in this context. A belief interpretation (W, I) is a belief model of Γ
iff (W, J) |= ϕ for all ϕ ∈ Γ and all J ∈ W ∪ {I}. We say that W is an
epistemic model of Γ, and abbreviate this as W |= Γ, iff (W, J) |= ϕ for all
ϕ ∈ Γ and all J ∈W. Belief models defined in this way correspond to modal
logic KD45 whereas epistemic models correspond to S5.

Example 1. Take the theory Γ1 = {¬K b → a} corresponding to rule (1).
An epistemic model W |= Γ1 must satisfy: 〈W, J〉 |= K b or 〈W, J〉 |= a, for
all J ∈ W. We get three epistemic models from K b, namely, [{b}], [{a, b}],
and [{b}, {a, b}] and the rest of cases must force atom a to be true, so we also
get [{a}] and [{a}, {a, b}]. In other words, Γ1 has the same epistemic models
as K b ∨K a.

Note that rule (1) alone did not seem to provide any reason for believing b,
but we got three epistemic models above satisfying K b. Thus, we will be only
interested in some epistemic models (we will call world views) that minimize
the agent’s beliefs in some sense. To define such a minimisation we rely on
the following syntactic transformation provided by Truszczyński [59].
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Definition 1 (Subjective reduct). The subjective reduct of a theory Γ with
respect to a belief view W, also written ΓW, is obtained by replacing each
maximal subformula of the form Kϕ: by >, if W |= Kϕ; or by ⊥, otherwise.
Notice that ΓW is a classical, non-modal theory.

Finally, we impose a fixpoint condition where, depending on whether
each belief set I ∈W is required to be a stable model of the reduct or just a
classical model, we get G94 or AEL semantics, respectively.

Definition 2 (AEL and G94 world views). A belief view W is called an
AEL-world view of a theory Γ iff W = CL[ΓW], and is called a G94-world
view of Γ iff W = SM[ΓW].

Example 2 (Example 1 revisited). Take any W such that W |= K b. Then,
ΓW

1 = {⊥ → a} with CL[ΓW
1 ] = [∅, {a}, {b}, {a, b}] and SM[ΓW

1 ] = [∅]. None
of the two satisfies K b so W cannot be fixpoint for G94 or AEL. If W 6|= K b
instead, we get ΓW

1 = {> → a}, whose classical models are {a} and {a, b},
but only the former is stable. As a result, W = [{a}, {a, b}] is the unique
AEL world view and W = [{a}] the unique G94 world view.

Example 3. Take now the theory Γ3 = {K a→ a} corresponding to rule (3).
If W |= K a we get ΓW

3 = {> → a} and CL[ΓW
3 ] = SM[ΓW

3 ] = {a} so
W = [{a}] is an AEL and G94 world view. If W 6|= K a, the reduct becomes
ΓW

3 = {⊥ → a}, a classical tautology with unique stable model ∅. As a result,
W = [∅, {a}] is the other AEL world view, while W = [∅] is the second G94
world view.

As we can see, the difference between AEL and G94 is that we respectively
use classical CL[ΓW] versus stable SM[ΓW] models of the reduct ΓW. It is well
known that adding the excluded middle axiom:

a ∨ ¬a (4)

for all atoms a ∈ At makes equilibrium logic collapse into classical logic. This
leads us to the next result.

Proposition 1. W is an AEL world view of some theory Γ iff W is a
G94-world view of Γ ∪ (4).

To the best of our knowledge, this connection was not presented so far
in the literature. As a consequence of this result, any solver for epistemic
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specifications under G94 semantics can be easily adapted to compute AEL
world views: it suffices with adding the excluded middle axiom (4) for each
atom in the signature. In fact, this axiom is easily implemented in modern
ASP solvers by resorting to a so-called choice rule of the form “0{a}1” or
simply “{a}.” Moreover, in this way, we may even decide to select some part
of the signature to behave as AEL (adding the corresponding choice rules)
and the rest of atoms to follow the standard closed world assumption in ASP,
more convenient for expressing defaults or inductive relations.

4 Founded world views of epistemic specifications

As we explained in the introduction, world view [{a}] of {K a → a} is
considered to be “self-supported” in the literature but, unfortunately, there
is no formal definition for such a concept, to the best of our knowledge. To
cover this lack, we proceed to extend here the idea of unfounded sets from
disjunctive logic programs to the epistemic case. For this purpose, we focus
next on the original language of epistemic specifications [23] (a fragment of
epistemic theories closer to logic programs) on which most approaches have
been actually defined.

Let us start by introducing some terminology. An objective literal is either
an atom a ∈ At , its negation ¬a or its double negation ¬¬a. A subjective
literal is any of the formulas5 K l, ¬K l or ¬¬K l where l is an objective
literal. A literal is either an objective or a subjective literal, and is called
negative if it contains negation and positive otherwise. A rule is a formula of
the form

a1 ∨ . . . ∨ an ← B1 ∧ . . . ∧Bm (5)

with n ≥ 0, m ≥ 0 and m+n > 0, where each ai is an atom and each Bj is a
literal. For any rule r like (5), we define its body as Body(r) def= B1∧ . . .∧Bm

and its head Head(r) def= a1 ∨ . . . ∨ an, which we sometimes use as the set of
atoms {a1, . . . , an}. We define the subset Bodyob(r) as those atoms occurring
in objective literals in the body. Similarly, Bodysub(r) is the set of atoms
occurring in subjective literals. Note that Body(r) = Bodyob(r) ∪ Bodysub(r)

5We focus here on the study of operator K, but epistemic specifications also allow a
second operator M whose relation to K is also under debate, so we leave its study for
future work.
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but Bodyob(r)∩Bodysub(r) is not necessarily empty. Moreover, these sets are
restricted into the respective Body+

ob(r) and Body+
sub(r) that further require

those atoms to occur in positive body literals.
When n = 0, Head(r) = ⊥ and the rule is a constraint, whereas if m = 0

then Body(r) = > and the rule is a fact.
An epistemic specification or program is a set of rules. As with formulas, a

program without occurrences of K is said to be objective (it corresponds to a
standard disjunctive logic program with double negation). For this case, and
to allow a better comparison, we reproduce below the standard definition [36,
Definition 3.1] of unfounded set (we call it “objective” to distinguish it from
our extension).

Definition 3 (Objective unfounded set [36]). Let Π be an objective program
and I a propositional interpretation. A set of atoms X is an (objective)
unfounded set with respect to Π and I if there is no rule r ∈ Π with Head(r)∩
X 6= ∅ satisfying:

1. I |= Body(r)

2. Body+
ob(r) ∩X = ∅

3. (Head(r) \X) ∩ I = ∅

Now, we introduce the following extension for epistemic programs:

Definition 4 (Unfounded set). Let Π be a program and W a belief view. An
unfounded set S with respect to Π and W is a non-empty set of pairs where,
for each 〈X, I〉 ∈ S, it follows that X and I are sets of atoms and there is
no rule r ∈ Π with Head(r) ∩X 6= ∅ satisfying:

1. (W, I) |= Body(r)

2. Body+
ob(r) ∩X = ∅

3. (Head(r) \X) ∩ I = ∅

4. For all 〈X ′, I ′〉 ∈ S, Body+
sub(r) ∩X ′ = ∅

As we can see, we added a fourth condition, but the first three ones essen-
tially preserve Definition 3 except that we use (W, I) to check satisfaction of
Body(r), as it may contain now subjective literals. Intuitively, each I repre-
sents some potential belief set (or stable model) and X is some set of atoms
without a “justifying” rule, that is, there is no r ∈ Π allowing a positive
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derivation of atoms in X. A rule like that should have a true Body(r) (con-
dition 1) but not because of positive literals in X (condition 2) and is not
used to derive other head atoms outside X (condition 3). The novelty in our
definition is the addition of condition 4: to consider r a justifying rule, we
additionally require not using any positive literal K a in the body such that
atom a also belongs to any of the unfounded components X ′ in S.

Definition 5 (Founded world view). Let Π be a program and W be a belief
view. We say that W is unfounded if there is some unfounded-set S such
that every 〈X, I〉 ∈ S satisfies I ∈ W and X ∩ I 6= ∅. W is called founded
otherwise.

When Π is an objective program, each pair 〈X, I〉 corresponds to a stan-
dard unfounded set X of some potential stable model I in the traditional
sense of [36].

Example 4. Given the single disjunctive rule a ∨ b suppose we check the
(expected) world view W = [{a}, {b}]. For I = {a} and X = {a}, rule a ∨ b
satisfies the four conditions and justifies a. The same happens for I = {b} =
X. So, W is founded. However, suppose we try with W′ = [{a, b}] instead.
For I = {a, b} we can form X = {a} and X ′ = {b} and in both cases, the only
rule in the program, a∨ b, violates condition 3. As a result, W′ is unfounded
due to the set S′ = {〈{b}, {a, b}〉, 〈{a}, {a, b}〉}.

To illustrate how condition 4 works, let us continue with Example 3.

Example 5 (Example 3 continued). Theory Γ3 = {K a → a} is also a
program. Given belief set W = [{a}] we can observe that S = [〈{a}, {a}〉]
makes W unfounded because the unique rule in Γ3 does not fulfil condition 4:
we cannot derive atom a from a rule that contains a ∈ Body+

sub(r). On the
other hand, the other G94 world view, W = [∅], is trivially founded.

Since Definition 5 only depends on some epistemic program and its se-
lected world views, we can raise it to a general property for any epistemic
semantics.

Property 1 (Foundedness). A semantics satisfies foundedness when all the
world views it assigns to any program Π are founded.

An interesting observation is that in all the original examples of epistemic
specifications [23, 26] used by Gelfond to introduce G94, modal operators
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occurred in the scope of negation. Since unfoundedness is never raised by
negative subjective literals, unfounded world views could not be spotted using
this family of examples.

5 Foundedness in the previously existing semantics

As we discussed in Example 5, our introduced definition of unfounded
world view allowed disregarding the self-supported solution [{a}] for pro-
gram {K a→ a} obtained by G94. This immediately implies that G94 does
not satisfy foundedness, as expected. In fact, this is not surprising, since all
the remaining approaches previously existing in the literature were precisely
proposed to disregard (among other cases) world view [{a}] for that example.
What is more striking, however, is that none of those approaches actually
satisfy foundedness, as we proceed to prove next for each of them through
counterexamples.

Foundedness in the G11 and K15 semantics

As mentioned in the introduction, Gelfond [24] and, later, Kahl et al. [34]
revisited the semantics of epistemic logic programs in an attempt to get rid
of unintended world views. These approaches, which we respectively denote
as G11 and K15, were based on the same idea: modifying the definition of
subjective reduct ΓW so that some occurrences of subjective literals K l are
not replaced by a truth constant, but by the objective literal l instead.

Definition 6 (G11-world views). Given a logic program Π, its G11-reduct
with respect to a non-empty set of interpretations W is obtained by:

1. replacing by ⊥ every subjective literal L ∈ Bodysub(r) such that W 6|= L,

2. removing all other occurrences of subjective literals of the form ¬K l,

3. replacing all other occurrences of subjective literals of the form K l by l.

A non-empty set of interpretations W is a G11-world view of Π iff W is the
set of all stable models of the G11-reduct of Π with respect to W.

Then, we can use the following example to show that this semantics does
not satisfy foundedness:
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Counterexample 1. Take the epistemic logic program:

a ∨ b a← K b b← K a (Π1)

whose G94-world views are W = [{a}, {b}] and W′ = [{a, b}]. These are,
indeed, the two cases we analysed in Example 4. W is again founded be-
cause a∨ b keeps justifying both possible 〈X, I〉 pairs, that is, [〈{a}, {a}〉] and
[〈{b}, {b}〉]. However, for the world view W′, we still have the unfounded set
S′ = [〈{a}, {a, b}〉, 〈{b}, {a, b}〉] which violates condition 3 for the first rule
as before, but also condition 4 for the other two rules.

Note how S′ allows us to spot the root of the derivability problem: to
justify a in 〈{a}, {a, b}〉 we cannot use a ← K b because b is part of the
unfounded structure X in the other pair 〈{b}, {a, b}〉, and vice versa. It is
not difficult to see that this unfounded G94-world view is also a G11-world
view, so G11 does not satisfy foundedness either. To see why, note that the
G11-reduct of program Π1 with respect to W′ is the objective program:

a ∨ b a← b b← a

which has the unique stable model {a, b} which is the only element in W′.
The K15-reduct is a slight variant of the G11-reduct, so that K l is always

replaced by l in any subjective literal satisfied by W, even if K l is in the
scope of negation.

Definition 7 (K15-world views). Given a logic program Π, its K15-reduct
with respect to a non-empty set of interpretations W is obtained by:

1. replacing by ⊥ every subjective literal L ∈ Bodysub(r) such that W 6|= L,

2. replacing all other occurrences of subjective literals of the form K l by l.

A non-empty set of interpretations W is a K15-world view of Π iff W is the
set of all stable models of the K15-reduct of Π with respect to W.

In general, the K15 and G11 reducts may differ. Yet, for Counterexam-
ple 1, it is easy to see that the K15-reduct of program Π1 with respect to W′
is the same as its G11-reduct and, thus, we get that W′ is also an unfounded
K15-world view of Π1.
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Foundedness in the F15 and S17 semantics

A more elaborated strategy is adopted by the recent approaches by Fariñas
et al. [21, 58] (F15) and Shen and Eiter [56] (S17), that treat the pre-
vious world views as candidate solutions6, but select the ones with mini-
mal knowledge in a second step. This allows removing the unfounded world
view [{a, b}] in Counterexample 1, because the other solution [{a}, {b}] pro-
vides less knowledge. Unfortunately, this strategy does not suffice to guaran-
tee foundedness, since other formulas (such as constraints) may remove the
founded world view without providing justification for the unfounded one, as
explained below.

Let us recall the F15 semantics, based on a combination of Equilibrium
Logic with the modal logic S5. We follow here the revision made in [58].

Definition 8. An EHT-interpretation is a pair 〈W, h〉 where W is a non-
empty set of interpretations and h : W −→ 2At is a function mapping each
interpretation T to some subset of atoms such that h(T ) ⊆ T .

Satisfaction of formulas with respect to EHT-interpretations is defined
in a similar way as with respect to belief interpretations. Satisfaction of a
formula ϕ with respect to an EHT-interpretation 〈W, h〉 and a point I ∈W
is recursively defined as follows:

1. 〈W, h, I〉 6|= ⊥,

2. 〈W, h, I〉 |= a iff a ∈ I, for any atom a ∈ At ,

3. 〈W, h, I〉 |= ψ1 ∧ ψ2 iff 〈W, h, I〉 |= ψ1 and 〈W, h, I〉 |= ψ2,

4. 〈W, h, I〉 |= ψ1 ∨ ψ2 iff 〈W, h, I〉 |= ψ1 or 〈W, h, I〉 |= ψ2,

5. 〈W, h, I〉 |= ψ1 → ψ2 iff 〈W, h′, I〉 6|= ψ1 or 〈W, h′, I〉 |= ψ2 for both
h′ = h and h′ = id, and

6. 〈W, h, I〉 |= Kψ iff 〈W, h, J〉 |= ψ for all J ∈W.

where id : W −→ 2At is the identity function mapping, that is, id(T ) = T for
every T ∈W. We say that an EHT-interpretation 〈W, h〉 satisfies a formula ϕ

6In [21, 58], these candidate world views are called epistemic equilibrium models while
selected world views receive the name of autoepistemic equilibrium models.
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when 〈W, h, I〉 |= ϕ for all I ∈ W. We say that 〈W, h〉 satisfies a theory Γ,
written 〈W, h〉 |= Γ, if it satisfies all its formulas ϕ ∈ Γ. In this last case, we
also say that 〈W, h〉 is an EHT-model of Γ.

An EHT-interpretation 〈W, h〉 is said to be total on a set X ⊆ W iff
h(I) = I for every I ∈ X. It is said to be just total iff it is total on W. Then,
equilibrium models are defined as follows:

Definition 9. A total EHT-model 〈W, id〉 |= Γ of some theory Γ is an equi-
librium EHT-model iff there is no other EHT-model 〈W, h〉 |= Γ such that
h(I) ⊂ I for some I ∈W.

The F15-world views are obtained from a selection among equilibrium
EHT-models. For defining that selection, we need to introduce the following
definitions:

Definition 10. Given a theory Γ, a non-empty sets of interpretations and
a subset X ⊆ W, we write W,X |=∗ Γ iff the following two conditions are
satisfied:

1. 〈W, id, I〉 |= Γ for all I ∈ X, and

2. if 〈W, h, I〉 |= Γ for some I ∈ W such that 〈W, h〉 is total on W \ X,
then 〈W, h〉 is total.

Then, for any two pairs of non-empty set of interpretations W and W′ we
write W ≤Γ W′ iff

W ∪ {I},W |=∗ Γ implies W′ ∪ {I},W′ |=∗ Γ

for every I such that I belongs to some equilibrium EHT-model of Γ. As usual
W <Γ W′ stands for W ≤Γ W′ and W 6≤Γ W′.
Definition 11. Given a theory Γ, an equilibrium EHT-model W is called
an F15-world view iff there is no other equilibrium EHT-model W′ such that
W ⊂W′ or W <Γ W′.

Note that F15-world views are chosen as a kind of minimal equilibrium
EHT-models. In many examples in the literature, those minimal models hap-
pen to be founded, leading to the wrong impression that foundedness is
satisfied. However, in those same examples, some non-minimal equilibrium
EHT-models are, in fact, unfounded. Given that F15 allows ruling out a spe-
cific equilibrium EHT-model by adding a constraint, we can easily force the
unfounded world views to come out as selected models. This is shown in the
following counterexample.
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Counterexample 2 (Counterexample 1 continued). Take now the program
Π2 = Π1 ∪ {⊥ ← ¬K a}. This new subjective constraint rules out world view
W = [{a}, {b}] because the latter satisfies ¬K a. Then, the G94, G11 and
K15 semantics assign W′ = [{a, b}] as the unique world view of this program.
Similarly, W′ is also its unique equilibrium EHT-model and, thus, an F15-
world view. However, W′ is still unfounded in Π2 because constraints do not
affect that feature (their empty head never justifies any atom).

Counterexample 2 not only shows that F15 does not satisfy foundedness,
but also that the strategy of ruling out unfounded world views by relying
on a minimisation is doomed to failure if we can remove candidate world
views using constraints or other kind of rules. This is, in fact, the problem
we can also find in the S17 semantics [56]. Recall that S17 uses a different
syntax to the rest of approaches: instead of the epistemic operator K, it uses
the epistemic negation operator not. However, Son et al. [57] showed that
‘not l’ can be defined in terms of K as ‘not K l’ and, then, characterised the
S17-world views as a class of minimal K15-world views.

Definition 12 (S17-world views). Let Π be a logic program Π and EΠ be the
set of epistemic literals that contains not K l for every epistemic literal of the
form K l that occurs in Π. Let ΦW

def= { L ∈ EΠ | W |= L } be the subset of
EΠ satisfied by the non-empty set of interpretations W. Then, a non-empty
set of interpretations W is an S17-world view iff it is a K15-world view and
there is no other K15-world view W′ such that ΦW′ ⊃ ΦW.

Using this characterisation, we can use again Counterexample 2 to prove
that S17 does not satisfy foundedness, since the program Π2 had a unique
K15-world view W = [{a, b}] that happened to be unfounded. Being W the
unique K15 world view, the additional minimisation imposed by S17 makes
no difference with respect to K15 in this case.

6 Founded Autoepistemic Equilibrium Logic

We present now the semantics proposed in this paper, introducing Founded
Autoepistemic Equilibrium Logic (FAEEL). As suggested by the similarity in
their names, FAEEL follows the same spirit as F15, that is, it combines Equi-
librium Logic with a modal approach, but replaces S5 by Moore’s Autoepis-
temic Logic (AEL). Note that this implies combining two non-monotonic
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formalisms, since AEL is non-monotonic too7. We will begin defining a com-
bination of the monotonic bases of equilibrium logic and AEL: the interme-
diate logic of HT and the modal logic KD45, respectively.

We start by introducing an elaboration of the belief (or KD45) interpre-
tation (W, I) already seen but replacing belief sets by HT pairs. Thus, we
extend now the idea of belief view W to a non-empty set of HT-interpretations
W = {〈H1, T1〉, . . . , 〈Hn, Tn〉} and say that W is total when Hi = Ti for all
of them, coinciding with the form of belief views W = {T1, . . . , Tn} we had
so far. Given an arbitrary W = {〈H1, T1〉, . . . , 〈Hn, Tn〉} we define its corre-
sponding total belief view as Wt def= {T1, . . . , Tn}. A belief interpretation I is
now redefined as I = (W, 〈H,T 〉), or simply I = (W, H, T ), where W is a
belief view and 〈H,T 〉 stands for the real world, possibly not in W. There-
fore, I consists of a belief view W and a real world 〈H,T 〉 where we may
have partial or total information in any of them now. When W is total, that
is Wt = W, we say that I is a total-view interpretation and further say that
I is (completely) total if, additionally, H = T . Next, we redefine the satis-
faction relation as follows. A belief interpretation I = (W, H, T ) satisfies a
formula ϕ, written I |= ϕ, iff:

• I 6|= ⊥,

• I |= a iff a ∈ H, for any atom a ∈ At ,

• I |= ψ1 ∧ ψ2 iff I |= ψ1 and I |= ψ2,

• I |= ψ1 ∨ ψ2 iff I |= ψ1 or I |= ψ2,

• I |= ψ1 → ψ2 iff both:
(i) I 6|= ψ1 or I |= ψ2; and
(ii) (Wt, T ) 6|= ψ1 or (Wt, T ) |= ψ2.

• I |= Kψ iff (W, Hi, Ti) |= ψ for all 〈Hi, Ti〉 ∈W.

For total belief interpretations, this new satisfaction relation collapses to the
modal logic KD45. For this reason, we compactly write total belief interpreta-
tions just as (W, T ) instead of (W, T, T ). Interpretation (W, H, T ) is a belief
model of Γ iff (W, Hi, Ti) |= ϕ for all 〈Hi, Ti〉 ∈W∪{〈H,T 〉} and all ϕ ∈ Γ –
additionally, when 〈H,T 〉 ∈W, we further say that W is an epistemic model

7It is perhaps worth to remember that non-monotonic S5 collapses to S5, so this double
non-monotonicity did not arise in F15.
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of Γ, abbreviated as W |= Γ. Given any epistemic theory Γ, we can force its
models to be total-view by adding the axiom schemata:

K(a ∨ ¬a) (6)

for every atom a ∈ At . On the other hand, the addition of (4) forces total
belief models (i.e., both the belief view and the real world are total). This is
formally stated below:

Proposition 2. Let Γ be an epistemic theory for signature At. Then:

• I is a model of Γ ∪ (6) iff both I is a model of Γ and I is total-view.

• I is a model of Γ ∪ (4) iff both I is a model of Γ and I is total.

Note how axiom (4) is, in fact, stronger than (6) since any total belief model
is also total-view.

A fundamental property from intuitionistic logic related to our total in-
terpretations is persistence. Informally speaking, persistence means that any
formula satisfied in a point of a Kripke structure is also preserved in all its
accessible points. In the case of the intermediate logic of HT, this means that
anything true “here” should also hold “there.” In FAEEL this means that
any formula satisfied by a belief interpretation must also be satisfied by its
corresponding total interpretation, as stated next.

Proposition 3 (Persistence). (W, H, T ) |= ϕ implies (Wt, T ) |= ϕ.

Proof. Just note that, for any atom a, it follows that 〈W, H, T 〉 |= a iff
a ∈ H ⊆ T which implies 〈Wt, T 〉 |= a. The rest of the proof follows by
induction on the structure of ϕ.

A belief model just captures collections of HT models which need not be
in equilibrium. To make the agent’s beliefs correspond to stable models we
impose a particular minimisation criterion. We begin defining an ordering
relation among belief views as follows.

Definition 13. Given belief views W′ and W, we write W′ � W iff the
following two conditions hold:

(i) for every 〈H,T 〉 ∈W, there is some 〈H ′, T 〉 ∈W′, with H ′ ⊆ H.

(ii) for every 〈H ′, T 〉 ∈W′, there is some 〈H,T 〉 ∈W, with H ′ ⊆ H.
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As usual, we write W′ ≺W iff W′ �W and W′ 6= W.

This ordering relation is extended to any pair of belief interpretations I ′ =
(W′, H ′, T ′) and I = (W, H, T ) so that we write I ′ � I when T ′ = T ,
H ′ ⊆ H and W′ � W. Again, I ′ ≺ I means I ′ � I and I ′ 6= I. The
intuition for I ′ � I is that I ′ contains less information than I for each fixed
Ti component. As a result, I ′ |= ϕ implies I |= ϕ for any formula ϕ without
implications other than ¬ψ = ψ → ⊥.

Definition 14. A total belief interpretation I = (W, T ) is said to be an
equilibrium belief model of some theory Γ iff I is a belief model of Γ and
there is no other belief model I ′ of Γ such that I ′ ≺ I.

By EQB[Γ] we denote the set of equilibrium belief models of Γ. As a final
step, we impose a fixpoint condition to minimise the agent’s knowledge as
follows.

Definition 15. A belief view W is called a FAEEL-world view of Γ iff:

W = { T | (W, T ) ∈ EQB[Γ] }

The logic induced by equilibrium world views is called Founded Autoepis-
temic Equilibrium Logic (FAEEL).

Example 6 (Example 5 continued). Back to Γ3 = {K a→ a}, remember its
unique founded G94-world view was [∅]. It is easy to see that I = ([∅], ∅) ∈
EQB[Γ3] because ([∅], ∅) |= Γ3 and no smaller belief model can be obtained.
Moreover, [∅] is an equilibrium world view of Γ3 since no other T 6∈ [∅]
satisfies ([∅], T ) ∈ EQB[Γ3]. The only possibility is ([∅], {a}) but it fails be-
cause there is a smaller belief model ([∅], ∅, {a}) satisfying K a→ a. As for
the other potential world view [{a}], it is not in equilibrium: we already
have I ′ = ([{a}], {a}) 6∈ EQB[Γ3] because the smaller interpretation I ′′ =
([〈∅, {a}〉], {a}, {a}) also satisfies Γ3. In particular, note that I ′′ 6|= K a and,
thus, clearly satisfies K a→ a.

In the rest of this section we explore the relation between FAEEL and
G94. We know that some G94 world views are not FAEEL world views, as
happens with [{a}] above. Still, we will prove that the opposite does hold,
that is, any FAEEL world view is always a G94 world view, so the former
constitutes a strictly stronger semantics. The key point for that result is that
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G94 world views of a theory Γ can be characterised as the equilibrium belief
models of Γ∪ (6) – remember that, by Proposition 2, this means using total-
view models of Γ in the minimisation process. We begin observing that the
addition of (6) to a theory Γ produces a superset of equilibrium models:

Proposition 4. Given any epistemic theory Γ, EQB[Γ] ⊆ EQB[Γ∪ (6)].

Proof. By definition, I ∈ EQB[Γ] iff I is a total model of Γ and there is no
belief model I ′ of Γ such tat I ′ ≺ I. Therefore, there is no total-view model
I ′ of Γ with I ′ ≺ I either. But this is the same than saying that there is no
model I ′ of Γ∪ (6) with I ′ ≺ I. Finally, as I is total, it also satisfies (6) and
so, we conclude I ∈ EQB[Γ ∪ (6)].

Note that the opposite direction is not necessarily true. For instance,
([{a}], {a}) is an equilibrium model of {K a→ a}∪(6) but not of {K a→ a}
alone. The following lemma relates FAEEL total-view interpretations forced
by (6) with the epistemic reduct transformation ϕW used in G94 semantics.

Lemma 1. Let Γ be a formula and I = (W, H, T ) be a total-view interpre-
tation. Then, I is a model of ϕ iff I is a model of ϕW.

Proof. Assume that ϕ = Kψ. Then, we get the equivalences:

(W, H ′, T ′) |= ϕ
iff (W, T ′′, T ′′) |= ψ for every 〈T ′′, T ′′〉 ∈W
iff W is an S5-model of ϕ
iff ϕW = >
iff I |= ϕW

Then, by induction on the structure of ϕ, we conclude that I |= ϕ iff I |= ϕW.
Finally, the following equivalences can be obtained:

I is a model of ϕ
iff I |= ϕ and (W, T ′, T ′) |= ϕ for all 〈T ′, T ′〉 ∈W
iff I |= ϕW and (W, T ′, T ′) |= ϕW for all 〈T ′, T ′〉 ∈W
iff I is a model of ϕW

The result of the epistemic reduct ϕW is a propositional (i.e. objective)
theory. The next two lemmata provide a pair of properties of propositional
theories in our semantics.
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Lemma 2. Let Γ be a propositional theory and I = (W, H, T ) be some
interpretation. Then, I is a model of Γ iff 〈H ′, T ′〉 is an HT-model of Γ for
every HT-interpretation 〈H ′, T ′〉 ∈W ∪ {〈H,T 〉}.

Proof. By definition, it follows that I is a model of Γ iff I is a model of ϕ
for all ϕ ∈ Γ. Furthermore, I is a model of ϕ iff I |= ϕ and (W, H ′, T ′) |=
ϕ for every 〈H ′, T ′〉 ∈ W iff (W, H ′, T ′) |= ϕ for every HT-interpretation
〈H ′, T ′〉 ∈W∪{〈H,T 〉}. Finally, since ϕ is a propositional formula, it follows
that (W, H ′, T ′) |= ϕ iff 〈H ′, T ′〉 |= ϕ. Hence, I is a model of Γ iff 〈H ′, T ′〉 is
an HT-model of Γ for every HT-interpretation 〈H ′, T ′〉 ∈W ∪ {〈H,T 〉}.

Lemma 3. Let Γ be a propositional theory and I = (W, T ) be some total
interpretation. Then, I is a equilibrium model of Γ iff T ′ is an equilibrium
model of Γ for every T ′ ∈W ∪ {T}.

Proof. First note that, since Γ is propositional, I is a model of Γ iff T ′ is a
model of Γ for every T ′ ∈ W ∪ {T}. Hence, we can conclude that I is an
equilibrium model of Γ iff there is no model I ′ = (W′, H, T ) of Γ such that
I ′ ≺ I.

Suppose, for the sake of contradiction, that there is some T ′ ∈ W ∪ {T}
which is not an equilibrium model of Γ. Then, there is 〈H ′, T ′〉 |= Γ such
that H ′ ⊂ T ′. Let I ′ = (W, H ′, T ′) if T ′ = T and I ′ = (W′, T ′, T ′) with
W′ = {〈H ′, T ′〉} ∪W otherwise. Then, I ′ ≺ I and, from Lemma 2, it follows
that I ′ is a model of Γ which is a contradiction. Hence, T ′ must be an
equilibrium model of Γ for every T ′ ∈ W ∪ {T}. The other way around,
assume that T ′ is an equilibrium model of Γ for every T ′ ∈ W ∪ {T} and
suppose, for the sake of contradiction, that I is not a equilibrium model of Γ.
Then, there is some model I ′ = (W′, H, T ) of Γ such that I ′ ≺ I. Then, from
Lemma 2, we get that 〈H ′, T ′〉 |= Γ for every 〈H ′, T ′〉 ∈W ∪ {〈H,T 〉}. This
implies that T ′ is not an equilibrium model of Γ which is a contradiction.
Consequently, I must be a equilibrium model of Γ.

We are now ready to prove the characterisation of G94 world views of Γ
in terms of equilibrium belief models of Γ ∪ (6).

Theorem 1. The G94-world views of any theory Γ coincide precisely with
the FAEEL-world views of Γ ∪ (6).

Proof. From Lemmas 1 and 3, we can see that (W, T ) ∈ EQB[Γ ∪ (6)] iff
(W, T ) ∈ EQB[ΓW ∪ (6)] iff W ∪ {T} ⊆ SM[ΓW]. Furthermore, from Defini-
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tion 15, we get that W is a FAEEL-world view of Γ ∪ (6) iff

W = { T | 〈W, T 〉 ∈ EQB[Γ ∪ (6)] }

which, as we just saw, can be rewritten as

W = { T | W ∪ {T} ⊆ SM[ΓW] }

which holds iff W = SM[ΓW]. That is, iff W is a G94-world view of Γ.

Now, to prove that FAEEL is stronger than G94, it suffices to use the
above characterisation of the latter. In other words, we will show that any
FAEEL-world view of Γ is also an equilibrium model of Γ ∪ (6).

Proposition 5. If W is a FAEEL-world view of Γ then W is a FAEEL-world
view of Γ ∪ (6).

Proof. By Proposition 4, we know EQB[Γ] ⊆ EQB[Γ ∪ (6)] so we only need
to prove that if W is a FAEEL-world view then there is no propositional
interpretation of T 6∈W such that (W, T ) ∈ EQB[Γ ∪ (6)].

Suppose, for the sake of contradiction, that the opposite holds, i.e., there
is some T /∈W such that (W, T ) ∈ EQB[Γ∪ (6)]. Since W is a FAEEL-world
view, this implies that (W, T ) is not an equilibrium model of Γ and, thus, that
there is some non-total-view model I ′ = (W′, H, T ) of Γ such that I ′ ≺ I.
Hence, there is some 〈H ′, T ′〉 ∈W′ such that H ′ ⊂ T ′. Let I ′′ = 〈W′, H ′, T ′〉.
Then, it follows that I ′′ ≺ (W, T ′) and, since W ∈ EQB[Γ] and T ∈ W, it
follows that (W, T ′) is an equilibrium model of Γ. These two facts together
imply that I ′′ is not a model of Γ. Therefore, there is a formula ϕ ∈ Γ such
that I ′′ is not a model of ϕ and, thus, there is 〈H ′′, T ′′〉 ∈ W′ ∪ {〈H ′, T ′〉}
such that (W′, H ′′, T ′′) 6|= ϕ. On the other hand, since I ′ is a model of Γ,
we can see that (W′, H ′′′, T ′′′) 6|= ϕ for every 〈H ′′′, T ′′′〉 ∈ W′ ∪ {〈H,T 〉}.
Thus, we conclude H ′′ = H ′, T ′′ = T ′ and (W′, H ′, T ′) 6|= ϕ. However, since
〈H ′, T ′〉 ∈W′, this implies that I ′ = (W′, H, T ) 6|= ϕ, which is a contradiction
with the fact that I ′ is a model of Γ. Consequently, W is a FAEEL-world
view of Γ ∪ (6).

Finally, this immediately allows us to conclude:

Theorem 2. If W is a FAEEL-world view of Γ then W is also a G94-world
view of Γ.
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Proof. Suppose W is a FAEEL-world view of Γ. From Proposition 5, we get
that W is a FAEEL-world view of Γ ∪ (6) and, from Theorem 1, the latter
means that W is a G94-world view of Γ.

Therefore, as we had foreseen, FAEEL is strictly stronger than G94. This
is, in fact, a distinctive feature of our semantics that does not hold in other
approaches in the literature, as proved by the following example.

Example 7. The following program:

a ∨ b c← K a ⊥ ← ¬c (Π3)

has no G94-world views, but according to G11, K15, F15 and S17 has world
view [{a, c}]. This example was also used in [6] to show that these semantics
do not satisfy another property, called there epistemic splitting.

One approach in the literature related to G94 that deserves a special
mention is the definition of epistemic views of a theory Γ introduced in [62],
since their definition shares some formal similarities with EQB[Γ ∪ (6)] and
seems to provide the same results for many examples. Still, the following
example shows that this does not hold in general, that is, epistemic views
from [62] are different from EQB[Γ∪(6)], i.e., different from G94-world views.

Example 8. Consider the singleton theory Γ = {¬¬a ∧Kϕ → a} with ϕ
the following formula ϕ = ¬¬a → a. Then, W = [∅, {a}] is both a G94
and FAEEL-world view of Γ, but not an epistemic view. To see that W is
a G94-world view of Γ, note that ΓW = {¬¬a ∧ > → a} ≡ {¬¬a → a}
which has two stable models: ∅ and {a}. Furthermore, from Theorem 1 this
implies that W ∈ EQB[Γ∪(6)]. However, W is not an epistemic view because
(W, ∅, {a}) is a model of Γ in the sense of [62]. Note that (W, ∅, {a}) 6|= ϕ
and that both ∅ and {a} belong to W. This implies that (W, ∅, {a}) 6|= Kϕ
and, thus, that (W, ∅, {a}) is a model of Γ. On the other hand, in our logic
(W, ∅, {a}) 6|= ϕ does not imply (W, ∅, {a}) 6|= Kϕ. In fact (W, ∅, {a}) |= Kϕ
holds because both (W, ∅, ∅) |= ϕ and (W, {a}, {a}) |= ϕ hold.

To conclude this section, we recall a recent result from [19] that provides
a quite general, sufficient syntactic condition on epistemic logic programs
under which FAEEL and G94 coincide. In particular, this happens when
there is a kind of acyclicity among positive subjective literals, revealing that
the difference between FAEEL and G94 is related to the treatment of cycles,
as we will confirm in the next section.
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Formally, the positive epistemic dependence relation among atoms in a
program Π is defined so that dep+(a, b) is true iff there is any rule r ∈ Π such
that a ∈ Head(r) ∪ Bodyob(r) and b ∈ Body+

sub(r).

Definition 16 (Epistemically tight program). We say that an epistemic pro-
gram Π is epistemically tight if we can assign an integer mapping λ : At → N
to each atom such that

(i) λ(a) = λ(b) for any rule r ∈ Π and atoms a, b ∈ (Atoms(r)\Bodysub(r)),

(ii) λ(a) > λ(b) for any pair of atoms a, b satisfying dep+(a, b).

Theorem 3 (Theorem 8 in [19]). FAEEL and G94-world views coincide for
epistemically tight programs.

Notice that, when a program has all its subjective literals in the scope
of negation, it is trivially tight (we can assign the same level to all atoms)
and so FAEEL and G94 coincide. This is interesting since, as we discussed
before, any semantics is also trivially founded for this kind of programs.

7 Characterisation as Founded G94-World Views

In this section, we review an alternative characterisation of FAEEL in-
troduced by Fandinno [19] that will allow us to prove the main result in this
paper, namely, that FAEEL precisely obtains those G94-world views that are
founded. According to this alternative characterisation, FAEEL-word views
are those G94-word views that are equilibrium models on a new logic we
will call S5-Equilibrium Logic (or S5-EL). This logic is similar to FAEEL,
but without the “autoepistemic” minimisation of knowledge. Technically, this
makes things simpler in two distinct ways: (i) it directly uses belief views in-
stead of belief interpretations and, as a result, (ii) it lacks the autoepistemic
fixpoint condition (Definition 15).

Definition 17. A total epistemic model W of a theory Γ is said to be an
S5-world view iff there is no other epistemic model W′ of Γ s.t. W′ ≺W.

The following result from [19] shows that FAEEL-world views can be
characterised in terms of G94 and S5-world views.

Theorem 4 (Theorem 4 from [19]). For any theory Γ, a belief view W is
a FAEEL-world view iff both (i) W is a G94-world view and (ii) W is an
S5-world view.
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Example 9 (Example 1 continued). Take again program Π1 = {(a∨b), (a←
K b), (b ← K a)} whose G94-world views were W = [{a}, {b}] and W′ =
[{a, b}], the latter being unfounded. We can see first that W is an S5-world
view, since we cannot build any smaller epistemic model W′′ ≺ W because
removing any atom from {a} or {b} would make formula a∨ b in Π1 unsatis-
fied. To see that W′ is not an S5-world view, note that W′′′ = {〈{a}, {a, b}〉,
〈{b}, {a, b}〉} is strictly smaller W′′′ ≺ W but is also an epistemic model
of Π1. This is because a ∨ b holds in all these worlds whereas, for the two
implications, at the “here” level, neither K a or K b hold, so implications
are trivially true, whereas at the “there” level K a, K b, a and b hold. From
Theorem 4 we conclude that W is the only FAEEL-world view of Π1.

The interest of this alternative characterisation is that, for the syntax
of epistemic programs, there is a strong connection between S5-EL and the
foundedness condition. In particular, we will begin proving that S5-world
views are always founded which, due to Theorem 4 above, will immediately
mean that FAEEL satisfies foundedness too. Our proof follows a similar struc-
ture as the one for standard Equilibrium Logic [16]. Let us start by defining
some auxiliary notation and terminology. Given a belief view W, a candidate
unfounded set S is a non-empty set of pairs of the form 〈X, I〉 such that
I ∈ W and X ∩ I 6= ∅. Furthermore, we write W − S to denote the belief
view:

{ 〈I, I〉 ∈W | 〈X, I〉 /∈ S } ∪ { 〈I \X, I〉 ∈W | 〈I, I〉 ∈W and 〈X, I〉 ∈ S }

Then, this belief view W− S satisfies the following property:

Proposition 6. Let Π be an epistemic program and W be a total belief view
such that W |= Π. If S is an unfounded set with respect to Π and W, then
W− S |= Π.

Proof. Suppose, for the sake of contradiction, that S is an unfounded set with
respect to Π and W and W − S 6|= Π. Then, there is some rule r ∈ Π such
that W |= r and W− S |= r. In its turn, this implies that there is some pair
〈H,T 〉 ∈W−S such that (W− S, H, T ) 6|= r and, thus, that one of following
conditions must hold:

1. (W− S, H, T ) |=
∧

Body(r) and (W′, H, T ) 6|=
∨

Head(r), or

2. (W, I, I) |=
∧

Body(r) and (W, I, I) 6|=
∨

Head(r).
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Note that the latter is a contradiction with the fact that W |= r. Furthermore,
(W− S, H, I) |=

∧
Body(r) implies (W, I) |=

∧
Body(r) and, since W |= r,

also that (W, I) |=
∨

Head(r). Hence, Head(r) ∩ H = ∅ and there is an
atom a ∈ Head(r) such that a ∈ I \ H. By construction, this implies that
〈X, I〉 ∈ S with X = I \H and, thus, one of the following conditions holds:

3. (W, T ) 6|=
∧

Body(r),

4. Body+
ob(r) ∩X 6= ∅, or

5. (Head(r) \X) ∩ T 6= ∅, or

6. Body+
sub(r) ∩ Y 6= ∅.

Condition 3 cannot hold because it implies (W, T ) |=
∧

Body(r). Further-
more, X = I \H implies that Condition 5 cannot hold either. The same hap-
pens for Condition 4, as we show next. Assume that there is some atom b ∈
Body+

ob(r)∩X 6= ∅. Then, we get (W− S, H, T ) 6|= b and, thus, also (W− S, H, T ) 6|=∧
Body(r) which is a contradiction with Condition 1. Therefore, it must be

that Body+
sub(r) ∩ Y 6= ∅ holds. Pick some atom b ∈ Body+

sub(r) ∩ Y . But
then, there is some 〈X ′, I ′〉 ∈ S such that b ∈ X ′ and 〈H ′, I ′〉 ∈ W with
X ′ = I ′ \ H ′. This implies that (W′, H, I) 6|= K b which is a contradiction
with the fact that (W′, H, I) |=

∧
Body(r). Consequently, W− S |= Π.

This result is used next to prove that S5-EL satisfies foundedness:

Theorem 5. Any S5-world-view of any program Π is founded.

Proof. Let W be some S5-world view of Π and suppose, for the sake of
contradiction, that it is not founded. Then, there is a unfounded-set S for Π
with respect to W such that every 〈X, I〉 ∈ S satisfies I ∈W and X ∩ I 6= ∅.
From Proposition 6, this implies that W − S |= Π and it is easy to see that
W−S ≺W. This is a contradiction with the fact that W is an S5-world view
of Π and, consequently, W must be founded.

As an immediate consequence, since FAEEL world views are also S5-world
views (Theorem 4) we directly conclude:

Theorem 6. FAEEL satisfies foundedness.
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Theorems 2 and 6 assert that any FAEEL-world view is a founded G94-world
view. The natural question is whether the opposite also holds, that is, whether
any founded G94-world view is also a FAEEL-world view. In Examples 6, 7
and 9 we did not find any counterexample, and this is in fact a general prop-
erty that we will prove as our Main Theorem below. To this aim, we begin
showing that the converse of Proposition 6 also holds. Given a belief view W,
let us define the following candidate unfounded set:

SW
def=

{
〈X, I〉

∣∣ 〈H, I〉 ∈W with X = I \H and X 6= ∅
}

Proposition 7. Let Π be an epistemic program and W be a non-total belief
view such that W |= Π. Then, W |= Π implies that SW is an unfounded set
with respect to Π and Wt.

Proof. Assume that W |= Π and suppose, for the sake of contradiction, that
SW is not an unfounded set with respect to Π and Wt. Then, there is some
pair 〈X, I〉 ∈ S and some rule r ∈ Π with Head(r) ∩X 6= ∅ satisfying:

1. (Wt, I) |=
∧

Body(r), and

2. Body+
ob(r) ∩X = ∅, and

3. (Head(r) \X) ∩ I = ∅.

4. Body+
sub(r) ∩ Y = ∅, and

with Y =
⋃
{ X ′ | 〈X ′, I ′〉 ∈ S }. Furthermore, from W |= Π, it immediately

follows that (W, H, I) |= r for every rule r ∈ Π and pair 〈H, I〉 ∈W. Further-
more, since W is non-total, there is some 〈H, I〉 ∈ W such that H ⊂ I and,
thus, 〈X, I〉 ∈ SW. Then, since (W, H, I) |= r, one of the following conditions
must hold:

5. (W, I) 6|=
∧

Body(r), or

6. (W, H, I) |=
∨

Head(r), or

7. (W, H, I) 6|=
∧

Body(r) and (W, I) |=
∨

Head(r).

Clearly, (5) is in contradiction with (1) and, thus, either (6) or (7) must hold.
Note also that (3) implies that Head(r) ∩H = ∅ and, thus, (6) cannot hold
either. Hence, (7) must hold and, thus, there is some literal L ∈ Body+(r)
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such that (W, H, I) 6|= L. If L ∈ Bodyob(r), then L /∈ H. Besides, from Con-
dition 1, it follows L ∈ I and, thus, L ∈ I \H = X which is a contradiction
with Condition 2. Otherwise, L ∈ Bodysub(r) and there is some 〈H ′, I ′〉 ∈W
such that a /∈ H ′ with L = K a. On the other hand, Condition 1 implies
(W, I) |=

∧
Body(r) and, thus, (W, I) |= K a. In its turn, this implies that

a ∈ I ′ for every pair 〈I ′, I ′〉 ∈ W. But then, by construction, there is some
〈X ′, I ′〉 ∈ S with X ′ = I ′ \H ′ and, thus, a ∈ X ′ ⊆ Y which is a contradiction
with Condition 4. Consequently, SW is an unfounded set with respect to Π
and W.

Next, we prove that a total belief model W of a program Π is founded if
and only if W is an S5-world view.

Theorem 7. Given any program Π, any belief view W is an S5-world view
of Π iff W is a founded total belief model of Π.

Proof. From Theorem 5, we obtain that any S5-world view is founded. Sup-
pose now, for the sake of contradiction, that W is a founded total model
of Π, but not an S5-world view. Then, there is some belief view W′ such
that W′ ≺ W and W |= Π and, from Proposition 7, we obtain that SW′ is
an unfounded set with respect to Π and W. This is a contradiction with the
assumption that W is a founded total model of Π and, thus, it must be that
W is an S5-world view of Π.

This last result reveals that the S5-world views selection can be some-
how considered as the semantic counterpart of the foundedness (syntactic-
dependent) condition. The S5-EL semantic characterisation of foundedness
has the additional advantage of being applicable to any arbitrary theory and
not just to epistemic programs.

Finally, we have now all the conditions to prove the Main Theorem:

Main Theorem. Given any program Π, its equilibrium world views coincide
with its founded G94-world views.

Proof. From Theorem 4 it follows that W is a FAEEL-world view iff (i) W
is a G94-world view and (ii) W is an S5-world view. On the other hand,
Theorem 7 proves that (ii) is equivalent to require that W is a founded total
belief model of Π. Finally, note that every G94-world view is also a total
belief model of Π (see Proposition 8 in the next section) and, thus, we can
rewrite the two conditions (i) and (ii) as: (i) W is a G94-world view and (ii)
W is a founded G94-world view.
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program world views

a ∨ b [{a}, {b}]

a ∨ b
[{a}, {b}]

a← K b

a ∨ b
[{a}]

a← ¬K b

a ∨ b
[{a, c}, {b, c}]

c← ¬K b

a← ¬K b
[{a}] , [{b}]

b← ¬K a

a←
¬K¬a [{a}]

a← ¬K a

program
G94/G11/FAEEL K15/F15/S17

a← ¬K¬a [∅] , [{a}] [{a}]

a ∨ b
none [{a}]

a← ¬K¬b

a ∨ b
[{a}] , [{a}, {b}] [{a}, {b}]

a← K¬b
a← b

[∅] , [{a, b}] [{a, b}]
b← ¬K¬a
a← ¬K¬b

[∅] , [{a}, {b}] [{a}, {b}]
b← ¬K¬a

Figure 1: On the left, examples where G94, G11, K15, F15, S17 and FAEEL agree. On
the right, examples where FAEEL/G91/G11 differ from K15/F15/S17.

8 Comparison to other approaches

To illustrate the effect of FAEEL when compared to other approaches in
the literature, we begin providing a list of usual examples taken from Table 4
in [21]. The left table in Figure 1 contains programs where all semantics
agree. The right table contains examples where the different semantics are
divided into two groups: one in which G94, G11 and FAEEL coincide, and
another in which the other three, K15, F15 and S17, coincide. Note that, in
these programs, all subjective literals are negative and, by Theorem 3, we
know that G94, G11 and FAEEL coincide for that syntactic class. The table
in Figure 2 shows more cases where G11 and FAEEL coincide, but differ from
one of the other semantics. Finally, Examples 1 and 7 in the paper can be
used to differentiate between FAEEL and G11.

Lifting this comparison from mere examples to formal properties, we al-
ready saw that FAEEL is the only one that satisfies foundedness. Besides,
Cabalar et al. [6] recently proposed other four properties for potential seman-
tics of epistemic specifications. Among them, epistemic splitting is inspired
by the well-known splitting theorem for standard logic programs [37]. Infor-
mally speaking, this property states that an epistemic logic program can be
split if its top part only refers to the atoms of the bottom part through sub-
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program G94
G11/FAEEL

K15 F15/S17

a← ¬K¬b ∧ ¬b
[∅] , [{a}, {b}] [{a}, {b}]

b← ¬K¬a ∧ ¬a
a← K a [∅] , [{a}] [∅]
a← K a

[{a}] none
a← ¬K a

Figure 2: Examples showing differences among several semantics. Examples 1 and 7 in the
paper can be used to distinguish between FAEEL and G11.

jective literals. Then, a given semantics is said to satisfy epistemic splitting
if it is possible to get its world views by first obtaining the world views of
the bottom and then using the subjective literals in the top as “queries” on
the bottom part previously obtained. For simplicity, we will not go here into
the formal details of this property. The reader can check [6], where G94 is
proved to satisfy epistemic splitting, and [19] where the same is proved for
FAEEL.

We analyse here the other three properties introduced in [6]:

1. supra-ASP holds when, for any objective theory Γ, either: Γ has a
unique world view W = SM[Γ] 6= ∅; or SM[Γ] = ∅ and Γ has no world
view.

2. supra-S5 holds when every world view W of a theory Γ is also an
epistemic model of Γ (that is, a model in the modal logic S5, W |= Γ).

3. subjective constraint monotonicity holds when, for any theory Γ and
any subjective constraint ⊥ ← ϕ, it follows that W is a world view of
Γ∪{⊥ ← ϕ} iff both W is a world view of Γ and W is not an S5-model
of ϕ.

To prove that FAEEL satisfies these properties, we begin introducing
three lemmata.

Lemma 4. Let ϕ be a formula in which every atom is in the scope of the
modal operator K and I = (W, H, T ) be some belief interpretation. Then,
I |= ϕ iff W |= ϕ.

Proof. In case ϕ = Kψ, we can see that I |= ϕ iff (W, H ′, T ′) |= ψ for all
〈H ′, T ′〉 ∈W iff W |= ϕ. The rest of the proof follows by induction on the
structure of ϕ.
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Lemma 5. Let ϕ be a formula in which every atom is in the scope of the
epistemic operator K and I = (W, H, T ) be some belief interpretation. Then,
we get that I |= ⊥ ← ϕ iff Wt |= ⊥ ← ϕ.

Proof. By definition, it follows that I is a model of ⊥ ← ϕ
iff (W, H ′, T ′) |= ⊥ ← ϕ for all 〈H ′, T ′〉 ∈W ∪ {〈H,T 〉}
iff (Wt, H ′, T ′) 6|= ϕ for all 〈H ′, T ′〉 ∈W ∪ {〈H,T 〉}
iff W 6|= ϕ (Lemma 4)
iff W |= ⊥ ← ϕ
iff Wt |= ⊥ ← ϕ (Proposition 3).

Lemma 6. Let Γ be a theory and ϕ be a formula in which every atom is
in the scope of the epistemic operator K and I = (W, H, T ) be some belief
interpretation. Then, I is a equilibrium model of Γ ∪ {⊥ ← ϕ} iff I is a
equilibrium model of Γ and Wt |= ⊥ ← ϕ.

Proof. Assume first that I is a equilibrium model of Γ∪{⊥ ← ϕ}. Then, I is
a model of Γ and a model of ⊥ ← ϕ. From Lemma 5, the latter implies that
Wt |= ⊥ ← ϕ. Suppose, for the sake of contradiction, that I is a equilibrium
model of Γ and, thus, that there is some model I ′ = (W′, H ′, T ′) of Γ such
that I ′ ≺ I. Then, I ′ ≺ I implies that (W′)t = W and, thus, from Lemma 5
and the fact that Wt |= ⊥ ← ϕ, we obtain that J |= ⊥ ← ϕ. This contradicts
the fact that I is an equilibrium model of Γ ∪ {⊥ ← ϕ}.

The other way around, assume that I is an equilibrium model of Γ and
Wt |= ⊥ ← ϕ. From Lemma 5, I is a model of ⊥ ← ϕ and, thus, an
equilibrium model of Γ ∪ {⊥ ← ϕ}.

Proposition 8. FAEEL satisfies supra-ASP, supra-S5 and subjective con-
straint monotonicity.

Proof. For supra-ASP, note that since we are dealing with propositional the-
ories there is no occurrence of K and, thus, we can apply Theorem 3 to see
that FAEEL and G94-world views coincide. Then, just note that, since there
is no occurrence of K, it follows that ΓW = Γ and, thus W is an autoepistemic
world view of Γ iff W is a G94-world view of Γ iff W = SM[ΓW] = SM[Γ].

For supra-S5, from Theorem 4, it follows that every FAEEL-world view W
is also an S5-world view and it is easy to check that every S5-world view is
also an epistemic model.
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G94 G11 L15 K15 S17 FAEEL

Supra-ASP X X X X X X
Supra-S5 X X X X X X
Subjective constraint monotonicity X X X
Splitting X X
Foundedness X

Table 1: Summary of properties in different semantics [19]. By G94 we refer to the seman-
tics of [23, 59, 62] since all of them agree when theories are epistemic programs. G11, F15,
K15, and S17 correspond to the semantics in [24, 58, 34, 56], respectively.

For subjective constraint monotonicity, note that W is a FAEEL-world view
of Γ ∪ {⊥ ← ϕ} iff the following equality holds:

W = { T | (W, T ) ∈ EQB[Γ ∪ {⊥ ← ϕ}] }

Furthermore, from Lemma 6 and the fact that every atom in ϕ is in the
scope of the modal operator K, we conclude (W, T ) ∈ EQB[Γ ∪ {⊥ ← ϕ}]
iff (W, T ) ∈ EQB[Γ] and W |= ⊥ ← ϕ. Hence, W is a FAEEL-world view
of Γ ∪ {⊥ ← ϕ} iff the following equality holds:

W = { T | (W, T ) ∈ EQB[Γ] }

and W |= ⊥ ← ϕ.

All semantics discussed in this paper satisfy the above first two properties
(supra-ASP and supra-S5), but most of them fail for subjective constraint
monotonicity, as first discussed in [33]. In fact, a variation of Example 7 can
be used to show that K15, F15 and S17 do not satisfy this property.

Example 10 (Example 7 continued). Suppose we remove the constraint (last
rule) from Π3 getting the program Π4 = {a ∨ b , c ← K a}. All semantics,
including G94 and FAEEL, agree that Π4 has a unique world view [{a}, {b}].
Suppose we add now a subjective constraint Π5 = Π4 ∪ {⊥ ← ¬K c}. This
addition leaves G94, G11 and FAEEL without world views (due to subjective
constraint monotonicity), but not for K15, F15 and S17, which provide a new
world view [{a, c}], not present before the addition of the constraint.

Table 1 summarises all the properties we discussed here and whether a
semantics satisfies it or not. FAEEL is unique in guaranteeing foundedness
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while also satisfying epistemic splitting. This places FAEEL as a firm can-
didate for the semantics of epistemic logic programs. Furthermore, we have
seen (Theorem 3) that, for epistemic tight programs (those not containing
cycles involving positive epistemic literals), both G94 and FAEEL coincide.
Recall that what made G94 inconvenient in the first place was the presence
of self-supported world views due to positive cycles. Hence, this shows that
FAEEL “fixes” the problem with self-supported world views present in G94
without introducing further variations that are unrelated to this problem.

9 Conclusions

In order to characterise self-supported world-views, already present in
Gelfond’s 1991 semantics [23] (G94), we have extended the definition of un-
founded sets from standard logic programs to epistemic specifications. As a
result, we proposed the foundedness property for epistemic semantics, which
is not satisfied by other approaches in the literature. Our main contribution
has been the definition of a new semantics, based on the so-called Founded
Autoepistemic Equilibrium Logic (FAEEL), that satisfies foundedness. This
semantics actually covers the syntax of any arbitrary modal theory and is a
combination of Equilibrium Logic and Autoepistemic Logic. As a main result,
we were able to prove that, for the syntax of epistemic specifications, FAEEL
world views coincide with the set of G94 world views that are founded. We
showed how this semantics behaves on a set of common examples in the liter-
ature and proved that it satisfies other four basic properties: all world views
are S5 models (supra-S5 ); standard programs have (at most) a unique world
view containing all the stable models (supra-ASP); subjective constraints just
remove world views (subjective constraint monotonicity); and world views of
programs can be computed modularly for those programs that can be split
(epistemic splitting).

Our immediate future work is focused on the implementation of an effi-
cient tool to compute FAEEL world views by including a foundedness check
on top of some G94 solver, like for instance the one presented in [11]. The
latter is an epistemic extension of the popular ASP solver clingo [22], so it
can reuse many existing encodings and adapt them to solve problems that
deal with the agent’s knowledge and beliefs or with conformant versions of
existing planning problems.
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[49] I. Niemelä. Logic programs with stable model semantics as a constraint
programming paradigm. Annals of Mathematics and Artificial Intelli-
gence, 25(3-4):241–273, 1999.

[50] D. Pearce. A new logical characterisation of stable models and answer
sets. In J. Dix, L. Pereira, and T. Przymusinski, editors, Proceedings
of the Sixth International Workshop on Non-Monotonic Extensions of
Logic Programming (NMELP’96), volume 1216 of Lecture Notes in Com-
puter Science, pages 57–70. Springer-Verlag, 1997.

[51] D. Pearce. Equilibrium logic. Annals of Mathematics and Artificial
Intelligence, 47(1-2):3–41, 2006.

[52] Riccardo Pucella. Knowledge and security. CoRR, abs/1305.0876, 2013.

[53] Steven Schockaert, Jeroen Janssen, and Dirk Vermeir. Fuzzy equilib-
rium logic: Declarative problem solving in continuous domains. ACM
Transactions on Computational Logic, 13(4):33:1–33:39, 2012.

[54] G. Schwarz. Autoepistemic logic of knowledge. In A. Nerode, V. Marek,
and V. Subrahmanian, editors, Proceedings of the First International
Conference on Logic Programming and Nonmonotonic Reasoning (LP-
NMR’91), pages 260–274. The MIT Press, 1991.

38



[55] G. Schwarz. Minimal model semantics for nonmonotonic modal logics.
In Proceedings of the Seventh Annual Symposium on Logic in Computer
Science (LICS’92), pages 34–43. IEEE Computer Society, 1992.

[56] Y. Shen and T. Eiter. Evaluating epistemic negation in answer set
programming. Artificial Intelligence, 237:115–135, 2016.

[57] T. Son, T. Le, P. Kahl, and A. Leclerc. On computing world views
of epistemic logic programs. In C. Sierra, editor, Proceedings of the
Twenty-sixth International Joint Conference on Artificial Intelligence
(IJCAI’17), pages 1269–1275. IJCAI/AAAI Press, 2017.
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