
Existential quantifiers in the rule body

Pedro Cabalar?

Department of Computer Science,
Corunna University (Corunna, Spain),

cabalar@udc.es

Abstract. In this paper we consider a simple syntactic extension of
Answer Set Programming (ASP) for dealing with (nested) existential
quantifiers and double negation in the rule bodies, in a close way to
the recent proposal RASPL-1. The semantics for this extension just re-
sorts to Equilibrium Logic (or, equivalently, to the General Theory of
Stable Models), which provides a logic-programming interpretation for
any arbitrary theory in the syntax of Predicate Calculus. We present a
translation of this syntactic class into standard logic programs with vari-
ables (either disjunctive or normal, depending on the input rule heads),
as those allowed by current ASP solvers. The translation relies on the
introduction of auxiliary predicates and the main result shows that it
preserves strong equivalence modulo the original signature.

1 Introduction

One of the traditional limitations of Answer Set Programming (ASP) in the
past has been the need of resorting to a ground instantitation of program rules.
Starting from the original definition of Stable Models [1] in terms of a proposi-
tional language, ASP solvers were designed following a two step process: first,
removing variables in favour of all their ground instances; and second, comput-
ing the stable models of the resulting ground program. Variables were somehow
an “external” element that was not directly treated in the semantics. It is not
surprising, in this way, that quantification was not paid too much attention in
the past although, paradoxically, most practical applications of ASP deal in one
way or another with some limited use of quantified variables, using auxiliary
predicates to capture the intended meaning.

This general picture has experienced a drastical change in the last years
thanks to the introduction of Quantified Equilibrium Logic [2] (QEL) or the
equivalent definition of stable models for first-order formulas proposed in [3].
These approaches provide a logic-programming interpretation for any arbitrary
first-order theory, so that syntactic restrictions do not play a role in the seman-
tic definition any more. Some recent results have been obtained in applying this
semantics to programs with variables, without resorting to grounding. For in-
stance, [4] treats the problem of strong equivalence, whereas in [5] QEL is used
? This research was partially supported by Spanish MEC project TIN-2006-15455-

C03-02 and Xunta de Galicia project INCITE08-PXIB105159PR.

to analyse rule redundancy and the completeness of rule subsumption under
a given substitution. On the other hand, much work remains to be done yet
in exploring the intuition, under a logic-programming perspective, of the QEL
interpretation of formulas with arbitrary syntax or belonging to new syntac-
tic classes. Several works have followed this direction: we can mention [6], that
has studied the extension of the concept of safety for arbitrary theories; [7],
which considers an extension for dealing with partial functions; or [8], that pro-
poses a logic-programming language RASPL-1 for counting and choice that can
be translated into first-order expressions under QEL by introducing existential
quantifiers and double negations in the rule bodies.

In this paper we analyse an extension of logic programs with variables where,
similarly to first-order theories resulting from the RASPL-1 translation, we in-
troduce existential quantifiers and double negations in the rule bodies, further
allowing a way of nesting these new constructs (something not considered in [8]).
We provide some intutitions of the utility of this extension and explain how these
features are already used in the current ASP programming style by a suitable in-
troduction of auxiliary predicates. In fact, we propose an automated translation
that relies on this technique of auxiliary predicates and reduces the proposed
extension to regular logic programs with variables as those accepted by current
ASP grounding tools. This translation is shown to be strongly equivalent (mod-
ulo the original language without the auxiliary predicates). Apart from providing
a more readable and compact representation, the advantage of dealing with the
extended syntax is avoiding a potential source of errors in the introduction of
auxiliary predicates, not only due to a possible programmer’s mistake in the
formulation, but especially because auxiliary predicates must be guaranteed to
be hidden and limited to their original use.

The rest of the paper is organised as follows. In the next section we introduce
some motivating examples and explain the paper goals. In Section 3 we provide
an overview of Quantified Equilibrium Logic to proceed in the next section with
the introduction of the syntactic subclass we study in this paper. Section 5
presents the translation of this class into regular logic programs, proving its
correctnes. Section 6 discusses some related work and finally, Section 7 concludes
the paper.

2 Motivation

Example 1. Given the extent of predicates person(X), parent(X,Y) (X is a
parent of Y) and married(X,Y) which is a symmetric relation, suppose we
want to represent that a person is happy, happy(X), when all his/her offsprings
are married. ut

A typical piece of program representing this problem in ASP would probably
look like:

has spouse(Y)← married(Y, Z)
has single offs(X)← parent(X,Y),not has spouse(Y)

happy(X)← person(X),not has single offs(X)

Notice how predicates has spouse and has single offs are not in the problem
enunciate. Furthermore, their name suggest that we are capturing an existential
quantifier: note how in the first two rules, we have a free variable in the body that
does not occur in the head. In other words, a more compact way of representing
this program could just be:

happy(X)← person(X),not ∃Y (parent(X,Y),not ∃Z married(Y,Z)) (1)

We will show that, in fact, both representations are strongly equivalent under
QEL if we restrict the use of the auxiliary predicates has spouse and has single offs
to the above mentioned rules. Notice, however, the importance of this second
representation. We, not only, get a more readable formula and avoid auxiliary
predicates not included in the original problem: we also avoid a possible mis-
take in the use of these predicates in another part or module of the program,
something that could radically change their intended meaning for the example.

As another typical example of an implicit existential quantifier, consider the
frequent formalisation of the inertia default in ASP:

holds(F, V, do(A,S))← holds(F, V, S),not ab(F, V,A, S) (2)
ab(F, V,A, S)← holds(F,W, do(A,S)),W 6= V (3)

where the complete rule bodies would also include the atoms action(A), situation(S),
fluent(F), range(F, V) and range(F,W) to specify the sorts of each variable1.
Again, predicate ab is introduced to capture the meaning: “there exists a value
for F other than V .” In other words, the formula could have been written instead
as:

holds(F, V, do(A,S))← holds(F, V, S),not ∃W (holds(F,W, do(A,S)),W 6= V)

Something similar happens with choice-like pairs of rules for generating pos-
sible solutions. They typically have the form of even negative loops, like in the
example:

in(X)← vertex(X),not out(X)
out(X)← vertex(X),not in(X)

⊥ ← in(X), in(Y), X 6= Y,not edge(X,Y),not edge(Y,X)

1 Grounders like lparse allow avoiding the repetitive definition of variable sorts by
specifying general sorted variables with macros of the form #domain action(A).

intended for generating a clique2 in terms of predicate in(X). It seems clear
that predicate out(X) is auxiliary and thus its use should be limited to this pair
of rules (adding other rules with out(X) as a head may change the intended
meaning). An alternative to this kind of “generating” loops is using a cardinality
constraint (as defined in [9]) of the form:

{ in(X) } ← vertex(X)

whose intuitive meaning is, for each vertex X, pick 0 or 1 atoms in the set
{ in(X) }. As explained in [8] the formula above is (strongly) equivalent to:

in(X)← vertex(X) ∧ ¬¬in(X) (4)

The informal reading of a formula like ¬¬α in the body is that “it is consistent
to assume α.” It is perhaps interesting to note that, as shown in [10], a double
negation in the body can be moved (maintaining strong equivalence) to a single
negation in the head, as follows:

in(X) ∨ ¬in(X)← vertex(X)

and it is well-known [11, 12] that head negations can be ruled out in favour of
auxiliary predicates, eventually returning to the same formulation we had with
the out(X) predicate. Once again, the interest of the extended syntax is that it
can be translated into traditional logic programs while it avoids the explicit use
of auxiliary predicates which become hidden in the translation.

3 Overview of Quantified Equilibrium Logic

Following [5], Quantified Equilibirum Logic (QEL) is defined in terms of a models
selection criterion for the intermediate logic of Quantified Here-and-There. In the
paper, we will deal with a version of this logic dealing with static domains and
decidable equality, calling it QHT for short.

Let L = 〈C,F, P 〉 be a first-order language where C is a set of constants, F
a set of functions and P a set of predicates. First-order formulae for L are built
up in the usual way, with the same syntax of classical predicate calculus. As in
Intuitionistic Calculus, the formula ¬ϕ will actually stand for ϕ→ ⊥. We write
Atoms(C,P) to stand for the set of atomic sentences built with predicates in P
and constants in C. Similarly, Terms(C,F) denote the set of ground terms built
from functions in F and constants in C.

We will adopt a logical writing for logic programming connectives, so that
constructions like (α, β), (not α) and (α← β) are respectively written as (α∧β),
(¬α) and (β → α). We also adopt lower-case letters for variables and functions,
and upper-case for predicates and constants. In this way, a rule like (2) becomes
the formula:

Holds(f, v, s) ∧ ¬Ab(f, v, a, s)→ Holds(f, v, do(a, s))
2 A clique is a set of vertices that are pairwise adjacent.

We use boldface letters x,y to denote tuples of variables, and similarly d for
tuples of domain elements.

The corresponding semantics for QHT is described as follows.

Definition 1 (QHT-interpretation). A QHT-interpretation for a language
L = 〈C,F, P 〉 is a tuple 〈(D,σ), H, T 〉 where:

1. D is a nonempty set of constant names identifying each element in the inter-
pretation universe. For simplicity, we take the same name for the constant
and the universe element.

2. σ : Terms(D ∪ C,F) → D assigns a constant in D to any term built with
functions in F and constants in the extended set of constants C ∪D. It must
satisfy: σ(d) = d for all d ∈ D.

3. H and T are sets of ground atomic sentences such that H ⊆ T ⊆ Atoms(D,P).
ut

An interpretation of the form 〈(D,σ), T, T 〉 is said to be total and can be seen
as the classical first-order interpretation 〈(D,σ), T 〉. In fact, we will indistinctly
use both notations. Furthermore, given any arbitraryM = 〈(D,σ), H, T 〉 we will
define a corresponding total (or classical) interpretation MT

def= 〈(D,σ), T 〉.
Satisfaction of formulas is recursively defined as follows. Given an interpre-

tation M = 〈(D,σ), H, T 〉, the following statements are true:

– M |= p(t1, . . . , tn) if p(σ(t1), . . . , σ(tn)) ∈ H.
– M |= t1 = t2 if σ(t1) = σ(t2).
– M 6|= ⊥.
– M |= α ∧ β if M |= α and M |= β. Disjunction ∨ is analogous.
– M |= α→ β if both:

(i) M 6|= α or M |= β and
(ii) MT |= α→ β in classical logic

– M |= ∀x α(x) if both:
(i) M |= α(d), for each d ∈ D and
(ii) MT |= ∀x α(x) in classical logic

– M |= ∃x α(x) if for some d ∈ D, M |= α(d). ut

In the proofs, we will make use of the following property:

Proposition 1. If M |= ϕ then MT |= ϕ. ut
Nonmonotonic entailment is obtained by introducing a models-minimisation

criterion. Let us define the following ordering relation among interpretations

Definition 2. We say that an interpretation M = 〈(D,σ), H, T 〉 is smaller
than an interpretation M′ = 〈(D,σ), H ′, T 〉, written M�M′, when H ⊆ H ′.

ut

That is, to be comparable,M andM′ must only differ in their H component, so
that M �M′ iff H ⊆ H ′. Notice that, as a consequence, M �MT . As usual,
we write M≺M′ when M�M′ and M 6=M′ (that is H ⊂ H ′).

We say that M is a model of a theory Γ if M satisfies all the formulas in
Γ . If M is total, it is easy to check that: M |= Γ iff MT |= Γ in classical logic.
The next definition introduces the idea of minimal models for QHT.

Definition 3 (Equilibrium model). A total model M of a theory Γ is an
equilibrium model if there is no smaller model M′ ≺M of Γ . ut

Note that an equilibrium model is a total model, i.e., a classical model of Γ .
We name Quantified Equilibrium Logic (QEL) the logic induced by equilibrium
models.

Given an interpretation M for a given language, and a sublanguage L, we
write M|L to denote the projection of M modulo L. We say that two theories
Γ1, Γ2 for language L′ are strongly equivalent with respect to a given sublanguage
L of L′, written Γ1 ≡Ls Γ2, when for any theory Γ in L, the sets of equilibrium
models (modulo L) for Γ1 ∪ Γ and Γ2 ∪ Γ coincide. When L = L′ we just write
Γ1 ≡s Γ2 and, in fact, this has been proved [13] to correspond to the QHT-
equivalence of Γ1 and Γ2.

A Herbrand QHT-interpretation M = 〈(D,σ), H, T 〉 is such that D corre-
sponds to Terms(C,F) and σ = id, where id is the identity relation. In [13] it
was shown that M is a Herbrand equilibrium model of a logic program Π iff T
is a stable model of the (possibly infinite) ground program grD(Π) obtained by
replacing all variables by all terms in D in all possible ways.

4 Bodies with existential quantifiers

In this section we introduce the syntactic extension of logic programs we are
interested in. We define a body as conjunction of conditions being a condition,
in its turn, recursively defined as:
i) an atom P (t) where t is a tuple of terms;
ii) an equality atom t = t′ with t, t′ terms;

iii) ∃x (ψ) where x is a tuple of variables and ψ is a body in its turn;
iv) ¬C where C is a condition;

Conditions of the form i) and ii) are called atoms. A literal is also a condition,
with the form of an atom or its negation; the rest of conditions are called non-
literal. A literal like ¬(t = t′) will be abbreviated as t 6= t′. Without loss of
generality, we can assume that we handle two consecutive negations at most,
since ¬¬¬C ↔ ¬C is a QHT-tautology. Conditions beginning (resp. not begin-
ning) with ¬ are said to be negative (resp. positive). Given a body B, we define
its positive (resp. negative) part, B+ (resp. B−) as the conjunction of positive
(resp. negative) conditions in B. We assume that ∃x1 . . . xn ψ is a shorthand
notation for ∃x1 . . . ∃xn ψ.

A rule is an expression like B → Hd where Hd is a (possibly empty) dis-
junction of atoms (called the rule head) and B is a body. We assume that an
empty disjunction corresponds to ⊥. All free variables in a rule are implicitly
universally quantified. The following are examples of rules:

P (x) ∧ ¬¬Q(x) ∧ ¬∃y
(
R(x, y) ∧ ∃z ¬R(y, z)

)
→ S(x) ∨R(x, x) (5)

Person(x) ∧ ¬∃y(Parent(x, y) ∧ ¬∃z Married(y, z))→ Happy(x) (6)
V ertex(x) ∧ ¬¬In(x)→ In(x) (7)

V ertex(x) ∧ ¬∃y(Edge(x, y) ∧ ∃z(Edge(y, z)))→ P (x) (8)

Rules (6) and (7) are just different ways of writing (1) and (4) respectively.
Rule (8) would intuitively mean, for instance, that P (x) holds for any vertex x
that is terminal or exclusively connected to terminal nodes. A rule is said to be
normal if Hd just contains one atom. If Hd = ⊥ the rule receives the name of
constraint. A rule is said to be regular if its body is a conjunction of literals (i.e.
it does not contain double negations or existential quantifiers).

A set of rules of the general form above will be called a logic program with
existential quantifiers in the body or ∃-logic program, for short. A program is
said to be normal when all its rules are normal. The same applies for regular
program.

5 A translation into regular logic programs

The translation of a rule r : B → Hd into a regular logic program r∗ will consist
in recursively translating all the negative conditions in the rule body B with
respect to its positive part B+. This will possibly generate a set of additional
rules dealing with new auxiliary predicates.

Definition 4 (Translation of conditions). We define the translation of a
condition C with respect to a positive body B+ as a pair 〈C•, Π(C,B+)〉 where
C• is a formula and Π(C,B+) a set of rules.

1. If C is a literal or has the form ∃x α(x) then C• = C, Π(C,B+) = ∅.
2. Otherwise, the condition has the form C = ¬α(x) being x the free variables

in C. Then C• = ¬Aux(x) and Π(C,B+) = (B+ ∧α(x)→ Aux(x))∗ where
Aux is a new fresh predicate and ∗ is the translation of rules in Definition 5.

ut

The translation of a conjunction of conditions D with respect to a positive
body B+ is defined as expected 〈D•, Π(D,B+)〉 where D• is the conjunction of
all C• for each C in D, and Π(D,B+) the union of all rules Π(C,B+) for each
C in D.

Definition 5 (Translation of a rule). The translation of a rule r, written r∗

is done in two steps:

i) We begin replacing all the positive conditions ∃x ϕ in the body of r by ϕ[x/y]
being y a tuple of new fresh variables3 and repeat this step until no condition
of this form is left. Let B → Hd denote the resulting rule.

ii) We then obtain the set of rules:

r∗
def= {Hd← B+ ∧ (B−)•} ∪Π(B−, B+)

ut
3 The introduction of new variables y can be omitted when x does not occur free in

the rest of the rule.

The translation of an ∃-logic program Π is denoted Π∗ and corresponds to
the logic program

⋃
r∈Π r

∗ as expected. As an example of translation, consider
the rule r1 = (6). We would have:

r∗1 = {Person(x) ∧ ¬Aux1(x)→ Happy(x)} ∪Π(B(r1)−, P erson(x))

where B(r1)− = ¬∃y(Parent(x, y) ∧ ¬∃z(Married(y, z))) and so,
Π(B(r1)−, P erson(x)) contains the translation of the rule:

Person(x) ∧ ∃y(Parent(x, y) ∧ ¬∃z(Married(y, z)))→ Aux1(x)

We remove the positive existential quantifier4 to obtain r2:

Parent(x, y) ∧ ¬∃z(Married(y, z)) ∧ Person(x)→ Aux1(x)

and now

r∗2 = {Parent(x, y) ∧ Person(x) ∧ ¬Aux2(x, y)→ Aux1(x)}
∪ Π(B(r2)−, Parent(x, y) ∧ Person(x))

This yields the rule

Parent(x, y) ∧ Person(x) ∧ ∃z(Married(y, z))→ Aux2(x, y)

in which, again, we would just remove the positive existential quantifier. To sum
up, the final complete translation r∗1 would be the (regular) logic program:

Person(x) ∧ ¬Aux1(x)→ Happy(x)
Parent(x, y) ∧ Person(x) ∧ ¬Aux2(x, y)→ Aux1(x)

Parent(x, y) ∧ Person(x) ∧Married(y, z)→ Aux2(x, y)

We can informally read Aux2(x, y) as “y is a married child of x” and Aux1(x)
as “x has some single child.”

It is easy to see that the translation is modular (we translate each rule inde-
pendently) and that its size is polynomial with respect to the original input.

Proposition 2. Given a rule r containing A atoms in its body and N subfor-
mulas of one of the forms (¬∃x α) or (¬¬α), the translation r∗ contains N + 1
regular rules whose bodies contain at most A+N atoms in their body. ut

It might be thought that, as we always have a way of removing positive
existential quantifiers, these are unnecessary. However, we must take into account
that they are useful when nested in another expression. For instance, rule (8)
would be translated as:

V ertex(x) ∧ ¬Aux(x)→ P (x)
V ertex(x) ∧ Edge(x, y) ∧ Edge(y, z)→ Aux(x)

4 As y is not free in the rest of the formula, there is no need to change it by a new
variable, in this case.

but note the difference with respect to a rule like5:

V ertex(x) ∧ V ertex(z) ∧ ¬∃y(Edge(x, y) ∧ Edge(y, z))→ P (x)

whose meaning is drastically different (z is now implicitly universally quantified).
This is reflected in the corresponding translation:

V ertex(x) ∧ V ertex(z) ∧ ¬Aux(x, z)→ P (x)
V ertex(x) ∧ V ertex(z) ∧ Edge(x, y) ∧ Edge(y, z)→ Aux(x, z)

Note how Aux(x, z) depends also on z now, capturing the meaning “there is
an intermediate node between x and z.” In this way, P (x) would be true, for
instance, if we just had any unrelated z without incoming edges.

As an example with double negation, it can be easily checked that the trans-
lation of rule (7) becomes the program:

V ertex(x) ∧ ¬Aux(x)→ In(x)
V ertex(x) ∧ ¬In(x)→ Aux(x)

The intuition behind a double negation of an existential operator can be
understood with the following example. Consider the rule:

¬¬∃x(V ertex(x) ∧Marked(x))→ P

expressing that P holds when it is consistent to assume that there exists a
marked vertex. The tranlsation would be the program Π1:

¬Aux1 → P V ertex(x) ∧Marked(x)→ Aux2

¬Aux2 → Aux1

so that, Aux2 means “there exists a marked vertex”, Aux1 that “there does
not exist a marked vertex” (i.e., all vertices are marked) and so P would mean
“I cannot prove there does not exist a marked vertex.” It is perhaps worth to
observe the difference with respect to program Π2 just consisting of:

V ertex(x) ∧Marked(x)→ P

where P checks the existence of a marked node. Programs Π1 and Π2 are
not strongly equivalent (modulo non-auxiliary predicates). For instance, if we
consider the addition of program Π, consisting of the facts V ertex(1) and
V ertex(2)} plus the rules

P →Marked(1) Marked(1)→ P

program Π2 ∪Π has one stable model {V ertex(1), V ertex(2)} whereas Π1 ∪Π
has a second stable model {V ertex(1), V ertex(2),Marked(1), P} (modulo non-
auxiliary predicates).
5 We included in this example an extra condition V ertex(z) just to keep handling a

safe rule, something we will discuss later.

5.1 Proof of correctness

To prove our main result, we will use several QHT valid equivalences (many of
them already commented in [14]) and introduce several lemmas. For instance,
we will frequently make use of the following QHT valid formula (see [14])

α→ (β → γ)↔ (α ∧ β → γ) (9)

Similarly, the following is a QHT-theorem:

α ∧ ¬(α ∧ β)↔ α ∧ ¬β (10)

whose proof can be obtained from transformations in [10, 14].

Lemma 1. Let M be an equilibrium model of Γ , and M |= α. Then M is an
equilibrium model of Γ ∪ {α}. ut

Theorem 1 (Equivalent subformula replacement). Given the equivalence:

∀x(α(x)↔ β(x)) (11)

where x is the set of free variables in α or β, and a given formula γ containing
a subformula α(t), then (11) implies:

γ ↔ γ[α(t)/β(t)]

ut

Theorem 2 (Defined predicate removal). Let Γ1 be a theory for language
L, α a formula in that signature and Aux a predicate not in L. If Γ2 is Γ1 plus

∀x(Aux(x)↔ α(x)) (12)

then Γ1 ≡Ls Γ2. ut

Lemma 2. Let M1 = 〈(D,σ), H, T 〉 be a model of the formulas

∀x(α(x)→ Aux(x)) (13)
∀x(¬Aux(x)→ β(x)) (14)

where α and β do not contain predicate Aux, and let M2 = 〈(D,σ), H ′, T 〉 be
such that H\H ′ = {Aux(d) | d ∈ D} for some non-empty set of tuples of domain
elements D satisfying M1 |= Aux(d) and M1 6|= α(d). Then M2 |= (13)∪ (14).

ut

Theorem 3. Let L denote a signature not containing predicate Aux, and let
α(x), β(x) be a pair of formulas for L. Given Γ1 = (13)∪ (14) and Γ2 consisting
of Γ1 plus:

∀x(Aux(x)→ α(x)) (15)

then Γ1 ≡Ls Γ2. ut

Theorem 4. Let Γ1 be a theory consisting of the single formula

∀x
(
α(x) ∧ ¬β(x)→ γ(x)

)
(16)

for language L, being x a tuple with all the variables that occur free in the
antecedent or in the consequent. Then Γ1 ≡Ls Γ2 where Γ2 is the pair of formulas:

∀x
(
α(x) ∧ ¬Aux(x)→ γ(x)

)
(17)

∀x
(
α(x) ∧ β(x)→ Aux(x)

)
(18)

and Aux(x) is a fresh auxiliary predicate not included in L. ut
Lemma 3. Let x be a variable that does not occur free in β. Then, the following
is a QHT-tautology:

(∃x α(x)→ β)↔ ∀x(α(x)→ β) (19)

ut
Theorem 5 (Main result). Let Π be an ∃-logic program for language L. Then
Π ≡Ls Π∗. ut
Theorem 6. If Π is a disjunctive (resp. normal) ∃-logic program then Π∗ is a
disjunctive (resp. normal) regular logic program. ut

The reason for making the definition of new auxiliary predicates depend on
the positive body of the original rule has to do with the following property, that
will guarantee a correct grounding of the program resulting from the translation.

Definition 6 (Restricted variable). A variable X is said to be restricted in
a conjunction of literals β by a positive literal A in β when X occurs in A and
one of the following holds:
1. A has the form p(t);
2. A has the form X = Y or Y = X and, in its turn, Y is restricted by a

different positive literal A′ in β.

We just say that X is restricted in β if it is restricted by some A in β. ut
Definition 7 (Safe rule). A rule r : B → Hd is said to be safe when both:
a) Any free variable occurring in r also occurs free and restricted in B.
b) For any condition ∃x ϕ in B, x occurs free and restricted in ϕ. ut

For instance, rule (6) is safe: its only free variable x occurs in the positive body
Person(x). In fact, all the rules we used in the previous sections are safe. How-
ever, rules like:

¬¬Mark(x)→Mark(x)
∃y Q(y)→ P (x)
∃x ¬P (x)→ A

are not safe. Notice that, for regular programs (i.e. those exclusively containing
literal conditions) only case a) of Definition 7 is applicable and, in fact, this
coincides with the usual concept of safe rule in ASP.

Theorem 7. If Π is safe then Π∗ is safe. ut

6 Related work

As commented in the Introduction, this work is directly related to the recently
introduced language RASPL-1 [8]. In fact, that language is defined in terms
of a translation into first order sentences that fit into the syntax extension we
study here (existential quantifiers and double negations in the body). To put an
example (extracted from [8]), the RASPL-1 program:

{q(x)} ← p(x) ⊥ ← {x : q(x)} 1

that can be read “give the choice for q(x) per each p(x) but do not take just 0
or 1 atoms for q”, actually corresponds to the ∃-logic program:

p(x) ∧ ¬¬q(x)→ q(x) ¬∃xy(q(x) ∧ q(y) ∧ x 6= y)→ ⊥

In fact, it is always possible to represent an existential quantifier in the body
∃x α(x) using the RASPL-1 construct 1 {x : α(x)} provided that α(x) is some
literal. In this sense, one of the contributions of this paper is the possibility of
recursively nesting quantifiers or double negations inside them. Notice that this
is quite comfortable, for instance, in rules like (6) or (8). On the other hand, we
provide here a translation of these ∃-logic programs into regular logic programs
with new hidden auxiliary predicates, preserving strong equivalence modulo the
original language.

The use of ∃-logic programs was actually forwarded in [7] where an extension
of QEL for dealing with partial functions was introduced. The paper considered
a syntactic subclass of logic programs with partial functions, providing a trans-
lation that removed functions in favour of predicates with an extra parameter
(this transformation is usually called flattening). The result of this translation,
however, fell in the class of ∃-logic programs, dealing with negations in the head
(i.e. double negations in the body) and possibly nested existential quantifiers in
the body. The main result of the current paper was conjectured in [7].

A less related approach that has also considered the use of body quantifiers
is [15], although the semantics was only defined for stratified programs.

7 Conclusions

We have presented an extension of logic programming that allows dealing with
(possibly nested) existential quantifiers and double negations in the rule bodies.
We have shown how this new syntactic class captures several typical represen-
tation problems in ASP allowing a more compact and readable formulation and
avoiding the use of auxiliary predicates. In fact, we presented a translation that
reduces this new syntax to that of regular logic programs by automatically gen-
erating these auxiliary predicates, which are kept hidden to avoid programmer’s
errors.

Several open topics are left for future work. For instance, the direct use of
universal quantifiers is not so straightforward. To understand why, notice that

a rule like ∀x(P (x) → Q(x)) → H is not strongly equivalent to ¬∃x(P (x) ∧
¬Q(x))→ H and its behaviour is related to nested implications, something that
in principle is not so clear (see the translation of a nested implication in [14]).
With the current formalism, we can just deal with a limited version of ∀ since
¬∃x(P (x) ∧ ¬Q(x)) is strongly equivalent to ¬¬∀x(P (x) → Q(x)). Another
interesting topic for future study is the use of existential quantifiers in the rule
heads.

References

1. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proc. of the 5th Intl. Conf. on Logic Programming. (1988) 1070–1080

2. Pearce, D., Valverde, A.: Towards a first order equilibrium logic for nonmonotonic
reasoning. In: Proc. of the 9th European Conf. on Logics in AI (JELIA’04). (2004)
147–160

3. Ferraris, P., Lee, J., Lifschitz, V.: A new perspective on stable models. In: Proc.
of the International Joint Conference on Artificial Intelligence (IJCAI’07). (2004)
372–379

4. Lifschitz, V., Pearce, D., Valverde, A.: A characterization of strong equivalence for
logic programs with variables. In: Proc. of the 9th Intl. Conf. on Logic Program-
ming and Nonmonotonic Reasoning (LPNMR’07). (2007) 188–200

5. Pearce, D., Valverde, A.: Quantified equilibrium logic and foundations for an-
swer set programming. In: Proc. of the 24th Intl. Conf. on Logic Programming
(ICLP’08). (2008) 547–560

6. Lee, J., Lifschitz, V., Palla, R.: Safe formulas in the general theory of stable models
(preliminary report). In: Proc. of the 24th Intl. Conf. on Logic Programming
(ICLP’08). (2008) 672–676

7. Cabalar, P.: Partial functions and equality in answer set programming. In: Proc.
of the 24th Intl. Conf. on Logic Programming (ICLP’08). (2008) 392–406

8. Lee, J., Lifschitz, V., Palla, R.: A reductive semantics for counting and choice
in answer set programming. In: Proc. of the 23rd AAAI Conference on Artificial
Intelligence. (2008) 472–479

9. Syrjänen, T.: Cardinality constraint programs. In: Proc. of the 9th European Conf.
on Logics in Artificial Intelligence (JELIA’04). (2004) 187–199

10. Lifschitz, V., Tang, L.R., Turner, H.: Nested expressions in logic programs. Ann.
Math. Artif. Intell. 25(3-4) (1999) 369–389

11. Inoue, K., Sakama, C.: Negation as failure in the head. J. Log. Program. 35(1)
(1998) 39–78

12. Janhunen, T.: On the effect of default negation on the expressiveness of disjunctive
rules. In: Proc. of the 6th Intl. Conf. on Logic Programming and Nonmonotonic
Reasoning. (2001) 93–106

13. Pearce, D., Valverde, A.: Quantified equilibrium logic and the first order logic of
here-and-there. Technical Report MA-06-02, University of Málaga, Spain (2006)

14. Cabalar, P., Pearce, D., Valverde, A.: Reducing propositional theories in equilib-
rium logic to logic programs. In: 12th Portuguese Conference on Artificial Intelli-
gence (EPIA 2005). (2005) 4–17

15. Eiter, T., Gottlob, G., Veith, H.: Modular logic programming and generalized
quantifiers. In: Proc. of the 4th Intl. Conf. on Logic Programming and Nonmono-
tonic Reasoning (LPNMR’97). (1997) 290–309

Appendix. Proofs

Proof (Proposition 2). It is easy to see that, excepting for the first step, in
which the original rule r is considered, each time we introduce a new rule is
for univoquely defining an auxiliary predicate Aux(x) that corresponds to one
of the subexpressions of the form ¬∃x α or ¬¬α that occurred in r. So, the
total number of rules is N + 1. As for the body size of each rule, we always go
keeping a (usually strict) subset of the original number of atoms A occurring in
r, plus additional literals ¬Aux(x) corresponding to replaced conditions of the
form ¬∃x α or ¬¬α. As a result, we get the upper bound N +A. ut

Proof (Lemma 1). Obviously, M |= Γ ∪ {α}. There cannot be a smaller model
M′ ≺ M for Γ ∪ {α}, because it would also be a model of Γ and this would
contradict minimality of M for Γ . ut

Proof (Theorem 1). It is easy to check that, given any tuple d of domain elements
and any model M = 〈(D,σ), H, T 〉, M |= (11) implies that:

1. M |= α(d) iff M |= β(d)
2. MT |= α(d) iff MT |= β(d)

Looking at the satisfaction of formulas, this means that for any model of (11),
α(t) and β(t) for any tuple of terms t are semantically equivalent and can be
interchanged. ut

Proof (Theorem 2). Let Γ denote an arbitrary theory for L and take M an
equilibrium model of Γ ∪ Γ1 and signature L. We will show that there exists
an equilibrium model M′ of Γ ∪ Γ2 such that M′|L = M. It is clear we can
take M′ equal to M for all predicates in L and fix the extent of Aux such
that M′ |= Aux(d) iff M |= α(d) for any tuple of elements d. Obviously, by
construction, M′ |= Γ ∪ Γ2. It must also be minimal, since any M′′ ≺M′ that
M′′ |= Γ ∪Γ2 is also a model of Γ ∪Γ1 and this would contradict the minimality
of M for that theory.

For the other direction, take some M′ = 〈(D,σ), T ′〉 equilibrium model of
Γ ∪ Γ2. Clearly, M′ |= Γ ∪ Γ1 and, since this theory does not contain Aux,
its projection M′|L = M = 〈(D,σ), T 〉 must also be a model for Γ ∪ Γ1. Take
another model of this theory,M2 = 〈(D,σ), H, T 〉 withH ⊂ T , that isM2 ≺M.
But then, we can constructM′2 = 〈(D,σ), H ′, T ′〉 such that H ′ consists of H and
the set of atoms Aux(d) for whichM2 |= α(d). Notice that H ′ must be a subset
of T ′ because M2 |= α(d) implies M |= α(d) and this implies M′ |= α(d),
that together with M′ |= (12) implies and M′ |= Aux(d). But as H ⊂ T we
get H ′ ⊂ T ′ and so M′2 ≺ M′. On the other hand, by construction of M′2
together with M′ |= (12), we obtain M′2 |= (12). In this way, M′2 |= Γ ∪ Γ2

whileM′2 ≺M′ reaching a contradiction with minimality ofM′ for this theory.
ut

Proof (Lemma 2). Note first that, for any tuple d 6∈ D, M1 and M2 coincide
both for Aux(d), α(d) and β(d). Then M1 |= (13) and M1 |= (14) allow us
to conclude M2 |= α(d) → Aux(d) and M2 |= ¬Aux(d) → β(d), respectively.
We remain to prove that the same holds for tuples d ∈ D. Consider MT =
〈(D,σ), T 〉, that is, the total model above M1 and M2. For any d ∈ D, we
have M1 |= Aux(d) and thus MT |= Aux(d), but then M2 6|= ¬Aux(d). On
the other hand, M1 |= (14) also implies MT |= (14) and, in particular, MT |=
¬Aux(d) → β(d). The latter, together with M2 6|= ¬Aux(d), implies M2 |=
¬Aux(d)→ β(d), for any d ∈ D.

Similarly,M1 |= (13) impliesMT |= (13) and, in particular,MT |= α(d)→
Aux(d) for d ∈ D. On the other hand, as M1 and M2 do not differ for α(d),
we conclude M2 6|= α(d), and thus, M2 |= α(d)→ Aux(d). ut

Proof (Theorem 3). Let Γ denote an arbitrary theory for L and take M =
〈(D,σ), T 〉 an equilibrium model of Γ ∪ Γ1. For proving that M is equilibrium
model of Γ ∪ Γ2, by Lemma 1, it suffices to show that M |= (15). Assume this
does not hold. As M is a total model, this just means that for some tuple of
domain elements d, M |= Aux(d) and M 6|= α(d). Let us take now a model
M′ = 〈(D,σ), H, T 〉 where H is equal to T excepting that the extension of Aux
does not include the tuple d. Notice that H ⊂ T and M′ ≺M. In fact, we can
observe that Lemma 2 is applicable takingM1 =M,M2 =M′ and D = {d} to
concludeM′ |= (13)∪ (14), i.e.,M′ |= Γ1. Furthermore, asM′ only differs from
M in Aux, M′ |= Γ . But this contradicts the minimality of M as equilibrium
model of Γ ∪ Γ1.

For the other direction, let M be an equilibrium model of Γ ∪ Γ2. Since
Γ1 ⊂ Γ2, obviouslyM |= Γ∪Γ1. We remain to prove thatM is minimal. Suppose
we had some other model M′ ≺ M of Γ ∪ Γ1. If M′ |= (15) we would have
M′ |= Γ ∪Γ2 and this would contradict the minimality ofM for that theory. So,
assumeM′ 6|= (15). Let D be the set of tuples d for whichM′ 6|= Aux(d)→ α(d)
(note that this set cannot be empty). AsM |= (15) we must haveM′ |= Aux(d)
andM′ 6|= α(d) for all d ∈ D. Now takeM′′ equal toM′ excepting that, for all
d ∈ D, M′′ 6|= Aux(d). We can apply Lemma 2 taking M1 = M′, M2 = M′′
and D to conclude M′′ |= (13) ∪ (14), i.e., M′′ |= Γ1. Furthermore, as M′′
only differs from M′ in the extent of Aux, we obtain M′′ |= Γ ∪ Γ1. Now, as
M′′ 6|= Aux(d) and we haveM |= (15) we concludeM′′ |= Aux(d)→ α(d). For
tuples c 6∈ D we had M′ |= Aux(c)→ α(c) by definition of D, but M′ and M′′
coincide in Aux(c) and α(c). As a result, M′′ |= (15) too, and since M′′ ≺ M
we obtain a contradiction with minimality of M for Γ ∪ Γ2. ut

Proof (Theorem 4). By (9), the formula (17) is strongly equivalent to:

∀x
(
¬Aux(x)→ (α(x)→ γ(x))

)
(20)

so that, we can apply Theorem 3 on Γ2 to transform the implication in (18) into
a double implication:

∀x
(
α(x) ∧ β(x)↔ Aux(x)

)
(21)

As a result, Γ2 is strongly equivalent (modulo L) to the theory consisting of (17)
and (21). By Theorem 1, this is strongly equivalent, in its turn, to (21) plus:

∀x
(
α(x) ∧ ¬(α(x) ∧ β(x))→ γ(x)

)
(22)

Due to (10), the latter is strongly equivalent to (16). Finally, by Theorem 2, we
can remove (21), since it is a definition for predicate Aux which does not belong
to L. ut

Proof (Lemma 3). As (19) is a classical tautology, we remain to prove that,
for any interpretation M = 〈(D,σ), H, T 〉, M |= ∃x α(x) → β iff M |=
∀x(α(x) → β). For the left to right direction, assume M |= ∃x α(x) → β but
M 6|= ∀x(α(x) → β). The latter means there exists some element d for which
M 6|= α(d) → β. Since M |= ∃x α(x) → β we have that MT also satisfies that
formula and so MT |= ∀x(α(x)→ β) since it is a classically equivalent formula.
Therefore, the only possibility is M |= α(d) and M 6|= β. But from the former
we get M |= ∃x α(x) and this contradicts M |= ∃x α(x)→ β.

For the right to left direction, supposeM |= ∀x(α(x)→ β). AsMT also satis-
fies that formula it must also satisfy the classically equivalent formula ∃x α(x)→
β. We remain to prove that M |= ∃x α(x) implies M |= β. Assume that the
former holds. Then, for some element d, M |= α(d). As M |= ∀x(α(x)→ β), in
particular, M |= α(d)→ β, but this together with M |= α(d) implies M |= β.

ut

Proof (Theorem 5. Main result). We prove the result by induction on the suc-
cessive application of ·∗ in each group of newly generated rules. If a rule r is
regular it can be easily checked that r∗ = r and the result of strong equivalence
is straightforward. If r contains a double negation or an existential quantifier,
we will show that the two steps in Definition 5 preserve strong equivalence. Step
i) is the result of the successive application of Lemma 3, that allows us to re-
move a positive existential quantifier in the body, provided that the quantified
variable does not occur free in the rest of the formula. Notice that this lemma
can be applied to a larger body like ∃x α(x) ∧ γ → β (again, with x not free
in γ) because the latter is QHT-equivalent to ∃x α(x)→ (γ → β). For Step ii),
consider any rule r : B → Hd with some non-literal negative condition ¬β1(x).
We can write r as B+(x) ∧ ¬β1(x) ∧ B′(x) → Hd(x), being B′(x) the rest of
conjuncts in the negative body, that is, B−(x) excepting ¬β1(x). This expression
can be equivalently written as B+(x) ∧ ¬β1(x)→ (B′(x)→ Hd(x)) and so, we
can apply Theorem 4 taking α(x) to be the positive body B+(x), and γ(x) the
implication B′(x)→ Hd(x) to conclude that r is strongly equivalent (modulo its
original language L) to the conjunction of B+(x)∧¬Aux1(x)∧B′(x)→ Hd(x)
plus B+(x)∧β1(x)→ Aux1(x) being Aux1 a new fresh predicate. We can repeat
this step for the rest of non-literal negative conditions in B− until the original
rule becomes B+(x)∧¬Aux1(x)∧ · · · ∧ ¬Auxn(x)∧B′′(x)→ Hd(x), i.e., what
we called B+ ∧ (B−)• → Hd in Definition 5. Finally, the correctness of the

translation of the newly generated rules B+(x) ∧ βi(x)→ Auxi(x) follows from
the induction hypothesis. Note that termination of this inductive transformation
·∗ is guaranteed by observing that in each step, we reduce the size of new rule
bodies, replacing negative non-literal conditions by smaller expressions. ut

Proof (Theorem 6). First, observe that all the rules generated in the transla-
tion either repeat one of the original rule heads in Π or just contain one atom
Aux(x). Thus, if the original program was disjunctive (resp. normal) then Π∗

will be disjunctive (resp. normal). Second, just notice that the translation is re-
cursively repeated until rule bodies exclusively contain literal conditions, so the
final program will be a regular logic program in the usual sense. ut

Proof (Theorem 7). It suffices to observe that the rules generated in each trans-
lation step preserves safety with respect to Definition 7. Assume we start from
a safe rule and obtain its translation following the steps in Definition 5. In Step
i) of that definition, each time we remove ∃xϕ and replace it by ϕ[x/y] we are
introducing a new free variable y in the rule that must satisfy condition a) in
Definition 7 to maintain safety. But this is guaranteed because the original rule
was safe and so, x occurred free and outside the scope of negation in ϕ. There-
fore, y will occur free and outside the scope of negation in ϕ[x/y], which is part
of the resulting rule body. This means that the resulting rule satisfies a) in Def-
inition 7 for variable y while the status of the rest of variables in the rule has
not changed.

Now, take the rule r : B → Hd that results from iterating Step i) which,
as we have seen, preserves safety. Notice that r does not contain quantified
expressions outside the scope of negation, so that B+ is just a conjunction of
atoms. It can be easily observed that each rule r′ : B+ ∧ (B−)• → Hd does
not introduce new free variables with respect to B → Hd (it just replaced any
negative condition like ¬α(x) in B− by a new atom ¬Aux(x)) while it maintains
the original positive body B+. So, as the original rule r was safe, all free variables
in r′ also satisfy condition a) in Definition 7, while b) is not applicable because
r′ is regular (its body exclusively consists of literals). Similarly, rules like r′′ :
B+ ∧ α(x) → Aux(x) in Π(B−, B+) do not introduce new free variables with
respect to r either, while they maintain the same positive body B+, so they will
satisfy a) in Definition 7. On the other hand, any quantified condition like ∃y ϕ
that occurs in α(x) also occurred in a condition ¬α(x) in r. As r was safe, ∃y ϕ
will satisfy b) in Definition 7, so that rule r′′ is safe too. ut

