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Abstract In this paper we present an extension of Peirce’s existential graphs to
provide a diagrammatic representation of expressions in Quantified Equilibrium
Logic (QEL). Using this formalisation, logical connectives are replaced by encircled
regions (circles and squares) and quantified variables are represented as “identity”
lines. Although the expressive power is equivalent to that of QEL, the new repre-
sentation can be useful for illustrative or educational purposes.

1 Introduction

Most efforts in Knowledge Representation (KR) have been traditionally focused
on symbolic manipulation and, in particular, on logical formulation. The use of
a formal representation is surely convenient for automated reasoning, since com-
puter languages provide nowadays excellent tools for symbolic representation and
processing. Unfortunately, something that is simpler for computational treatment
is not always necessarily better for human understanding. Educational experiences
show that learning and understanding logical notation takes some time and effort
for new students. Even for an experienced student, reading a formula that nests
different quantifiers, connectives or parentheses may become a difficult task and
lead to errors in formal specification.

One alternative to formal languages that is probably closer to human’s intu-
ition is the use of graphical or diagrammatic representations. In fact, diagrammatic
KR has also been explored and used in different fields of Artificial Intelligence – a
prominent example is, for instance, Sowa’s conceptual graphs [14,15]. But the use
of diagrams for logical representation is older than KR and AI, and actually comes
from the very origins of modern philosophical logic. As commented by Sowa in [16],
the use of diagrams in logic was something common before the introduction of the

This research was partially supported by MINECO projects TIN2013-42149-P and TIN2017-
84453-P, Spain.

Department of Computer Science
University of Corunna, Spain
E-mail: {cabalar,c.pramil,gperez}@udc.es



2 Pedro Cabalar et al.

current notation, conceived by Peano1 in 1889 [9]. In fact, Frege’s original formu-
lation of Predicate Calculus already included some diagrammatic component. But
it was Charles Sanders Peirce who first introduced2 a full-blown non-symbolic sys-
tem for first-order logic: existential graphs [12] (EGs). This graphical system allows
a complete characterisation of First-Order Logic in diagrammatic terms, without
using logical connectives. However, save for few exceptions (like their influence
in Sowa’s conceptual graphs [16]), the truth is that EGs did not gain the same
popularity as the symbolic notation for classical logic, even though they provide
an elegant and simple representation that seems very suitable for educational pur-
poses. Perhaps one of the difficulties for their consolidation has to do with their
strong dependence on classical logic. Existential graphs take conjunction, negation
and existential quantifiers as primitive constructors, building all the rest (disjunc-
tion, implication or universal quantification) as derived operations. This approach
leaves no room for other non-classical logics such as intuitionistic or intermediate
logics, where we may need to keep all these connectives independently.

In this paper we study an extension of existential graphs to be used as an alter-
native diagrammatic notation for Answer Set Programming [7,8,2] (ASP) and, in
particular, for its logical formalisation in terms of Equilibrium Logic [10]. Proposed
by David Pearce, Equilibrium Logic has allowed one to apply the stable model

semantics [5], originally defined for the syntax of logic programs, to the case of
arbitrary propositional formulas. Moreover, the extension to the first-order case,
known as Quantified Equilibrium Logic [11], provides nowadays a general logical no-
tion of stable models for arbitrary theories expressed in the syntax of First-Order
Logic. Equilibrium Logic is defined by imposing a model selection criterion on top
of a monotonic intermediate logic known as the logic of Here-and-There [6] (HT).
In this logic, implication is a primitive operation and, although disjunction can
be defined in terms of the former plus conjunction, its representation as a derived
operator is rather cumbersome. Something similar happens in Quantified HT [11]
where, again, the existential quantifier is definable in terms of the universal one,
but it is much more convenient to treat both of them as primitive connectives. In
the paper, we extend EGs to allow us to deal with all these operators indepen-
dently by just adding a new graphical primitive (rectangles) to the closed curves
and lines already existing in EGs.

The rest of the paper is organised as follows. In the next section, we provide an
overview of Existential Graphs, both alpha graphs corresponding to propositional
logic, and beta graphs for first-order logic. In Section 3, we summarise the main
definitions of Quantified Equilibrium Logic, assuming a static Herbrand domain,
which is the most common case in ASP. The main contributions are presented
in Sections 4 and 5 that respectively introduce the extensions of alpha and beta
graphs for Equilibrium Logic. Section 6 provides an example from a well-known
problem usually treated in ASP. Finally, Section 7 concludes the paper.

1 Peano’s quantifiers ∃, ∀ correspond to the inverted letters E and A, whereas ∨ comes from
Latin vel (“or”) and conjunction ∧ from its inversion.

2 Peirce’s first proposals of existential graphs date back to 1882, even earlier than Peano’s
publication of the modern symbolic notation.
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2 Existential Graphs

We recall next the essential components of existential graphs. Peirce classified EGs
into three types, alpha, beta and gamma, that respectively correspond to Propo-
sitional Calculus, First-Order Logic with equality and (a kind of) normal modal
logic. We start defining alpha graphs as follows. A diagram in alpha graphs is
recursively defined as one of the following:

– the main page (when empty, it represents truth)
– atomic propositions
– a region encircled by a closed curve (called cut), which denotes the negation of

the subdiagram inside the region. An empty cut represents falsity.
– finally, although it is not a drawing in itself, the inclusion of several elements

inside the same region or cut (including the full page) is implicitly understood
as their conjunction

As an example, Fig. 1(a) explicitly represents the formula ¬(rains∧¬umbrella∧
¬wet) which can also be seen as the implications rains ∧ ¬umbrella → wet or
rains ∧ ¬wet → umbrella or the disjunction ¬rains ∨ umbrella ∨ wet, since all these
representations are equivalent in classical propositional logic. Using conjunction
and negation as primitive operators, we can easily represent an implication p→ q

as ¬(p ∧ ¬q) (Fig. 1(b)) and a disjunction p ∨ q as ¬(¬p ∧ ¬q) (Fig. 1(c)). Another
common feature shown in these examples is that areas encircled by an odd number
of cuts (negative areas) are sometimes shaded to facilitate the visualisation.

 rains

umbrella wet

(a) An example

 p  q

(b) p→ q

 q p

(c) p ∨ q

Fig. 1 Some alpha graphs.

The alpha system was accompanied by a set of inference and equivalence (dia-
gram redrawing) rules that was proved to be sound and complete with respect to
Propositional Calculus (note that, at the time, Tarskian model-based semantics
had not been developed yet). In this paper, we will focus on the representation
itself, leaving graphical inference in the logic of HT or even in (non-monotonic)
Equilibrium Logic for a future study.

For representing first-order expressions, Peirce extended alpha graphs to beta

graphs by the inclusion of a new type of component in the diagram, lines of identity.
A line of identity is an open line that connects one or more atom names. When it is
used to connect more than two atom names, the identity line may bifurcate as many
times as needed, getting the shape of a tree or a spider with several ramifications.
The reading for an identity line is an existential quantifier: “there exists some indi-
vidual such that . . . ” Figure 2 shows several examples. Fig. 2(a) asserts that there
is a red car parked at a street: ∃x∃y(car(x) ∧ red(x) ∧ parkedAt(x, y) ∧ street(y)).
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Fig. 2(b) means that there is some person that loves herself, ∃x(person(x) ∧
loves(x, x)). Fig. 2(c) says that every man is mortal, ¬∃x(man(x)∧¬mortal(x)) or,
if preferred, ∀x(man(x) → mortal(x)). Finally, Fig. 2(d) specifies that there is a
woman adored by every catholic: ∃x(woman(x) ∧ ∀y(catholic(y)→ adores(y, x))).

car red

parkedAt

street

person

loves

(a) (b)

 mortal

 man

womanadores

catholic

(c) (d)

Fig. 2 Examples of beta graphs.

As we can see, identity lines introduce a subtle difference in the role of atom
names in beta graphs. Atoms represent now n-ary predicates whose arguments
correspond to imaginary place holders surrounding the atom name that are used
as endpoints of identity lines.3 In the case of unary predicates, such as man or
car, the position of this place holder is irrelevant. However, when the predicate
arity is greater than one, the argument location becomes relevant: for instance, in
Fig. 2(d), predicate adores has a left argument that corresponds to the adorer and
a right argument corresponding to the adored person. In the rest of the paper,
we assume that outgoing lines from a predicate name correspond to arguments
ordered by the clockwise sequence: left < up < right < down.

Another important observation is that beta graphs do not provide a specific
method for representing constants. For instance, there is no way for expressing
that every catholic adores (Virgin) Mary other than using a unary predicate Mary

to designate that specific person instead of some abstract woman.
One final remark on identity lines is that they can be actually seen as an implicit

equality predicate. Some representations even introduce a label “is” for the identity
line to emphasize this feature. Following this interpretation, when an identity runs
through an empty cut we get a convenient way to represent an inequality of the
form x 6= y. Figure 3(a) is a straightforward example of inequality, meaning that
there exist (at least) two different persons, while Figure 3(b) is an elaboration
that further asserts that one of these two (different) persons love each other. Note

3 Note that identity lines must be contiguous: the never “follow through” an atom name.
For instance, Fig. 2(a) contains two identity lines: the bifurcated one on top of parkedAt and
the single one below.



Equilibrium Graphs 5

that the same line may be used now to represent two or more different individuals
and this feature can be combined in nested cuts. For instance, the diagram in
Figure 3(c) represents the sentence “there is a God and only one God.”

person person

(a) ∃x∃y(person(x) ∧ person(y) ∧ x 6= y)

person person

loves

(b) ∃x∃y(person(x) ∧ person(y) ∧ loves(x, y) ∧ x 6= y)

God God

(c) ∃x(God(x) ∧ ¬∃y(x 6= y ∧God(y)))

Fig. 3 Three examples involving inequalities.

Keeping track of the implicit variables represented by one or more identity
lines affected by inequality may become rather cumbersome. In fact, there is no
unanimous agreement on this aspect in the literature about EGs, especially when
diagrams contain identity lines with ramifications and possibly nested cuts. In
our case, we adopt the reading by Shin [13], which we find more suitable for an
automated interpretation and a better extension to HT and Equilibrium Logic.
Shin’s treatment of inequalities can be better illustrated with some examples (we
will provide a more formal treatment later on). For instance, Figure 4 shows a
ramified identity line connecting three predicates, p, q and r, that is combined
with a cut in three different ways (note that the cut does not need to be empty
to induce an inequality, but we use empty cuts for the sake of clarity). We can
see each crossing of the identity line with the ellipse border as a way of “naming”
a (different) individual, and so, requiring a new existentially quantified variable.
Accordingly, Figures 4(a), (b) and (c) deal with one, two and three variables,
respectively, as it can be observed in their corresponding formulas also shown in
the figure. Note how the connections inside the cut are translated as multiple
equality predicates, such as x = y ∧ x = z ∧ y = z in Figure 4(c) that represents
the inner connection among the three crossing points that occurs inside the circle.
These equality predicates are then affected by negation, as any other element that
we had included in the cut.
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p
q

r

p q

r

(a) ∃x(p(x) ∧ ¬(q(x) ∧ r(x))) (b) ∃x∃y(p(x) ∧ q(y) ∧ ¬(r(x) ∧ x = y))

p q

r

(c) ∃x∃y∃z(p(x) ∧ q(y) ∧ r(z) ∧ ¬(x = y ∧ x = z ∧ y = z))

Fig. 4 Three variants of ramified identity lines and inequality.

3 Quantified Equilibrium Logic

For the sake of completeness, we recall in this section the basic definitions of
Quantified Equilibrium Logic for function-free theories and Herbrand domains,
since this is the most frequent situation in ASP. We consider first-order languages
L = 〈D,P 〉 built over a set of constant symbols, D (the Herbrand domain), and
a set of predicate symbols, P . The sets of L-formulas, L-sentences and atomic L-
sentences are defined in the usual way. If D is a non-empty set, we denote by
At(D,P ) the set of ground atomic sentences of the language 〈D,P 〉. By an L-
interpretation I over a set D we mean a subset of At(D,P ). A classical Herbrand
L-structure can be regarded as a tuple M = 〈D, I〉 where I is an L-interpretation
over D.

A here-and-there L-structure is a tupleM = 〈D, Ih, It〉 where 〈D, Ih〉 and 〈D, It〉
are classical Herbrand L-structures such that Ih ⊆ It. We say that the structure
is total when Ih = It. We can think of a here-and-there structure M as similar to
a first-order classical model, but having two parts, or components, h and t, that
correspond to two different points or “worlds”, ‘here’ and ‘there’, in the sense of
Kripke semantics for intuitionistic logic, where the worlds are ordered by h ≤ t.

We assume that L contains the constants > and ⊥ and regard ¬ϕ as an abbre-
viation for ϕ→ ⊥. Satisfaction of formulas is defined as follows. Given some world
w ∈ {h, t}:

– M, w |= >, M, w 6|= ⊥
– M, w |= p iff p ∈ Iw for any atom p ∈ At(D,P )
– M, w |= c = d iff c and d denote the same constant from D

– M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ.
– M, w |= ϕ ∨ ψ iff M, w |= ϕ or M, w |= ψ.
– M, t |= ϕ→ ψ iff M, t 6|= ϕ or M, t |= ψ.
– M, h |= ϕ→ ψ iff M, t |= ϕ→ ψ and M, h 6|= ϕ or M, h |= ψ.
– M, w |= ∀xϕ(x) iff M, w |= ϕ(d) for all d ∈ D.
– M, w |= ∃xϕ(x) iff M, w |= ϕ(d) for some d ∈ D.
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We say that M is a model of a sentence ϕ iff M, h |= ϕ. The resulting logic
is called Quantified Here-and-There Logic with static domains and decidable equality

(QHT, for short).

Definition 1 (Equilibrium model) Let ϕ be an L-sentence. An equilibrium model
of ϕ is a total model M = 〈D, It, It〉 of ϕ such that there is no model of ϕ of the
form 〈D, Ih, It〉 where Ih is a proper subset of It.

When 〈D, It, It〉 is an equilibrium model of ϕ we say that the classical (Her-
brand) interpretation 〈D, It〉 is a stable model4 of ϕ.

4 Equilibrium Alpha Graphs

Let us begin considering the use of alpha graphs to represent Equilibrium Logic
theories (or ASP logic programs). A first difficulty we face is that implication is a
primitive operator in HT, and cannot be represented in terms of conjunction and
disjunction (see Theorem 4 in [1]). This generates a conflict with the use of mate-
rial implication in alpha graphs, defined in terms of negation and conjunction. To
overcome this problem, we replace the cut component (negation) by a new dia-
grammatic construction we will simply call conditional. A conditional has the form
of a closed curve (or ellipse) and may contain inside a number n ≥ 0 of rectangles
we call consequents. Intuitively, when all the elements inside the ellipse (but not in
the rectangles) hold then one of the rectangles must hold (that is, we implicitly
have a disjunction of consequents). As an example, Fig. 5(a) represents the impli-
cation toss→ head ∨ tails. The case of 0 rectangles corresponds to an implication
with ⊥ (the empty disjunction) as a consequent. In other words, a conditional with-
out consequents is just read as a negation, as happens in Peirce’s alpha diagrams.
As an example, Fig. 5(b) represents now the implication rains ∧ ¬umbrella→ wet,
that is, rains ∧ (umbrella→ ⊥)→ wet. It is perhaps worth to compare to Fig. 1(a)
where, as we commented before, there was no way to differentiate between a neg-
ative condition in the antecedent and a positive condition in the consequent (wet

and umbrella played the same role). This reflected the non-directional nature of
material implication. Under our new notation, Fig. 5(b) allows now distinguish-
ing the elements in the consequent (wet is inside a rectangle) from those in the
antecedent, either negated (umbrella) or not (rains).

As we have seen, when the conditional has no consequents, it corresponds to a
negation. In an analogous way, when the conditional has an an empty antecedent
(it only contains rectangles) it obviously represents a disjunction. Fig. 5(c) repre-
sents the disjunction red ∨ orange ∨ green for the possible colors of a traffic light.

A disjunction p∨q in HT can be defined in terms of conjunction and implication,
as it is equivalent to the expression

((p→ q)→ q) ∧ ((q → p)→ p)

whose diagrammatic representation is shown in Figure 6. However, the only “ad-
vantage” we would gain using this representation (as primitive for disjunction) is
that we would not need more than one rectangle in each conditional, while we
would clearly lose readability.

4 QHT and equilibrium models of first order theories were first defined in [11]. An alternative
characterisation of stable models based on second order logic can also be found in [4].
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 toss

head tails

(a) toss → head ∨ tails

 rains

umbrella wet

(b) rains ∧ ¬umbrella → wet

orangered green

(c) red ∨ orange ∨ green

Fig. 5 Examples of conditionals.

p
qq

q
pp

Fig. 6 ((p→ q) → q) ∧ ((q → p) → p)

An interesting construction in ASP is the use of choice rules. The original way
to build a choice that causes the non-deterministic addition of an atom p in ASP
was using some auxiliary predicate q and building an even negative cycle as the
one shown in Figure 7(a). A second possibility that does not require an auxiliary
predicate is using the formula p∨¬p (which is not a tautology in HT) represented
in Figure 7(b).

q p p q

(a) (¬q → p) ∧ (¬p→ q)

pp

(b) p ∨ ¬p

Fig. 7 Choice rules.

To conclude this section, we illustrate a typical example from Non-Monotonic
Reasoning. Fig. 8 encodes a propositional program with two rules respectively
asserting that a bird normally flies and that a penguin is an abnormal bird.

5 Equilibrium Beta Graphs

As happened with implication in the propositional case, the universal quantifier
is a primitive operator in QEL and cannot be represented in terms of existential
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 bird

abnormal flies

(a) bird ∧ ¬abnormal → flies

 penguin

bird

abnormal

(b) penguin→abnormal ∧bird

Fig. 8 Birds and penguins.

quantifiers and the other connectives5. Therefore, introducing identity lines would
not suffice to cover the expressive power of QEL if they were always read as exis-
tential quantifiers. Fortunately, since we count with a new conditional connective,
whose expressiveness is richer than the simple cut, we can use it to cover both
existential and universal quantifiers as follows.

Definition 2 (Universally Quantified Variable) A universally quantified variable

corresponds to any identity line satisfying the next three conditions:

1. It is completely encircled by a conditional (an ellipse) and
2. it has some portion inside the conditional consequent (inner rectangle) and
3. it also has some portion outside the conditional consequent. ut

Figure 9 shows some examples combining conditionals and identity lines. Fig. 9(a)
corresponds to a universal quantifier, saying that all men are mortal:

∀x(man(x)→ mortal(x)) (1)

Note the difference with respect to the version in Fig. 2(c), where we had a cut
(negation) instead of the rectangle. This version is still a correct equilibrium beta
graph, but its reading corresponds to:

∀x(man(x) ∧ ¬mortal(x)→ ⊥) (2)

which has a quite different meaning from (1): the latter is a rule that allows
deriving mortal(x) from any man(x), whereas (2) acts as a constraint, forbidding
stable models where some man is not known to be mortal. Another equivalent
reading of a constraint like Fig. 2(c) (i.e. a conditional with existential lines but
no consequents) is just as a negation of an existential quantifier:

¬∃x(man(x) ∧ ¬mortal(x))

Fig. 9(b) corresponds to an existential quantifier: it contains an identity line
which is not encircled by the conditional (it “comes from outside”). As for Fig. 9(c),
it represents an existential quantifier: it is encircled by the ellipse, has some portion
outside the consequent but it has no portion inside the consequent. However, the
corresponding existentially quantified formula ∃x man(x) is completely inside the
antecedent of (∃x man(x))→ mortal and this is QHT-equivalent to the universally
quantified implication ∀x(man(x)→ mortal).

5 It is actually the other way around. Any existentially quantified formula ∃xP (x) is QHT
equivalent to ∀x∀y((P (x) → P (y)) → P (y)).
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 mortal

 man

(a) ∀x(man(x) → mortal(x))

 mortal

 man

(b) ∃x(man(x) → mortal(x))

 mortal

 man

(c) ∀x(man(x) → mortal)

Fig. 9 Some conditionals with identity lines.

Identity lines in Equilibrium Graphs may also induce an implicit equality
predicate, as happened in Peirce’s EGs. For instance, Figure 3(a) is also a valid
Equilibrium Graph whose symbolic representation would strictly correspond to
∃x∃y (person(x) ∧ person(y) ∧ (x = y → ⊥)). The case where an identity line
goes through a rectangle crossing at two points x and y should be understood as
an equality x = y in the consequent. As an example of this, Figure 10 means that
a person’s name is unique:

name name

person

Fig. 10 ∀x∀y(∃z(person(z) ∧ name(z, x) ∧ name(z, y)) → (x = y))

The general translation of an arbitrary diagram into a first-order formula can
be done by a recursive analysis using the concept of subgraph.

Definition 3 (Subgraph) A subgraph Gi of an Equilibrium Beta Graph G is a
portion fully enclosed by a closed boundary, that is, a cut or a rectangle in G.
Moreover, a subgraph Gi is said to be maximal in G if it is not included inside
another subgraph of G. ut

Figure 11 shows a decomposition of Fig. 9(b) into subgraphs. The initial graph,
shown in the upper left corner, can also be seen as the graph to its right, where
the maximal subgraph encircled by the cut has been named as G1. The content of
G1 is shown below, in the next line. Then, following again to the right, we identify
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the maximal subgraph of G1 (the rectangle) naming it as G1.1 and showing its
content below. It is important to note that a subgraph alone is not an Equilibrium
Beta graph in a strict sense, since some of its identity lines may be crossing from
outside the boundary, so only a segment of the line lies inside. When this happens,
we depict the identity line with a dashed ending to emphasize that it comes from
outside and call this an outer ending.

 mortal

 man

 mortal

 man

G

 man

 mortal

1

G
1

G
1.1

G
1.1

Fig. 11 An example of decomposition into subgraphs.

The translation of a graph G into a formula Φ(G) is described by Algorithm 1.
Using this algorithm, the formulas we obtain from Figure 11 correspond to the
sequence:

G ≡ ∃xG1(x)

G1(x) ≡ man(x)→ G1.1(x)

G1.1(x) ≡ mortal(x)

that, after replacing each predicate Gi by its formula, leads to ∃x(man(x) →
mortal(x)). For a more elaborated example, take the graph G in Figure 12. We
begin at the outermost level (the main page) identifying the maximal subgraphs
as predicates G1, G2 and G3 shown in Figure 13. This new diagram has a straight-
forward translation as the formula (3).

G ≡ ∃x1∃x2∃x3∃x4
(p(x1) ∧G1(x1, x2) ∧G2(x2) ∧ q(x3) ∧ r(x4) ∧G3(x2, x4, x3))

(3)

We proceed then into each subgraph, repeating the process, as shown in Fig-
ure 14. The formulas we obtain in this step correspond to:
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Algorithm 1 Formulate(G)

Require: An Equilibrium beta graph or subgraph G.
Ensure: It returns the first order formula Φ(G) corresponding to G

G′ := result of replacing each maximal subgraph in G by a new predicate name Gi

for all identity lines L occurring in G′ do
if L is completely inside G′ (it has no outer endings) then

Label L with a new fresh variable x
if G′ is an ellipse, so Φ(G) has the form α → β then

if L is connected to a subgraph Gi with a rectangular boundary then
Add prefix ∀x to Φ(G)

else
Add prefix ∃x to α

end if
else

Add prefix ∃x to Φ(G)
end if

else
{L has outer endings and their variable names were defined at previous steps}
for all pairs of outer endings of L labelled with names x and y do

Add the equality x = y as a conjunct in Φ(G)
end for

end if
end for
Build the rest of Φ(G) as in Equilibrium alpha graphs, associating the predicates with their
corresponding variables
for all maximal subgraphs Gi do
Φi:=Formulate(Gi)
Φ(G):= result of replacing predicate Gi by Φi in Φ(G)

end for
return Φ(G)

G1(x1, x2) ≡ s(x1)→ G1,1(x1, x2) (4)

G2(x2) ≡ ∃x5 (m(x5) ∧G2,1(x5, x2))→ ⊥ (5)

G3(x2, x4, x3) ≡ (x2 = x3) ∧ (x2 = x4) ∧ (x3 = x4)→ G3,1(x2) (6)

Note that we do not introduce new quantifiers for identity lines that have a dashed
(outer) ending, since their quantification is already defined in an upper level of
the formula and their names are also “inherited” from that upper level. Now, let
us focus on Figure 14(c): its identity line has more than one outer ending. This
must be interpreted as an implicit equality predicate meaning that all the inherited
variables are in fact the same logical object inside this subgraph. This explains
the three equalities in (6) (actually, one of them is redundant) for x2, x3 and x4,
so that for the free variable of G3,1 we could actually choose any of them (in this
case, x2). Finally, if we recursively repeat the process for each new subgraph we
obtain Figure 15 and the corresponding formulas:

G1,1(x1, x2) ≡ ∃x6 t(x6) ∧ (x1 = x2)

G2,1(x5, x2) ≡ (x5 = x2)→ ⊥
G3,1(x2) ≡ n(x2)
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q

r

p

t

s

m

n

Fig. 12 A more complex example.

q

r

p

G
1

G
2

G
3

Fig. 13 Step 1. Subgraphs at first level are replaced by predicates.

After replacing each subgraph by its formula we obtain the final result:

G ≡ ∃x1∃x2∃x3∃x4(
p(x1) ∧ q(x3) ∧ r(x4)

∧ (s(x1)→ (∃x6 t(x6) ∧ (x1 = x2)))

∧ (∃x5 (m(x5) ∧ ((x5 = x2)→ ⊥))→ ⊥)

∧ ((x2 = x3) ∧ (x2 = x4) ∧ (x3 = x4)→ n(x2))
)

The translation we have defined is coherent with Peirce’s EGs in the follow-
ing way. Given an Equilibrium Beta Graph G we may obtain its corresponding
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Peirce’s Beta Graph G∗ by replacing all rectangles in G by ellipses6. Then, the
symbolic representations of G and G∗ are equivalent in classical First-Order Logic,
as formally stated below.

Proposition 1 Let Φ(G) denote the first-order formula associated to G under the

interpretation in the current paper and Φ(G∗) the formula associated to G∗ under

Peirce’s beta graphs interpretation. Then Φ(G) and Φ(G∗) are equivalent in classical

First-Order Logic. ut

For instance, it is easy to see that the formula Φ(G) in the caption of Figure 10
and the corresponding Peirce’s reading Φ(G∗) of the same diagram:

¬∃x∃y∃z (person(z) ∧ name(z, x) ∧ name(z, y) ∧ ¬(x = y))

are classically equivalent.

6 An example from ASP

In this section we provide an example encoding the well-known Hamiltonian cycle
problem: given a graph G, find a cyclic path that visits each node in G exactly
once. We assume that the graph G is provided in terms of facts for the binary
predicate edge, related to node names. The Hamiltonian path is encoded using a
binary predicate in, meaning that the corresponding edge is included in the path,
for a given stable model.

Figure 16 shows a possible diagrammatic representation of this problem. The
corresponding formulas, reading all the conditionals from left to right and from
up to down would respectively be:

∀x∀y
(
edge(x, y)→ node(x) ∧ node(y)

)
(7)

∀x∀y
(
edge(x, y)→ in(x, y) ∨ ¬in(x, y)

)
(8)

¬∃x∃y∃z
(
in(x, y) ∧ in(x, z) ∧ y 6= z

)
(9)

¬∃x∃y∃z
(
x 6= y ∧ in(x, z) ∧ in(y, z)

)
(10)

∀x∀y
(
in(x, y)→ reach(x, y)

)
(11)

∀x∀y∀z
(
reach(x, y) ∧ in(y, z)→ reach(x, z)

)
(12)

¬∃x∃y
(
node(x) ∧ node(y) ∧ ¬reach(x, y)

)
(13)

Formula (7) asserts that the two arguments of predicate edge are nodes. (8) is a
non-deterministic choice to include any edge in the stable model or not. (9) and
(10) are constraints respectively forbidding that two edges in the path with the
same origin go to two different targets, and vice versa, that two different origin
nodes go to a common target. Formulas (11),(12) define the transitive closure
reach of predicate in. Finally, (12) is a constraint forbidding that a node y cannot
be reached from another node x.

This type of formulas has a quite immediate translation to standard ASP
syntax. The theory (7)-(13) can be directly written as the ASP program:

6 We could alternatively say that G∗ is just “Peirce’s reading” of G without need of any
transformation, since a rectangle is also a case of closed curve, and Peirce’s original approach
would make no real distinction between ellipses and rectangles.
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1 node(X) :- edge(X,Y).
2 node(Y) :- edge(X,Y).
3 {in(X,Y)} :- edge(X,Y).
4 :- in(X,Y), in(X,Z), Y!=Z.
5 :- X!=Y, in(X,Z), in(Y,Z).
6 reach(X,Y) :- in(X,Y).
7 reach(X,Z) :- reach(X,Y), in(Y,Z).
8 :- node(X), node(Y), not reach(X,Y).

where lines 1,2 correspond to (7) and lines 3-7 respectively correspond to (8)-(13).
This type of implications α→ β are called rules and represented from left to right
β :- α. Conjunction is replaced by comma and ¬ by not. As customary in logic
programming, variables begin with a capital letter. Formulas with a conjunction in
the consequent, such as (7), are separated into different rules (in the example, lines
1 and 2). Finally, the construction α ∨ ¬α in a consequent, like in(x, y) ∨ ¬in(x, y)
in (8), is usually represented as a so-called choice expression, {α}, meaning that α
can be included in the answer set or not, in a non-deterministic way. For the sake
of simplicity, we do not provide a definition of ASP semantics in this paper, since
equilibrium models coincide with answer sets, for the syntactic fragment currently
accepted by ASP solvers.

Figure 17 shows three diagrams respectively depicting a possible example of
input graph (facts for predicate edge) plus the two corresponding stable models
that represent the Hamiltonian paths of the input graph.

7 Conclusions

By introducing a minimal variation on Peirce’s existential graphs (the introduction
of rectangles), we have presented a diagrammatic representation of Quantified
Equilibrium Logic and ASP programs. In fact, the current formulation allows one
to represent any intermediate logic, since it has just allowed defining implication,
disjunction and universal quantification as primitive constructions, rather than
derived operators in terms of conjunction, negation and existential quantifiers.

This paper constitutes a first proposal but, obviously, much work is left to do
yet. First, it is unclear how to provide a fully visual semantic characterisation,
especially for beta diagrams. Another desirable feature would be a set of infer-
ence and equivalence diagram-rewriting rules that covered QHT in a sound and
complete way. Under the ASP perspective, it is interesting to note that not every
QEL formula corresponds to an ASP program: for instance, formulas beginning by
existential quantifiers are not ASP representable. It would also be interesting to
identify graphical features of the kind of diagrams that have a direct translation
into ASP. This also includes the graphical characterisation of safety conditions, re-
quired for a suitable grounding. The introduction of complex ASP constructs such
as aggregates or preferences, or even the diagrammatic representation for arith-
metic expressions constitute an important difficulty still to be solved . Finally,
regarding implementation, we have developed a prototype called Grasp7 allowing
graphical manipulation of Equilibrium Graphs and their interpretation using an

7 https://github.com/Minimuino/ASP-Graph
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ASP solver as a backend. A promising line to explore would be the integration
into a full visual tool for ASP like the one described in [3].
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