
Dynamic Epistemic Logic with ASP Updates:

Application to Conditional Planning

Pedro Cabalara, Jorge Fandinnob, Luis Fariñas del Cerrob

aDepartment of Computer Science
University of Corunna, SPAIN

cabalar@udc.es
bInstitut de Recherche en Informatique de Toulouse

Universty of Toulouse, CNRS, FRANCE
{jorge.fandinno,farinas}@irit.fr

Abstract

Dynamic Epistemic Logic (DEL) is a family of multimodal logics that has
proved to be very successful for epistemic reasoning in planning tasks. In
this logic, the agent’s knowledge is captured by modal epistemic operators
whereas the system evolution is described in terms of (some subset of) dy-
namic logic modalities in which actions are usually represented as semantic
objects called event models. In this paper, we study a variant of DEL, that we
call DEL[ASP], where actions are syntactically described by using an Answer
Set Programming (ASP) representation instead of event models. This repre-
sentation directly inherits high level expressive features like indirect effects,
qualifications, state constraints, defaults, or recursive fluents that are com-
mon in ASP descriptions of action domains. Besides, we illustrate how this
approach can be applied for obtaining conditional plans in single-agent, par-
tially observable domains where knowledge acquisition may be represented
as indirect effects of actions.

Keywords: Answer Set Programming; Dynamic Epistemic Logic; Epistemic
Logic Programs; Epistemic Specifications; Conditional Planning;
Equilibrium Logic; Non-Monotonic Reasoning

Introduction

Automated planning is the field of Artificial Intelligence concerned with
the generation of strategies to achieve a goal in a given dynamic domain. A

Preprint submitted to Elsevier August 13, 2019

planner usually starts from a formal representation of the domain, a partic-
ular instance of the problem and the goal to achieve. The planner output is
some strategy, expressed in terms of actions that cause the state transitions
to reach the goal. The most common situation is that such a strategy is just
a sequence of actions called a plan. In Classical Planning [1] some simplifying
restrictions are assumed: the system has a finite number of states, the world
is fully observable and the transition relation is deterministic and static (i.e.
transitions are only caused by the execution of actions). However, a rational
agent may easily face planning problems that require relaxing these assump-
tions. For instance, a robot may not possess all the information about the
environment, either because its sensors have a limited scope, or because its
actions may have non-deterministic effects that require observation for find-
ing out the real outcome. Removing the assumptions of determinism and fully
observable world naturally leads to two important questions [2]: (i) how does
a plan look like in this new context? and (ii) how to represent the changes in
the agent’s knowledge along the plan execution?

Regarding (i), two new categories of plans have been defined in this con-
text: conformant plans and conditional plans. A conformant plan is a se-
quence of actions that guarantees achieving the goal regardless unknown
values of the fluents in the initial situation or the precise effect of the non-
deterministic actions. If we further allow sensing actions (acquiring knowl-
edge from the environment) then the structure of a sequential plan is not rea-
sonable any more: a conditional plan may contain “if-then-else” constructs
that allow the agent to follow different strategies depending on the knowledge
she acquired when executing the plan. Approaches to both conformant and
conditional planning have been broadly studied in the literature [2, 3, 4, 5,
6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27].

With respect to question (ii), several approaches studied the effects of
sensing actions [4, 6, 18, 19, 21, 22, 28, 29, 30, 31]. One prominent line
of research is based on Dynamic Epistemic Logic (DEL) [32, 33], a multi-
modal approach where the agent’s knowledge is captured by modal epis-
temic operators whereas the system evolution is described in terms of (some
subset of) dynamic logic [34] modalities. For instance, the DEL expression
[watch](K rain ∨ K∼rain) represents that, after any possible outcome of
sensing action watch, the agent knows whether rain holds or not. Different
variants of DEL have been successfully applied to the problem of planning
with non-deterministic, partially observable multi-agent domains [18, 19, 21,
22, 35]. Although DEL has proved to be very convenient for epistemic reason-

2

ing in planning, it shows some important drawbacks when analysed from a
Knowledge Representation (KR) viewpoint. This is because, for representing
actions and their effects, DEL uses the so-called event models [36, 37], that in-
herit some of the expressive limitations of the STRIPS planning language [38].
In particular, event models do not allow some important KR features, like
the treatment of indirect effects, action qualifications, state constraints or
recursive fluents, that are quite common in modern representation of action
theories.

One popular KR formalism that naturally covers these expressive features
is Answer Set Programming (ASP) [39, 40, 41], a well-established paradigm
for problem solving and non-monotonic reasoning based on the stable mod-
els semantics [42, 43]. The use of ASP for classical planning was introduced
in [44, 45], leading to a methodology adopted by different high-level action
languages (see [46] and references there) and, more recently, to a temporal
extension of ASP [47]. Besides, there exists a growing list of ASP appli-
cations [48], many of them dealing with classical planning problems. When
moving to conformant planning, though, the application of ASP is still under
a exploratory stage. Most of the attempts in this direction relied on a ex-
tension called epistemic specifications [49] that incorporate modal constructs
(called subjective literals) for representing the agent’s knowledge. However,
the semantic interpretation of this formalism is still under debate and only
some preliminary implementations are still available – see [50] for a recent
survey. On the other hand, the use of ASP to obtain conditional plans was
still an unexplored territory.

In this paper, we study the case of single-agent planning and combine
both approaches, DEL and (epistemic) ASP, to exploit the advantages of
both formalisms in a single language. Our proposal, called DEL[ASP], relies
on replacing event models by epistemic logic programs. In that way, the ba-
sic event to describe the transition between two epistemic models becomes
an ASP epistemic specification, while we keep the same dynamic logic op-
erators for temporal reasoning among transitions. On the one hand, with
respect to DEL, the new approach provides all the expressive power of ASP
for action domains: indirect effects, qualifications, state constraints, defaults,
or recursive fluents are directly inherited from ASP. Moreover, when a clas-
sical planning scenario (represented in ASP) becomes partially observable,
the new approach allows keeping the scenario representation untouched, pos-
sibly adding new epistemic rules to describe the effects of sensing actions.
On the other hand, with respect to (non-temporal) epistemic ASP, dynamic

3

operators provide a comfortable way for explicitly representing, and formally
reasoning about conformant and conditional plans.

The rest of the paper is organised as follows. In the next section, we
provide some background on the formalisms that conform our proposal. After
these preliminaries, we introduce the formalism of DEL[ASP] and explain
its behaviour using some examples. Then, we study the representation of
conditional plans in this formalism. Finally, we discuss some related work
and conclude the paper.

Preliminaries

In this section, we provide some background on planning in DEL, plan-
ning in ASP, and the ASP extension of epistemic specifications, since these
three components will be present in DEL[ASP] up to some degree. In the
case of DEL, we will present a slight generalisation of [19, 21] that ad-
mits abstract updating objects. These objects correspond to event models
for standard DEL, which we denote here as DEL[E], and will become epis-
temic specifications for DEL[ASP]. For the case of epistemic logic programs,
we will use a recent logical formalisation [51] that avoids the problem of
self-supported conclusions present in the original semantics [49]. This logic,
called Founded Autoepistemic Equilibrium Logic (FAEEL) is a combination
of Pearce’s Equilibrium Logic [52], a well-known logical characterisation of
stable models, with Moore’s Autoepistemic Logic (AEL) [53], one of the most
representative approaches among modal non-monotonic logics.

Dynamic Epistemic Logic with Abstract Updating Objects

Given a set of propositional symbols P and a set of updating objects O,
a (dynamic epistemic) formula ϕ is defined according to the following gram-
mar:

ϕ ::= ⊥ | p | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | ∼ϕ | Kϕ | [o]ϕ

where p ∈ P is a proposition and o ∈ O an updating object. The modal epis-
temic operator K represents the (planning) agent’s knowledge: formula Kϕ
means that “the agent knows ϕ.” The symbol “∼” stands here for classical
negation (we reserve the symbol “¬” for intuitionistic negation latter on).
A formula ϕ is called objective if the operator K does not occur in it. It
is called subjective if it has at least some proposition and every proposi-
tion is in the scope of K. As usual, we define the following abbreviations:

4

ϕ ↔ ψ def= (ϕ → ψ) ∧ (ψ → ϕ), (ϕ ← ψ) def= (ψ → ϕ), and > def= ∼⊥. We
also define the dual of K as follows: K̂ϕ def= ∼K∼ϕ. We keep the Boolean
operators ∨,∧,→,⊥ and avoid defining ones in terms of the others, since this
will not be valid when we use an intuitionistic reading later on. By LE(P)
we denote the language containing all dynamic epistemic formulas over P.

We provide next an abstract semantics that just relies on two basic con-
cepts: epistemic models that represent the agent’s knowledge; and the updat-
ing evaluation, a pair of generic functions that describe how updating objects
cause transitions among those models.

Definition 1 (Epistemic Model). Given a (possibly infinite) set of proposi-
tional symbols P and a (possibly infinite) set of possible worlds W, a model
is a triple M = 〈W,K, V 〉 where

– W ⊆W is a finite set of worlds,

– K ⊆ W ×W is an accessibility relation on W , and

– V : W −→ 2P is a valuation function.

D(M) = W denotes the domain of M . An epistemic model is a model
where K is an equivalence relation: it is further called information cell if K
is an universal relation. A belief model is a model where K = W ×W ′ with
W ′ = W \ {w0} for some w0 ∈ W . By M we denote the set of all possible
epistemic models over P and W.

We assume that the modeller coincides with the planning agent (the one
whose knowledge is captured by the epistemic models). This is usually called
an internal point of view, as opposed to the external one where the modeller
is a different agent, an omniscient and external observer who can differen-
tiate the actual world and knows its configuration [54, 55]. Adopting the
internal orientation translates in the lack of a designated world (all worlds
in the model are equally possible). A second consequence is that, even for
single-agent epistemic models, we cannot replace the equivalence relation by
a universal one.

Before going into further technical details, let us introduce the following
scenario from [21], which will be our running example throughout the paper.

Example 1. After following carefully laid plans, a thief has almost made
it to her target: the vault containing the invaluable Pink Panther diamond.

5

Standing outside the vault, she now deliberates on how to get her hands on
the diamond. She knows the light inside the vault is off, and that the Pink
Panther is on either the right or the left pedestal inside. Obviously, the dia-
mond cannot be on both the right and left pedestal, but nonetheless the agent
may be uncertain about its location. Note that the thief is perfectly capable
of moving in the darkness and take whatever is on top any of the pedestals,
but she is not able to know whether the diamond has been taken or not. It
is assumed that there are four possible actions: move, flick, take left and
take right. The action move changes the location of the thief from outside
the vault (∼v) to inside the vault (v) and vice-versa. The action flick turns
on the light (l). Furthermore, if the thief is in the vault (v) and the light
is on (l), the thief can see (s) where the Pink Panther is. Finally, actions
take left and take right respectively take the diamond (d) from the left
(∼r) or right (r) pedestal if the diamond is in the intended pedestal.

The set of propositions for the example is P = {v, l, r, s, d}. Figure 1
depicts three consecutive epistemic models, M0, M1 and M2, respectively
corresponding to the initial state of Example 1 and the resulting states after
performing the sequence of actions move and then flick.

w1 : vlrsd

M0

w2 : vlrsd

(a) Initial epistemic model

w1 : vlrsd

M1

w2 : vlrsd

(b) Result of move on M0

w1 : vlrsd

M2

w2 : vlrsd

(c) Result of flick on M1

Figure 1: Sequence of epistemic models M0,M1,M2 that result from actions move and
then flick starting in the initial state M0 of Example 1.

For improving readability, we represent the world valuations as strings
of propositions and underline those that are false. For instance, the valua-
tion for w1 in Figure 1a is depicted as vlrsd and corresponds to the set of

6

true atoms {r}, making false all the rest. The initial model, M0 represents
the triple 〈W0,K0, V0〉 where we have two worlds W0 = {w1, w2} universally
connected, that is, K0 = W0 ×W0 = {(w1, w2), (w2, w1), (w1, w1), (w2, w2)}
with valuations V0(w1) = {r} and V0(w2) = ∅. This means that the agent
knows that the thief is outside the vault (v), the light is off (l), she cannot
see where the Pink Panther is (s) and she does not have the diamond (d).
The two connected worlds reveal that she does not know whether the Pink
Panther is on the right pedestal (world w1) or on the left one (world w2). The
epistemic model M1 in Figure 1b reflects the same configuration, with the
only exception that now the thief is in the vault (v), as a result of moving
inside. That is, M1 = 〈W0,K0, V1〉 with V1 satisfying V1(w1) = {v, r} and
V0(w2) = {v}. Finally,M2 shows the epistemic model that results from per-
forming action flick onM1. In this third model, two relevant changes occur:
first, l and s became true in both worlds, since flicking turns on the light, and
then, the thief can see the interior of the vault. Second, more importantly,
the two worlds became completely disconnected, something that reveals that
the agent has now complete knowledge of the world configuration in the two
possible cases, w1 and w2. Formally, we have that M2 = 〈W0,K2, V2〉 with
K2 = {(w1, w1), (w2, w2)} and with V2 satisfying V2(w1) = {v, l, r, s} and
V2(w2) = {v, l, s}.

As we can see, the accessibility relation needs not be universal: for in-
stance, we had (w1, w2) 6∈ K2 in M2 above. In general, when (w,w′) 6∈ K we
say that the two worlds are indistinguishable at plan-time, given epistemic
model M = 〈W,K, V 〉 with {w1, w2} ⊆ W . In the example, model M2 tells
us that, before executing the plan, the agent cannot tell which of the two pos-
sibilities represented by worlds w1 (diamond on the right) and w2 (diamond
on the left) will correspond to the actual world. However, once she executes
the plan, she will acquire that knowledge in both cases: w1 and w2 are dis-
connected, so uncertainty in the agent’s knowledge is completely removed.
As a result, at that point, she will be able to make a decision whether she
should perform the take right or take left action.

If, on the contrary, two worlds w,w′ are connected (w,w′) ∈ K in some
epistemic model, we say that they are indistinguishable at run-time. This ex-
presses a higher degree of uncertainty, since the agent has no way to tell which
world corresponds to “reality” either before or during the plan execution. For
instance, at modelM1 we have (w1, w2) ∈ K1 meaning that, during the plan
execution, the agent will not be able to decide (at that point) whether actions
take right or take left will work.

7

Until now, we have only described the information captured by epistemic
models and presented an example with transitions among them, but did not
specify how those transitions were obtained. For that purpose, we will only
assume, by now, the existence of a pair of generic functions called updating
evaluation defined below.

Definition 2 (Updating evaluation). Given a set of models M over set of
worlds W and a set of updating objects O, an updating evaluation is a pair
〈⊗,R〉 of partial functions ⊗ : M×O −→M and R : M×O −→ 2W×W sat-
isfying R(M, o) ⊆ D(W)×D(⊗(M, o)).

Function ⊗ takes an initial model M and some updating object o and
provides a successor model M′ = ⊗(M, o). We will usually write ⊗ in infix
notation and assume that it is left associative so that M ⊗ o stands for
⊗(M, o) andM⊗o1⊗o2 stands for (M⊗o1)⊗o2. RelationR(M, o) matches
worlds from the initial model M and its successor model M′ =M⊗ o. We
will also write RM,o instead of R(M, o).

At this point, we have all the elements for defining the satisfaction of
dynamic epistemic formulas.

Definition 3 (Satisfaction). Let 〈⊗,R〉 be an updating evaluation. Then,
given an epistemic model M = 〈W,K, V 〉, satisfaction of formulas is given
by the following recursive definition:

– M, w 6|= ⊥,

– M, w |= p iff p ∈ V (w),

– M, w |= ϕ1 ∧ ϕ2 iff M, w |= ϕ1 and M, w |= ϕ2,

– M, w |= ϕ1 ∨ ϕ2 iff M, w |= ϕ1 or M, w |= ϕ2,

– M, w |= ϕ1 → ϕ2 iff M, w 6|= ϕ1 or M, w |= ϕ2,

– M, w |= ∼ϕ iff M, w 6|= ϕ,

– M, w |= Kϕ iff M, w′ |= ϕ for all w′ with (w,w′) ∈ K, and

– M, w |= [o]ϕ iff M⊗ o and RM,o are defined and M⊗ o, w′ |= ϕ
holds for all w′ with (w,w′) ∈ RM,o.

8

As usual, we write M |= ϕ iff M, w |= ϕ for every world w ∈ W . Fur-
thermore, given a theory Γ, we write M |= Γ iff M |= ϕ for every formula
ϕ ∈ Γ. We say that theory Γ entails formula ψ, also written Γ |= ψ, iffM |= Γ
implies M |= ψ for any epistemic model M∈M.

It is easy to see that the semantics for the dynamic-free fragment of the
language (i.e., without [·] operator) corresponds to modal logic S5 (see [56]
for instance).

Dynamic Epistemic Logic with Event Model Updates: DEL[E]

Let us now see how these definitions apply to the case in which updating
objects are event models [36]. The following is an adaptation of the definition
from [21]. A first peculiarity of event models is that, when making an update
M⊗o =M′, the resulting epistemic modelM′ uses world names of the form
(w, e) where w is a world from the updated epistemic model M and e is a
world (or event) from the event model o. For this reason, along this section,
we assume that the global set of available world names W is closed under
formation of pairs. In other words, W satisfies (w,w′) ∈W for all w,w′ ∈W.
For instance, given a unique “atomic” world name w0 ∈W, the set W would
contain infinitely many pairs (w0, w0), ((w0, w0), w0), (w0, (w0, w0)), . . . and
so on.

Definition 4 (Event Model). An event model over P and W is a quadruple
E = 〈E,K, pre, post〉 where

– E ⊆W is a finite set of worlds called events,

– pre : E −→ LE(P) assigns to each event a precondition, and

– post : E −→ (P −→ LE(P)) assigns to each event a postcondition, for
some propositions in P.

– K ⊆ E × E

By D(E) = E we denote the domain of E. A pair 〈E , e〉 with e ∈ E is called
a pointed event model.

Definition 5 (Event updating evaluation). Let M = 〈W,K, V 〉 be an epis-
temic model and E = 〈E, K̂, pre, post〉 an event model, both over P and W.
The product updateM⊗E def= 〈W ′,K′, V ′〉 is another epistemic model where

– W ′ = { (w, e) ∈ W × E | M, w |= pre(e) } ⊆W is a set of worlds,

9

– K′ = { ((w1, e1), (w2, e2)) ∈ W ′×W ′ | (w1, w2) ∈ K and (e1, e2) ∈ K̂ },

– V ′((w, e)) = { p ∈ P | M, w |= post(e)(p) } for every (w, e) ∈ W ′,

Given a pointed event model 〈E , e〉, the event updating evaluation is a
pair 〈⊗,R〉 with

– M⊗ 〈E , e〉 def= M⊗E

– R(M, 〈E , e〉) def= { (w,w′) ∈ W ×W ′ | w′ = (w, e) }.

For simplicity, we will usually write [E , e]ϕ instead of [〈E , e〉]ϕ. We will
also use the following shorthands

[E]ϕ def=
∧

e∈D(E)

[E , e]ϕ 〈E〉ϕ def= ∼[E]∼ϕ

The following result shows that, indeed, the semantics described above coin-
cides with the semantics from [21] for the case of event models.

Proposition 1. LetM be an epistemic model, w ∈ D(M) be a world inM,
〈E , e〉 be pointed event model and ϕ ∈ LE(P) be a formula. Then,

– M, w |= [E , e]ϕ iff M, w |= pre(e) implies M⊗E , (w, e) |= ϕ,

Proof. By definition, we have M, w |= [E , e]
iff M⊗ 〈E , e〉, w′ |= ϕ for all w′ with (w,w′) ∈ RM,〈E,e〉
iff M⊗E , w′ |= ϕ for all w′ with (w,w′) ∈ RM,〈E,e〉.
Note now that, by definition, we have either RM,〈E,e〉∩ ({w}×D(M⊗E)) =
{(w, (w, e))} or RM,〈E,e〉 ∩ ({w} ×D(M⊗E)) = ∅. Hence, the above holds
iff M⊗E , (w, e) |= ϕ or RM,〈E,e〉 ∩ ({w} ×D(M⊗E)) = ∅,
iff M⊗E , (w, e) |= ϕ or M, w 6|= pre(e)
iff M, w |= pre(e) implies M⊗E , (w, e) |= ϕ.

The following result helps undertanding the semantics of (non-pointed)
event models.

Proposition 2. LetM be an epistemic model, w ∈ D(M) be a world inM,
E be an event model and ϕ ∈ LE(P) be a formula. Then,

– M, w |= [E]ϕ iff M ⊗ E , (w, e) |= ϕ for every e ∈ D(E) such that
M, w |= pre(e),

10

e1 : 〈v ∧ ∼d, {d 7→ ∼r}〉

(a) take left

e1 : 〈v ∧ ∼d, {d 7→ r}〉

(b) take left

e1 : 〈v ∧ r, {l 7→ >, s 7→ >}〉

e2 : 〈v ∧ ∼r, {l 7→ >, s 7→ >}〉

(c) flick

e1 : 〈v ∨ ∼l, {v 7→ ∼v}〉

e2 : 〈∼v ∧ l ∧ r, {v 7→ ∼v, s 7→ >}〉

e2 : 〈∼v ∧ l ∧ ∼r, {v 7→ ∼v, s 7→ >}〉

(d) move

Figure 2: Event models corresponding to the actions of Example 1. The first element of
the pair assigned to each world corresponds to its preconditions while the second one
corresponds to its postconditions. For instance, in (a) the precondition is v ∧ ∼d and the
postcondition {d 7→ ∼r}. This postcondition means that, in the next state, d takes the
value that formula ∼r had in the previous state.

– M, w |= 〈E〉ϕ iff M, w |= pre(e) and M ⊗ E , (w, e) |= ϕ for some
e ∈ D(E).

Proof. The second statement follows directly from its definitions. For the
third, we have M, w |= 〈E〉ϕ iff M, w |= ∼[E]∼ϕ iff M, w 6|= [E]∼ϕ
iff M, w |= pre(e) does not imply M⊗E , (w, e) |= ∼ϕ for some e ∈ D(E)
iff M, w |= pre(e) and M⊗E , (w, e) 6|= ∼ϕ for some e ∈ D(E)
iff M, w |= pre(e) and M⊗E , (w, e) |= ϕ for some e ∈ D(E).

Going back to our running example, Figure 2 depicts the event models
corresponding to the actions of Example 1. For instance, Figure 2a depicts the
event model of the action take left with a single event e1 whose precondition
is v ∧ ∼d and whose postcondition {d 7→ ∼r} states that, in the next state,
d is assigned the truth value that formula ∼r had in the previous state.
More interestingly, Figure 2c depicts the event model of the action flick

which has two events e1 and e2 with the same postcondition but different

11

e1 : 〈v ∧ r, {l 7→ >, s 7→ >}〉

e2 : 〈v ∧ ∼r, {l 7→ >, s 7→ >}〉

(a) flick′

w1 : vlrsd

M′2
w2 : vlrsd

(b)

Figure 3: (a) Event model corresponding to a variation of the action flick of Exam-
ple 1 without observing the position of the diamond. (b) Epistemic model obtained after
executing the action flick′ in the model M1.

preconditions. The precondition of e1 makes it applicable when the thief is
in the vault and the diamond is on the right pedestal while the precondition
of e2 is analogous but for the left pedestal.1 In this sense, when the action
flick is executed in the epistemic modelM1 (Figure 1b), it follows that only
w1 satisfies the preconditions of e1 and only w2 satisfies the preconditions
of e2. As a result, we can see that M1 ⊗ flick has two worlds, that is,
D(M1⊗flick) = {(w1, e1), (w2, e2)}. Furthermore, since events e1 and e2 are
disconnected, we also get that worlds (w1, e1) and (w2, e2) are disconnected.
In fact, the epistemic model M1 ⊗ flick is isomorphic to the model M2

depicted in Figure 1c and can be obtained just by renaming each world wi

in M2 as (wi, ei).
Note that the existence of two disconnected events in the action flick

encodes the observation that happens when the light is turned on, that is,
the agent obtains the knowledge about the actual place of the diamond.
For instance, if we consider the action flick′ depicted in Figure 3a, and
obtained from the action flick by connecting events e1 and e2, we can see
that M1 ⊗ flick′ is isomorphic to the epistemic model M′

2 depicted in
Figure 3b. Model M′

2 only differs from M2 in that worlds w1 and w2 are
now connected, revealing that the agent cannot tell where is the diamond.
In other words, flick′ encodes the same ontic changes in the world than
flick but does not capture the agent’s observation about the position of the
diamond.

Finally, Figure 4a (modelM3) corresponds to an state where the thief is
inside the vault with the diamond in her possession. Intuitively, this model

1Note how we must specify the diamond’s location in both preconditions, although the
only real physical requirement for flick is being inside the vault. This need for specifying
unrelated preconditions may obviously become a representational problem.

12

w1 : vlrsd

M3

w2 : vlrsd

(a)

w1 : vlrsd

M4

w2 : vlrsd

(b)

Figure 4: Epistemic models representing (a) the state corresponding to execution of action
take left or take right according to the agent’s knowledge about the position of the
diamond and (b) the result of executing move on M3 in (a).

represent the result of executing action take left or take right according
to the agent’s knowledge about the position of the diamond, whereas Fig-
ure 4b represents model M4 = M3 ⊗ move, that is, the result of moving
(outside the vault) afterwards.

Planning in Answer Set Programming

In this subsection, we informally describe the ASP methodology for rep-
resenting problems of classical planning: for a more formal approach we refer
to [45, 57].

Our purpose is, by now, merely introductory, trying to illustrate the main
representational features of ASP planning that are relevant for the current
discussion. For this reason, we delay the introduction of a formal semantics
for later on, when epistemic ASP is introduced.

ASP specifications or logic programs are sets of rules of the form:

a← b1, . . . , bn, not c1, . . . , not cm

where← is a reversed implication, so its left hand side is called the rule head
and its right hand side receives the name of rule body. The rule head a is a
proposition or the symbol ⊥: when the latter happens, the rule is a constraint
forbidding that the body holds. The elements in the body (bi and not cj)
are called literals, where bi and cj are propositions. The ordering among
literals is irrelevant: in fact, commas just stand for conjunctions. Operator
not represents default negation: we read not cj as “there is no evidence on
cj” or “there is no way to prove cj”. We will also use non-deterministic rules
of the form:

m {a1; . . . ; ak} n← Body

13

where m,n ≥ 0 meaning that, when Body holds, we can arbitrarily add a
subset of atoms from {a1, . . . , ak} of cardinality c with n ≤ c ≤ m. ASP allows
a second kind of negation called strong or explicit that we will represent ∼p.
From a practical point of view, we can assume that “∼p” is a new kind of
atom and that models cannot make p and ∼p true simultaneously.

For a simple representation of rules describing transitions we partly adopt
the syntax of [57] and assume that, for each proposition p, we handle a
second atom “•p” that stands for p at the immediately previous situation.
In temporal ASP, actions are represented as regular propositions in P: the
rest of non-action propositions in P are called fluents.

Taking all these considerations, the behaviour of action take left can
be encoded in ASP as the following three rules:

d ← take left (1)

⊥ ← take left,∼•v (2)

⊥ ← take left,•r (3)

where (1) describes its direct effect (grasping the diamond) whereas the other
two rules describe the preconditions: (2) forbids executing take left when
the thief was not in the vault and (3) forbids its execution when the diamond
is in the right pedestal. Analogously, the following three rules encode the
action take right:

d ← take right (4)

⊥ ← take right,∼•v (5)

⊥ ← take right,∼•r (6)

Similarly, actions flick and move are respectively represented by the rules:

l← flick (7)

⊥ ← flick,∼•v (8)

v ← move,∼•v (9)

∼v ← move,•v (10)

Rule (7) states the postcondition of flick, that is, the light is turned on,
while rule (8) states its precondition, that is, we forbid its execution when
being outside vault. Rules (9) and (10) together state the postconditions of
move: its execution just flips the truth value of v.

14

To illustrate the use of indirect effects, we can just assert that seeing the
diamond (s) just depends on being in the vault (v) with the light on (l),
regardless of the actions that have been performed to reach that situation.
This is naturally captured by the single ASP rule:

s← v, l (11)

Default negation allows a natural representation of the inertia law, that is,
a fluent normally remains unchanged, unless there is evidence on the contrary.
We divide the set of fluents into inertial FI = {v, l, r, d} and non-inertial
fluents FN = {s}. Inertia is then guaranteed by the pair of rules:

f ← •f, not ∼f (12)

∼f ← ∼•f, not f (13)

for each inertial fluent f ∈ FI . In our running example, the fluent (s) is
considered false by default, that is, the following rule:

∼s← not s (14)

sating that, unless (s) is proved, we should consider that its explicit nega-
tion (∼s) is added to the set of conclusions.

If we consider now the following simplification of Example 1 where the
value of all fluents in the initial situation are known, we can use ASP to
obtain a plan to achieve the thief’s goal.

Example 2 (Example 1 continued). Consider now the case where the thief
is outside the vault (∼v) and already knows the Pink Panther is inside the
vault on the right (r) pedestal.

Listing 1 shows the full encoding representing Example 2 in the syntax
of the ASP solver telingo.2 In this syntax, ← is represented as :-, •p as
'p and ∼p as -p. By copying that encoding into a file called pink.lp and
executing “telingo pink.lp” we can obtain a plan for this example.

As we said before, an important difference between ASP and event models
is the treatment of indirect effects. In the example, note how s was captured
by the ASP rule (11), which only depends on other fluents (v and l) but does

2https://github.com/potassco/telingo.

15

https://github.com/potassco/telingo

1 #program dynamic.
d :- take_left.

:- take_left , not 'v.
:- take_left , not -'r.
d :- take_rigth.

6 :- take_rigth , not 'v.
:- take_rigth , not 'r.
l :- flick.

:- flick , not 'v.
v :- move , -'v.

11 -v :- move , 'v.
s :- v,l.

v :- 'v, not -v.

-v :- -'v, not v.

d :- 'd, not -d.

16 -d :- -'d, not d.

l :- 'l, not -l.

-l :- -'l, not l.

r :- 'r, not -r.

-r :- -'r, not r.

21 {take_left; take_rigth; flick; move }1.

#program always.
-s :- not s.

26 #program i n i t i a l .
-v. r. -d. -l.

#program f ina l .
:- not -v.

31 :- not d.

#show take_left /0.

#show take_rigth /0.

#show flick /0.

36 #show move /0.

Listing 1: Program corresponding to Example 2 in the syntax of the solver telingo.

16

not refer to the original actions that caused their values. There is no flexible
way to express this feature when using event models: the value of s must
be expressed as a direct effect of actions flick and move, that respectively
determine the values of l and v. If new actions could alter the values of
those fluents, directly or indirectly, then their effect on s should also be
included in their post-conditions. This is, in fact, an instance of the well-
known ramification problem [58].

The ramification problem may also occur for epistemic effects, if we are
not careful enough for their treatment. For instance, the encoding of Exam-
ple 1 in [21] did not use our fluent s (where the ramification is evident), but
transferred the problem to the epistemic effect of knowing the position of
the diamond (r). Again, this epistemic effect must be specified as a direct
consequence of some action, something that does not always seem reasonable.

In the rest of the paper, we develop an extension of DEL and ASP, that
we denote DEL[ASP] where the ontic and epistemic effects of actions can
be described both in a direct or indirect way, as needed. In particular, in
DEL[ASP], the observation of the diamond position when the thief is in the
illuminated vault can be expressed by the following rule analogous to (11):

O r ← v, l (15)

Here, O r is a new construct whose intuitive meaning is that “the actual
value of the fluent r is observed (by the agent).” Note that we just replace the
fluent s in (11), whose intuitive meaning is that the agent sees the position of
the diamond, by this new construct O r, which makes this observation affect
the agent’s beliefs.

Epistemic Logic Programs

As explained before, we will use FAEEL for the interpretation of epis-
temic specifications, the epistemic extension of ASP. FAEEL inherits both
the ASP capabilities for knowledge representation and the AEL capabilities
for introspective reasoning. For the sake of coherence, we adapt the definitions
of [51] to the use of Kripke structures. We also add strong negation [52, 59] to
FAEEL, which for simplicity, is restricted to be used only in front of atoms,
something that suffices for the goals of this paper and is usual in the ASP
literature [43, 60].

Autoepistemic formulas are defined according to the following grammar:

ϕ ::= ⊥ | p | ∼p | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 → ϕ2 | Lϕ

17

where p ∈ P is a proposition.
We assume that ASP notation is transformed into its logical counterpart:

not F is represented as ¬F , commas in the body are replaced by conjunctions
and rules G← F are written from left to right F → G.

Intuitively, the new construct, Lϕ, is read as “it is reasonable (for the
planning agent) to believe ϕ.” Weak or intuitionistic negation is defined as
usual: ¬ϕ def= ϕ → ⊥. The knowledge modality is defined as true belief:
Kϕ def= ϕ ∧ Lϕ. We also introduce the following abbreviations:

U p def= ¬p ∧ ¬∼p
O p def= (p→ L¬¬p) ∧ (∼p→ L¬¬∼p) ∧ (U p→ L¬¬U p)

whose respective intuitive meanings are that the value of proposition p ∈ P
is undefined and that the actual value of proposition p ∈ P is observed. Note
that when an atom p is observed, the agent’s beliefs have to agree with the
actual value of the atom p. The use of double negation here implies that
only the agent’s beliefs will be modified, without providing any justification
for believing p. Besides, we assume all previous abbreviations too, that is,
(ϕ← ψ) def= (ψ → ϕ), ϕ↔ ψ def= (ϕ→ ψ) ∧ (ψ → ϕ), and > def= ⊥ → ⊥. An
autoepistemic theory Γ is a set of autoepistemic formulas as defined above.
When a theory is a singleton, we will usually write just ϕ instead of {ϕ}.

A literal L is either a proposition p ∈ P or a proposition preceded by
strong negation ∼p and by Lit def= P ∪ {∼p | p ∈ P} we denote the set of all
literals over the signature P.

We define next an (autoepistemic) HT-model, as a combination of modal
epistemic logic with the logic of here-and-there (HT) [61], an intermediate
logic with two intuitionistic worlds, h (standing for “here”) and t (read as
“there”) satisfying h ≤ t.

Definition 6 (HT-Model). Given a set of propositional symbols P, an HT-model
is a quadruple M = 〈W,K, V h, V t〉 where

– W is a set of worlds,

– K ⊆ W ×W is an accessibility relation on W , and

– V x : W −→ 2Lit is a valuation with x ∈ {h, t} such that V h(w) ⊆ V t(w)
for all w ∈ W .

D(M) = W denotes the domain of M . A belief HT-model is an HT-model
where K = K×K′ with K′ = K\{w0} for some distinguish world w0 ∈ K.

18

A HT-modelM = 〈W,K, V h, V t〉 is called total iff V h = V t. Furthermore,
by Mt def= 〈W,K, V t, V t〉 we denote the total model corresponding to M.
Satisfaction of autoepistemic formulas is then given by the following recursive
definition:

– M, w 6|= ⊥,

– M, w |= L iff L ∈ V h(w) for any L ∈ Lit ,

– M, w |= ϕ1 ∧ ϕ2 iff M, w |= ϕ1 and M, w |= ϕ2,

– M, w |= ϕ1 ∨ ϕ2 iff M, w |= ϕ1 or M, w |= ϕ2,

– M, w |= ϕ1 → ϕ2 iff both M, w 6|= ϕ1 or M, w |= ϕ2 and
Mt, w 6|= ϕ1 or Mt, w |= ϕ2,

– M, w |= Lϕ iff M, w′ |= ϕ for all w′ with (w,w′) ∈ K

As usual, we say that M is an HT-model of some theory Γ, in symbols
M |= Γ, iff M, w |= ϕ for every world w ∈ D(M) and every formula ϕ ∈ Γ.
As mentioned before, when Γ = {ϕ} is a singleton we will omit the brack-
ets, so that M |= ϕ stands for M |= {ϕ} and holds iff M, w |= ϕ for every
world w ∈ D(M).

Definition 7 (Bisimulation between HT-models). LetM1 = 〈W1,K1, V
h

1 , V
t

1 〉
and M2 = 〈W2,K2, V

h
2 , V

t
2 〉 be two HT-models. Given some binary relation

Z ⊆ W1 ×W2, we write M1 �Z M2 iff

– every (w1, w2) ∈ Z satisfies V t(w1) = V t(w2) and V h(w1) ⊆ V h(w2),

– for every (w1, w
′
1) ∈ K2, there is (w2, w

′
2) ∈ K2 such that (w′1, w

′
2) ∈ Z,

– for every (w2, w
′
2) ∈ K2, there is (w1, w

′
1) ∈ K2 such that (w′1, w

′
2) ∈ Z.

We write M1 �M2 iff there is a total relation Z s.t. M1 �Z M2. We also
say thatM1 andM2 are bisimilar, in symbolsM1 ≈M2, iff there is a total
relation Z s.t M1 �Z M2 and M2 �Z M1. As usual, we write M1 ≺ M2

iff M1 �M2 and M1 6≈ M2.

Definition 8 (Equilibrium model). A total belief HT-model M of some the-
ory Γ is said to be an equilibrium model of Γ iff there is no other belief
HT-model M′ of Γ such that M′ ≺M.

19

Given some information cell M = 〈W,K, V 〉 and some set of literals
I ⊆ Lit , byM+I we denote the total belief HT-modelM′ = 〈W ′,K′, V ′, V ′〉
where W ′ = {w0} ∪W with w0 /∈ W , K′ = W ′ ×W and V ′ : W ′ −→ 2Lit

satisfies V ′(w) = V (w) for all w ∈ W and V ′(w0) = I.

Definition 9 (World view). Given a set of propositions P, an information
cell M = 〈W,K, V 〉 over Lit is called a world view of some theory Γ iff the
following two conditions hold:

– M+ V (w) is an equilibrium model of Γ, for every world w ∈ W ,

– M+ I is not an equilibrium model of Γ for every set of literals I ⊆ Lit
satisfying I 6= V (w) for all w ∈ W , and

– either p /∈ V (w) or ∼p /∈ V (w) for all p ∈ P and w ∈ W .

We say that a theory Γ is consistent iff it has some world view and by WV[Γ]
we denote the set of all world views of Γ.

Example 3 (Example 1 continued). For instance, the formula

ϕ0 = ∼v ∧ ∼l ∧ (r ∨ ∼r) ∧ ∼s ∧ ∼d (16)

has a unique world view that is depicted in Figure 5. Note that every propo-
sitional theory has a unique world view [51] that corresponds to the set of
all answer sets of the theory. Furthermore, since ϕ0 contains no negation,
its answer sets coincide with its minimal classical models when we treat each
strong negated literal ∼p as a new atom.

Dynamic Epistemic Logic with ASP Updates: DEL[ASP]

In this section, we present the major contribution of this paper, DEL[ASP],
an instance of the abstract DEL framework where updating objects corre-
spond to logic programs. Our motivation is twofold: on the one hand, to allow
unrestricted use of indirect effects (both ontic and epistemic); on the other
hand, to preserve the ASP representation of non-epistemic planning prob-
lems without need of any adjustment or modification. We illustrate these
two objectives through our running example.

20

w1 : {∼v,∼l, r,∼s,∼d}

Mwv
0

w2 : {∼v,∼l,∼r,∼s,∼d}

Figure 5: Unique world view of the formula ϕ0 = ∼v ∧ ∼l ∧ (r ∨ ∼r) ∧ ∼s ∧ ∼d.

Characterising information cells in FAEEL

Let us start by showing how any information cell can be represented
by some autoepistemic formula in FAEEL. Note that world views are an
information cell over Lit , so they represent a kind of three valued epistemic
models where each proposition p can be true p ∈ V (w), false ∼p ∈ V (w) or
undefined p,∼p /∈ V (w). We will show here how (two-valued) information
cells over P can be simply represented as propositional formulas in FAEEL,
allowing to map these three valued epistemic models into standard two valued
ones.

Example 4 (Example 3 continued). Continuing with our running example,
we can see now that this model satisfies either p ∈ V (w) or ∼p ∈ V (w) for ev-
ery proposition p ∈ {v, l, r, s, d} and world w ∈ {w1, w2}. Hence, we can map
this model into a (two-valued) information cell by considering as true every
proposition p ∈ V (w) and as false every proposition satisfying ∼p ∈ V (w).
It is easy to see that the obtained information cell is precisely the model M0

depicted in Figure 1a, that is, the epistemic model corresponding to the initial
situation of Example 1. In this sense, we can use the formula ϕ0 to represent
the initial state of this example.

Definition 10. Given some information cell M = 〈W,K, V 〉, its charac-
teristic (autoepistemic) formula is ϕM

def=
∨

w∈W ϕw
M where ϕw

M is defined as
follows:

ϕw
M

def=
(∧

p∈V (w)

p
)
∧
(∧

p∈P\V (w)

∼p
)

Definition 11 (Bisimulation). Given two models M1 = 〈W1,K1, V1〉 and
M2 = 〈W2,K2, V2〉, we say that they are bisimilar, in symbols M1 ≈M2, if
and only if 〈W1,K1, V1, V1〉 ≈ 〈W2,K2, V2, V2〉.

21

Definition 12. Given a set of propositions P ⊆ P, we say that an HT-model
M = 〈W,K, V h, V t〉 over Lit is P -classical iff every world w ∈ W and propo-
sition p ∈ P satisfy that either p ∈ V h(w) or ∼p ∈ V h(w) holds. A the-
ory Γ is P -classical iff it is consistent and, in addition, every world view is
P -classical.

Definition 13. Given a set of propositions P ⊆ P and any P -classical to-
tal HT-model M = 〈W,K, V t, V t〉 over Lit, by M ↓ P = 〈W,K, V 〉 we de-
note the model over P where V : W −→ 2P is a valuation satisfying V (w) =
V t(w) ∩ P for every world w ∈ W .

Proposition 3. Let M be an information cell over P. Then, ϕM has a
unique world view M′ and we have that M and M′ ↓ P are bisimilar.

Proof. First note that, since ϕM is a propositional formula, it has a unique
world viewM′ [51, Proposition 3]. LetM = 〈W,K, V 〉 andM′ = 〈W ′,K′, V ′〉.
Then, we have that w′ ∈ W ′ iff V ′(w′) is a stable model of ϕM. Note also
that the stable models of ϕM are exactly its classical models understood as
sets of literals. Hence, for every w′ ∈ W ′, there is some w ∈ W such that
V ′(w′) = V (w)∪∼(P \ V (w)) and vice-versa. Consequently,M andM′ ↓ P
are bisimilar.

Example 5 (Example 4 continued). Continuing with our running example,
we have ϕM0 = ϕw1

M0
∨ ϕw2

M0
with

ϕw1
M0

= ∼v ∧ ∼l ∧ r ∧ ∼s ∧ ∼d
ϕw2
M0

= ∼v ∧ ∼l ∧ ∼r ∧ ∼s ∧ ∼d

By applying distributivity of conjunctions over disjunctions, it is easy to see
that ϕM0 is classically (and intuitionistically) equivalent to (16). As a result,
Mwv

0 is the unique world view of ϕM0 and, as expected from Proposition 3,
it can be checked that it satisfies Mwv

0 ↓ P =M0.

Epistemic Model Updates with FAEEL

In this section, we show how autoepistemic equilibrium logic can be used
to define epistemic model updates just by using an extended signature. Given
a set of propositions S ⊆ P, we define •S def= { •p | p ∈ S ∩ P } and
Pbi = P∪•P where •p intuitively means that p is true in the previous state.
It will also be convenient to use • in front of any propositional formula ϕ
such that •ϕ is as an abbreviation for the formula obtained by writing • in
front of every proposition occurring in ϕ.

22

w1 : •{∼v,∼l, r,∼s,∼d}
∪ {move, v,∼l, r,∼s,∼d}

Mwv
1

w2 : •{∼v,∼l,∼r,∼s,∼d}
∪ {move, v,∼l,∼r,∼s,∼d}

Figure 6: Unique world view of the program Γ1.

Example 6 (Example 3 continued). Let Γpink be a theory containing formu-
las (1)-(15) and let Γ1 = Γpink ∪ {move,•ϕM0}. This program has a unique
world view shown in Figure 6. Note that, if we disregard all the information
corresponding to the previous situation (that is all literals preceded by •)
and the action move, then we have the same information as the epistemic
modelM1 in Figure 1a. In other words, Γ1 encodes the transition that occurs
between the epistemic models M0 and M1 when executing action move.

As shown in the example above, we can represent the transition between
two epistemic models as an autoepistemic theory. Let us now formalise this
intuition. We begin introducing some auxiliary definitions.

Given a set of epistemic models S = {M1,M2, . . . } where each Mi is
a model over a set of atoms P of the form Mi = 〈Wi,Ki, Vi〉 and satisfying
Wi ∩Wj = ∅ for allMi,Mj ∈ S with i 6= j, by

⊔
S def= 〈W,K, V 〉, we denote

an epistemic model where

– W ′ =
⋃
{ Wi | Mi ∈ S },

– K′ =
⋃
{ Ki | Mi ∈ S }, and

– V ′ : W ′ −→ 2P with V ′(w) = Vi(w) for all w ∈ Wi and all Mi ∈ S.

As usual, if S = {M1,M2}, we just writeM1tM2 instead of
⊔
{M1,M2}.

Definition 14. Let P be a set of atoms and Γ be some P -classical autoepis-
temic theory. Then, by mwv(Γ, P) def=

⊔
{ M ↓ P | M ∈WV[Γ] } we denote

the epistemic model capturing all the world views of Γ projected into the
vocabulary P . If Γ is not P -classical, we assume that mwv(Γ, P) is not de-
fined.

In other words, for every P -classical autoepistemic theory Γ, mwv(Γ, P) is
the two-valued epistemic model that has an information cell for every world

23

view of Γ such that the valuation of every proposition p ∈ P in every world
in mwv(Γ, P) corresponds to the valuation of that proposition in that same
world in the corresponding world view. Recall that, in a P -classical theory,
all its worlds views satisfy either p or ∼p for every proposition p ∈ P . This
is necessary so it is possible to map three-valued world views into two-valued
epistemic models. We could remove this restriction by allowing three-valued
epistemic models, but we have decided to stay as close as possible to the
original DEL semantics, which is only two-valued.

Example 7 (Example 6 continued). Note that if P ⊆ P, then the epistemic
model mwv(Γ, P) always corresponds to the current situation, discarding all
information about the previous one. In this sense, if we consider the program
Γ1 of Example 6 and the epistemic model M1 of Figure 1b, we have that
mwv(Γ1, P) =M1 where P = {v, d, r, l, s} is the set of fluent of Example 1.

As a further example, consider now the theory Γ2 = Γpink∪{flick,•ϕM1}.
Then, Γ2 has two world views which correspond to the two cell informations
in the epistemic model M2 depicted in Figure 1c. This explains why we need
to join together all the world views of the theory in a single epistemic model.
Every world view, which becomes an information cell, represents the knowl-
edge the agent will have after executing the action flick, while the set of all
world views represent the knowledge the agent had before executing it.

Let us now define the transition between states borrowing the notion of
product update from DEL.

Definition 15. Given an information cell M over P ⊆ P and a theory Γ
over Pbi such that Γ ∪ {•ϕM} is Pbi-classical, we define:

– the product update of M with respect to Γ as the epistemic model
M⊗ Γ def= mwv(Γ ∪ {•ϕM}, P).

– the binary relation RM,Γ ⊆ D(M)×D(M⊗Γ) s.t. (w,w′) ∈ RM,Γ iff
M′, w′ |= •ϕw

M with M′ = mwv(Γ ∪ {•ϕM},•P).

Example 8 (Example 7 continued). It is now easy to see that

M0 ⊗ Γ3 = mwv(Γ3 ∪ {•ϕM0}, P) = mwv(Γ1, P) =Mwv
1 ↓ P =M1

M1 ⊗ Γ4 = mwv(Γ4 ∪ {•ϕM0}, P) = mwv(Γ2, P) =M2

with Γ3 = Γpink ∪ {move} and Γ4 = Γpink ∪ {move} respectively being the
theories representing the execution of the action move and flick according

24

to program Γpink ,Mwv
1 the epistemic model depicted in Figure 6 andM1 and

M2 the epistemic models depicted in Figure 1b and Figure 1c. In other words,
M1 is the result of executing action move in epistemic modelM0 according to
the description provided by Γpink . Furthermore, for each world w ∈ {w1, w2},
we haveMwv

1 , w |= •ϕw
M. In its turn, this impliesMwv

1 ↓ •P, w |= •ϕw
M and,

thus, that RM0,Γ3 = {(w1, w1), (w2, w2)} is the identity3, that is, it maps each
world in M0 to a world in M1 with the same name. Similarly, M2 is the
result of executing the action flick in the epistemic model M1 according to
the description provided by Γpink and we can check that RM1,Γ4 is also the
identity.

We define now the updating evaluation for ASP epistemic specifications
for epistemic models. In a nutshell, this evaluation is the result of combining
the evaluation for each individual information cell in the model.

Definition 16 (ASP updating evaluation). Given any epistemic model M
and theory Γ, the ASP updating evaluation is a pair 〈⊗,R〉 satisfying

M⊗ Γ def=
⊔
{ M′ ⊗ Γ | M′ ∈ cell(M) }

RM,Γ
def=

⋃
{ M′ ⊗ Γ | M′ ∈ cell(M) }

We can now directly apply Definition 3 to obtain the satisfaction of
DEL[ASP] formulas, that is, DEL formulas in which the updating objects
are autoepistemic theories.

Example 9 (Example 2 continued). Let us now resume the simplified version
of our running example introduced in Example 2. In this case, the initial
situation can be represented by an epistemic modelM′

0 depicted in Figure 7a.
Then, it can be checked that

M′
0 |= K[Γ3][Γ5][Γ3](∼v ∧ d)

holds with Γ5 = Γpink ∪ {take right}. In other words, the thief knows that
after executing the sequence of actions 〈move, take right, move〉 she will be
out of the vault with the diamond. That is, this sequence of actions is a

3Note that, for the sake of clarity, the names of worlds have been chosen so that RM0,Γ3

is the identity, but this is not necessarily the case. In fact, worlds fromM0 andM1 could
be disjoint or even be switched so that w1 could be called w2 and vice-versa.

25

w1 : vlrsd

M′
0

(a)

w1 : vlrsd

M′
0 ⊗ Γ3

(b)

w1 : vlrsd

M′
0 ⊗ Γ3 ⊗ Γ5

(c)

w1 : vlrsd

M′
0 ⊗ Γ3 ⊗ Γ5 ⊗ Γ3

(d)

Figure 7: Epistemic models corresponding execution of the sequence of actions
〈move, take right, move〉 in initial state of Example 2, represented here by the model
M′

0 in (a).

w1 : vlrsd

M1 ⊗ Γ6

w2 : vlrsd

(a)

w1 : vlrsd

M1 ⊗ Γ6 ⊗ Γ7

w2 : vlrsd

(b)

Figure 8: Epistemic models corresponding to (a) the execution of try take left in the
model M1 =M0 ⊗ Γ6 and (b) the execution of try take right in the resulting state.

valid plan that achieves the goal of getting out of the vault with the diamond
regardless of the actual initial situation. This means that this is a conformant
plan.

For the sake of completeness, Figures 7b, c and d respectively depict the
epistemic models M′

0 ⊗ Γ3, M′
0 ⊗ Γ3 ⊗ Γ5 and M′

0 ⊗ Γ3 ⊗ Γ5 ⊗ Γ3.

Example 10 (Example 1 continued). As a further example, consider an-
other variation of Example 1 where we have actions try take left and
try take right that are similar to take left and try take left, but that
can be executed even when the diamond is not in the right location, having no
effect in such case. This can be represented by a theory Γ′pink obtained from
Γpink by replacing rules (1-6) by the following rules:

d ← try take left ∧ •∼r (17)

⊥ ← try take left ∧ ∼•v (18)

d ← try take right ∧ •r (19)

⊥ ← try take right ∧ ∼•v (20)

26

Now, we can check that

M0 |= K[Γ3][Γ6][Γ7][Γ3](∼v ∧ d) (21)

holds with Γ6 = Γ′pink∪{try take left} and Γ7 = Γ′pink∪{try take right}.
Recall that M0 ⊗ Γ3 = M1 is the epistemic model depicted in Figure 1a.
We also can check that M0 ⊗ Γ3 ⊗ Γ6 ⊗ Γ7 ⊗ Γ3 = M4 is the epistemic
model depicted in Figure 4b. Figure 8 depicts the epistemic models corre-
sponding to intermediate states. With these models, we can see that (21)
holds. That is, the thief knows that after executing the sequence of actions
actions 〈move, try take left, try take right, move〉 she will be outside the
vault with the diamond. Therefore, this sequence of actions constitutes a con-
formant plan for this problem. Note that the thief achieves her goal without
ever getting to know where the diamond actually was.

Conditional Planning in DEL[ASP]

In this section, we show how to use DEL[ASP] to represent conditional
plans. Let start by defining what a plan is by introducing the following plan
language from [21].

Definition 17 (Plan Language). Given disjunct sets of actions A and flu-
ents F , a plan is an expression π built with the following grammar:

π ::= a | skip | if Kϕ thenπ else π | π; π

where a ∈ A and ϕ is a formula over F . We write (if Kϕ thenπ) as a short-
hand for the plan (if Kϕ then π else skip).

As mentioned in the introduction, conditional plans contain “if-then-else”
structures that allow the agent to apply different strategics depending on the
knowledge she has obtained along the execution of the plan. For instance,

move ; flick ; if K r then take right else take left ; move (22)

is a conditional plan for the problem laid out in Example 1. It is a plan
since, as we will prove next, the thief eventually takes the diamond out in
all possible outcomes, and it is conditional because the third step contains
an alternative decision. If the thief acts according to her knowledge about
the diamond position at that point, the plan is guaranteed to succeed. We

27

will show that in fact, after executing the actions move and flick, the thief
knows that she will know where the diamond is.

Let us now formalise these intuitive ideas by providing a translation from
plans into DEL[ASP] as follows:

Definition 18 (Translation). Let A ⊆ P and F ⊆ P be a pair of disjoint
sets of propositions, respectively corresponding to actions and fluents. The
translation of a plan π over A applied to a formula ψ over F , with respect
to a theory Γ over Pbi is denoted as Jπ KΓψ and is recursively defined as:

J a KΓ ψ def= 〈Γ ∪ {a}〉> ∧ [Γ ∪ {a}]ψ
J skip KΓ ψ def= ψ

Jπ; π′ KΓ ψ def= Jπ KΓ (J π′ KΓ ψ)

J if Kϕ thenπ else π′ KΓ ψ def= (Kϕ→ J π KΓψ) ∧ (∼Kϕ→ J π′ KΓψ)

where ϕ is any formula over F .

As a first remark, note that the translation J a KΓ of an action a is always
made by adding a constant theory Γ that defines the behaviour of the action
domain (fixing the transition relation). As a result, each elementary action in
the plan becomes a complete autoepistemic theory Γ∪{a} in the translation.
When Γ is clear from the context, we will simply write J π K instead of J π KΓ.
Conjunct [Γ ∪ {a}] ψ requires that ψ becomes true in any resulting state
whereas 〈Γ ∪ {a}〉> ensures that action a is executable indeed.

We check next that the evaluation of plan (22) corresponds to what we
have already seen in Example 8. For the sake of clarity, we gather together
all rules of the theory Γpink in Figure 9.

Example 11 (Example 8 continued). Going on with our running exam-
ple, let us consider plans J π KΓpink simply denoted as J π K. We have seen
that M0 ⊗ Γ3 = M1 where Γ3 = Γpink ∪ {move} was the theory repre-
senting the execution of action move according to Γpink . We have also seen
that RM0,Γ3 = {(w1, w1), (w2, w2)} is the identity. Similarly, given theory
Γ8 = Γpink ∪ {flick} representing the execution of action flick, we have
M1 ⊗ Γ8 = M2 and RM1,Γ8 = {(w1, w1), (w2, w2)}. Figure 10 shows these
three models together with the corresponding relations RM0,Γ3 and RM1,Γ8 .
Looking at this figure, we observe that M2, w1 |= v ∧ K r and, thus, also
M2, w1 |= v ∧ (K r ∨ K∼r). From this we can conclude that M1, w1 |=
[Γ8](v ∧ (K r ∨K∼r)). Note that M1 |= 〈Γ8〉> holds and, thus, it follows

M1, w1 |= J flick K(v ∧ (K r ∨K∼r))

28

d ← take left (1)

⊥ ← take left,∼•v (2)

⊥ ← take left,•r (3)

d ← take right (4)

⊥ ← take right,∼•v (5)

⊥ ← take right,∼•r (6)

l ← flick (7)

⊥ ← flick,∼•v (8)

v ← move,∼•v (9)

∼v ← move,•v (10)

s ← v, l (11)

O r ← v, l (15)

∼s ← not s (14)

v ← •v, not ∼v
∼v ← ∼•v, not v

l ← •l, not ∼l
∼l ← ∼•l, not l

r ← •r, not ∼r
∼r ← ∼•r, not r

d ← •d, not ∼d
∼d ← ∼•d, not d

Figure 9: Theory Γpink : the left column contains the direct effects and preconditions of
actions while the right one contains the indirect effects and the inertia axioms.

Now we can check thatM0, w1 |= [Γ3]J flick K(v∧ (K r∨K∼r)) andM0 |=
〈Γ3〉> hold and, thus, we can conclude

M0, w1 |= J move K
(
J flick K(v ∧ (K r ∨K∼r))

)
An analogous reasoning, allow us to see that the same holds forM0, w2 and,
thus, we obtain

M0 |= KJ move K
(
J flick K(v ∧ (K r ∨K∼r))

)
By definition, these two facts imply

M0 |= KJ move; flick K(v ∧ (K r ∨K∼r)) (23)

In other words, the thief knows that, after executing actions move and flick,
she will be inside the vault and that she will know where the diamond is. So
she will be ready for the next step: using her knowledge to decide what is
the suitable action to continue the plan.

Let us now continue with the thief’s reasoning process after the execution
of the first two actions.

29

w1 : vlrsd

w2 : vlrsd

M0

w1 : vlrsd

w2 : vlrsd

M1

w1 : vlrsd

w2 : vlrsd

M2

w1 : vlrsd

M31

w1 : vlrsd

M41

move flick take right move

Figure 10: Execution of the sequence of actions 〈move, flick, take right, move〉 starting
atM0, w1 of Example 1. We haveMi+1 =Mi⊗ (Γpink ∪{ai}) with ai the corresponding
action in the sequence. The dotted arrows depict the R relation associated with the update
ofMi with respect to Γpink∪{ai}. Note that action take right is not executable inM2, w2

and, as a result, w2 has no associated world in M3.

Example 12 (Example 11 continued). We will show now that

M2, w1 |= J if K r then take right else take left; move K(v ∧ d) (24)

is satisfied. First note that

M31 ⊗ Γ3 = M41

RM2,Γ3 = {(w1, w1)}

and that M41, w1 |= ∼v ∧ d and, thus, we get M41, w1 |= J move K(∼v ∧ d).
Let now Γ9

def= Γpink ∪ {take right}. Then, we have

M2 ⊗ Γ9 = M31

RM2,Γ9 = {(w1, w1)}

from where we getM2, w1 |= [Γ9]J move K(∼v ∧ d). Furthermore, this implies
M2, w1 |= J take right KJ move K(∼v ∧ d), which in its turn implies

M2, w1 |= K r → J take right KJ move K(∼v ∧ d)

Note that M2, w1 |= K r and, thus,

M2, w1 |= ∼K r → J take right KJ move K(∼v ∧ d)

30

also follows. As a result, we can see that (24) holds. Now we follow the
reasoning from Example 11 to show that M0, w1 |= J (22) K(∼v ∧ d). That
is, (22) is a plan that achieves the goal of Example 1 in the case that the
diamond is in the right pedestal. Analogously, Figure 11 shows the models
needed to prove M0, w2 |= J (22) K(∼v ∧ d), that is, when the diamond was
on the left. As a result, we obtain M0 |= KJ (22) K(∼v ∧ d). In other words,
the thief knows that after executing (22), she will succeed in her goal: being
outside of the vault with the diamond.

w1 : vlrsd

w2 : vlrsd

M0

w1 : vlrsd

w2 : vlrsd

M1

w1 : vlrsd

w2 : vlrsd

M2

w2 : vlrsd

M32

w2 : vlrsd

M42

move flick take left move

Figure 11: Execution of the sequence of actions 〈move, flick, take left, move〉 starting
at M0, w2 of Example 1. This figure is analogous to Figure 10 but replacing action
take right by take left and models M31 and M41 by M32 and M42, respectively.

To conclude this section, we formalise the concepts of planing task and
planning solution.

Definition 19 (Planning task). Given the disjoint sets of actions A ⊆ P
and fluents F ⊆ P, a planning task is a triple Π = 〈Γ0,Γ, ϕg〉 where Γ0 is a
theory over P \ A defining the initial state, Γ is a theory over Pbi defining
the interpretation of actions and ϕg is the goal formula over F .

Definition 20 (Planning solution). A plan π is a conditional solution for
the planning task Π = 〈Γ0,Γ, ϕg〉 iff mwv(Γ0,F) |= J π KΓϕg. A conditional
solution without occurrences of the “if-then-else” construct is called a con-
formant solution.

In particular, Example 1 can be now formalised as the planning task
Π = 〈Γ0,Γpink , ϕg〉 where Γ0 is a singleton containing (16), describing the

31

initial situation, and ϕg = ∼v∧d. Then, we can see that (22) is a conditional
solution for the planning task Π. We can also formalise Example 2 as the
planning task Π = 〈Γ′0,Γpink , ϕg〉 where Γ′0 contains the single formula:

ϕ′0 = ∼v ∧ ∼l ∧ r ∧ ∼s ∧ ∼d (25)

that describes the corresponding initial situation. It can be checked that (22)
is also a conditional solution for Π′, though this example also has the simpler
(conformant) solution:

move ; take right ; move (26)

Finally, Example 10 becomes the task Π = 〈Γ0,Γ
′
pink , ϕg〉 for which

move ; try take right ; try take left ; move (27)

is a conformant solution.

Conclusions and Future Work

As discussed in [62], the traditional DEL[E] approach with event model
updates is a semantic approach, where states and actions are represented
as semantic objects, epistemic and event models respectively. On the other
hand, DEL[ASP] is a syntactic approach, where states and actions are rep-
resented as knowledge-bases, that is, sets of formulas known to be true. Se-
mantic and syntactic approaches are mutually dual, with the semantic ap-
proach modelling ignorance (the more ignorance, the bigger the state) and
the syntactic approach modelling knowledge (the more knowledge, the bigger
the knowledge-base). The generalisation of DEL for abstract updating ob-
jects can easily accommodate both approaches: it suffices with allowing both
event models and epistemic programs to occur in the dynamic operator, and
selecting the corresponding updating evaluation.

Another interesting observation is that both DEL[E] and ASP can be
considered as generalisations of the STRIPS planning language in orthogo-
nal directions. On the one hand, DEL[E] allows planning in domains where
the world is not fully observable, the effects of actions are not necessarily
deterministic and where sensing actions may allow to gain knowledge about
the actual state of the world. On the other hand, ASP introduces high level
KR features like the treatment of indirect effects, action qualifications, state

32

constraints or recursive fluents (for motivation about the need of such fea-
tures we refer to [63]). The approach presented here, DEL[ASP], combines
the strengths of both generalisations so that it is possible to use high level
KR features in non-fully observable or non-deterministic domains where ob-
serving the world may be needed to achieve a valid plan.

Similar to our approach, the action language mAL [64] also combined
the treatment of indirect effects and action qualifications with the possibil-
ity of defining sensing actions. The main handicap of mAL with respect
to DEL[ASP] is that the former only allows ramifications on the ontic ef-
fects, but not on the epistemic ones, as we did for instance with rule (15).
In mAL, as in DEL[E], this indirect observation needs to be encoded as a
direct effect of all actions that may affect those fluents. On the other hand,
an advantage of both DEL[E] and mAL is that they can be applied on do-
mains that involve several agents and in which those agents may even hold
false beliefs [22], while, so far, DEL[ASP] is only able to deal with domains
involving a single agent. Extending DEL[ASP] to cover these domains is a
matter of future work. It will be also interesting to study the relation be-
tween DEL[ASP] and Temporal ASP [57] and the possibility of extending
the latter with an epistemic modality to deal with non-fully observable or
non-deterministic domains.

Regarding the computation of planning solutions in DEL[ASP], it is worth
to mention that the algorithm based on planning trees described in [21] for
DEL[E] is general enough and does not really depend of the kind of updating
object used. In this sense, we can apply that same algorithm with the only
variation of using the ASP updating evaluation when we expand the tree.
Then, solutions can be retrieved from the planning tree in exactly the same
way as described there.

Acknowledgements. This work has been partially funded by the Centre In-
ternational de Mathématiques et d’Informatique de Toulouse through con-
tract ANR-11-LABEX-0040-CIMI within the program ANR-11-IDEX-0002-
02, grant 2016-2019 ED431G/01 CITIC Center (Xunta de Galicia, Spain),
grant TIN 2017-84453-P (MINECO, Spain).

References

[1] M. Ghallab, D. S. Nau, P. Traverso, Automated planning - theory and
practice, Elsevier, 2004.

33

[2] P. H. Tu, T. C. Son, C. Baral, Reasoning and planning with sensing
actions, incomplete information, and static causal laws using answer set
programming, Theory and Practice of Logic Programming 7 (4) (2007)
377–450.

[3] M. A. Peot, D. E. Smith, Conditional nonlinear planning, in: Artificial
Intelligence Planning Systems, Elsevier, 1992, pp. 189–197.

[4] K. Golden, D. S. Weld, Representing sensing actions: The middle ground
revisited, in: KR, Morgan Kaufmann, 1996, pp. 174–185.

[5] L. Pryor, G. Collins, Planning for contingencies: A decision-based ap-
proach, J. Artif. Intell. Res. 4 (1996) 287–339.

[6] J. Lobo, G. Mendez, S. R. Taylor, Adding knowledge to the action de-
scription language A, in: B. Kuipers, B. L. Webber (Eds.), Proceedings of
the Fourteenth National Conference on Artificial Intelligence and Ninth
Innovative Applications of Artificial Intelligence Conference, AAAI 97,
IAAI 97, July 27-31, 1997, Providence, Rhode Island, USA., AAAI Press
/ The MIT Press, 1997, pp. 454–459.

[7] A. L. Blum, M. L. Furst, Fast planning through planning graph analysis,
Artificial intelligence 90 (1-2) (1997) 281–300.

[8] D. E. Smith, D. S. Weld, Conformant graphplan, in: AAAI/IAAI, 1998,
pp. 889–896.

[9] K. Golden, Leap before you look: Information gathering in the PUCCINI
planner, in: AIPS, AAAI, 1998, pp. 70–77.

[10] D. S. Weld, C. R. Anderson, D. E. Smith, Extending graphplan to handle
uncertainty & sensing actions, in: Aaai/iaai, 1998, pp. 897–904.

[11] J. Rintanen, Constructing conditional plans by a theorem-prover, Jour-
nal of Artificial Intelligence Research 10 (1999) 323–352.

[12] B. Bonet, H. Geffner, Planning with incomplete information as heuristic
search in belief space, in: Proceedings of the Fifth International Confer-
ence on Artificial Intelligence Planning Systems, AAAI Press, 2000, pp.
52–61.

34

[13] C. Castellini, E. Giunchiglia, A. Tacchella, Sat-based planning in com-
plex domains: Concurrency, constraints and nondeterminism, Artificial
Intelligence 147 (1-2) (2003) 85–117.

[14] T. Eiter, W. Faber, N. Leone, G. Pfeifer, A. Polleres, A logic program-
ming approach to knowledge-state planning, ii: The dlvk system, Arti-
ficial Intelligence 144 (1-2) (2003) 157–211.

[15] A. Cimatti, M. Roveri, P. Bertoli, Conformant planning via symbolic
model checking and heuristic search, Artificial Intelligence 159 (1-2)
(2004) 127–206.

[16] D. Bryce, S. Kambhampati, D. E. Smith, Planning graph heuristics for
belief space search, Journal of Artificial Intelligence Research 26 (2006)
35–99.

[17] J. Hoffmann, R. I. Brafman, Conformant planning via heuristic forward
search: A new approach, Artificial Intelligence 170 (6-7) (2006) 507–541.

[18] B. Löwe, E. Pacuit, A. Witzel, Planning based on dynamic epistemic
logic, Tech. rep., Citeseer (2010).

[19] T. Bolander, M. B. Andersen, Epistemic planning for single and multi-
agent systems, Journal of Applied Non-Classical Logics 21 (1) (2011)
9–34.

[20] E. Pontelli, T. C. Son, C. Baral, G. Gelfond, Answer set programming
and planning with knowledge and world-altering actions in multiple
agent domains, in: Correct Reasoning, Springer, 2012, pp. 509–526.

[21] M. B. Andersen, T. Bolander, M. H. Jensen, Conditional epistemic
planning, in: JELIA, Vol. 7519 of Lecture Notes in Computer Science,
Springer, 2012, pp. 94–106.

[22] T. Bolander, Seeing is believing: Formalising false-belief tasks in dy-
namic epistemic logic, in: ECSI, Vol. 1283 of CEUR Workshop Proceed-
ings, CEUR-WS.org, 2014, pp. 87–107.

[23] F. Kominis, H. Geffner, Beliefs in multiagent planning: From one agent
to many, in: R. I. Brafman, C. Domshlak, P. Haslum, S. Zilberstein
(Eds.), Proceedings of the Twenty-Fifth International Conference on

35

Automated Planning and Scheduling, ICAPS 2015, Jerusalem, Israel,
June 7-11, 2015., AAAI Press, 2015, pp. 147–155.

[24] F. Kominis, H. Geffner, Multiagent online planning with nested beliefs
and dialogue, in: L. Barbulescu, J. Frank, Mausam, S. F. Smith (Eds.),
Proceedings of the Twenty-Seventh International Conference on Auto-
mated Planning and Scheduling, ICAPS 2017, Pittsburgh, Pennsylvania,
USA, June 18-23, 2017., AAAI Press, 2017, pp. 186–194.

[25] M. C. Cooper, A. Herzig, F. Maffre, F. Maris, P. Régnier, Simple epis-
temic planning: Generalised gossiping, in: G. A. Kaminka, M. Fox,
P. Bouquet, E. Hüllermeier, V. Dignum, F. Dignum, F. van Harmelen
(Eds.), ECAI 2016 - 22nd European Conference on Artificial Intelligence,
29 August-2 September 2016, The Hague, The Netherlands, Vol. 285 of
Frontiers in Artificial Intelligence and Applications, IOS Press, 2016, pp.
1563–1564.

[26] M. C. Cooper, A. Herzig, F. Maffre, F. Maris, P. Régnier, A simple
account of multi-agent epistemic planning, in: G. A. Kaminka, M. Fox,
P. Bouquet, E. Hüllermeier, V. Dignum, F. Dignum, F. van Harmelen
(Eds.), ECAI 2016 - 22nd European Conference on Artificial Intelligence,
29 August-2 September 2016, The Hague, The Netherlands, Vol. 285 of
Frontiers in Artificial Intelligence and Applications, IOS Press, 2016, pp.
193–201.

[27] T. Bolander, T. Engesser, R. Mattmüller, B. Nebel, Better eager than
lazy? how agent types impact the successfulness of implicit coordination,
in: M. Thielscher, F. Toni, F. Wolter (Eds.), Principles of Knowledge
Representation and Reasoning: Proceedings of the Sixteenth Interna-
tional Conference, KR 2018, Tempe, Arizona, 30 October - 2 November
2018., AAAI Press, 2018, pp. 445–453.

[28] R. C. Moore, A formal theory of knowledge and action, Tech. rep., SRI
International, Menlo Park, CA, Artificial Intelligence Center (1984).

[29] M. Thielscher, Representing the knowledge of a robot, in: KR, 2000, pp.
109–120.

[30] T. C. Son, C. Baral, Formalizing sensing actions—a transition function
based approach, Artificial Intelligence 125 (1-2) (2001) 19–91.

36

[31] R. B. Scherl, H. J. Levesque, Knowledge, action, and the frame problem,
Artificial Intelligence 144 (1-2) (2003) 1–39.

[32] H. Van Ditmarsch, W. van Der Hoek, B. Kooi, Dynamic epistemic logic,
Vol. 337, Springer Science & Business Media, 2007.

[33] H. van Ditmarsch, B. Kooi, Semantic results for ontic and epistemic
change, Logic and the foundations of game and decision theory (LOFT
7) 3 (2008) 87–117.

[34] V. Pratt, Semantical consideration on floyd-hoare logic, in: Proceedings
of the Seventeenth Annual Symposium on Foundations of Computer
Science (SFCS’76), IEEE Computer Society Press, 1976, pp. 109–121.

[35] H. P. van Ditmarsch, W. van der Hoek, B. P. Kooi, Dynamic epistemic
logic with assignment, in: Proceedings of the fourth international joint
conference on Autonomous agents and multiagent systems, ACM, 2005,
pp. 141–148.

[36] A. Baltag, L. S. Moss, S. Solecki, The logic of public announcements and
common knowledge and private suspicions, in: TARK, Morgan Kauf-
mann, 1998, pp. 43–56.

[37] A. Baltag, L. S. Moss, Logics for epistemic programs, Synthese 139 (2)
(2004) 165–224.

[38] R. E. Fikes, N. J. Nilsson, STRIPS: A new approach to the application of
theorem proving to problem solving, Artificial Intelligence 2 (3) (1971)
189 – 208.

[39] V. W. Marek, M. Truszczyńki, Stable models and an alternative logic
programming paradigm, in: K. R. Apt, V. W. Marek, M. Truszczyński,
D. Warren (Eds.), The Logic Programming Paradigm, Artificial Intelli-
gence, Springer Berlin Heidelberg, 1999, pp. 375–398.

[40] I. Niemelä, Logic programs with stable model semantics as a constraint
programming paradigm, Annals of Mathematics and Artificial Intelli-
gence 25 (1999) 241–273.

[41] C. Baral, Knowledge Representation, Reasoning and Declarative Prob-
lem Solving, Cambridge University Press, 2010.

37

[42] M. Gelfond, V. Lifschitz, The stable model semantics for logic pro-
gramming, in: Proc. of the 5th Intl. Conference on Logic Programming
(ICLP’88), 1988, pp. 1070–1080.

[43] M. Gelfond, V. Lifschitz, Classical negation in logic programs and dis-
junctive databases, New Generation Comput. 9 (3/4) (1991) 365–386.

[44] V. Lifschitz, Answer set planning, in: D. de Schreye (Ed.), Proceedings
of the International Conference on Logic Programming (ICLP’99), MIT
Press, 1999, pp. 23–37.

[45] V. Lifschitz, Answer set programming and plan generation, Artificial
Intelligence 138 (1) (2002) 39 – 54, knowledge Representation and Logic
Programming.

[46] J. Lee, V. Lifschitz, F. Yang, Action language BC preliminary report, in:
F. Rossi (Ed.), IJCAI 2013, Proceedings of the 23rd International Joint
Conference on Artificial Intelligence, Beijing, China, August 3-9, 2013,
IJCAI/AAAI, 2013, pp. 983–989.

[47] P. Cabalar, R. Kaminski, T. Schaub, A. Schuhmann, Temporal answer
set programming on finite traces, Theory and Practice of Logic Pro-
gramming 18 (3-4) (2018) 406–420.

[48] E. Erdem, M. Gelfond, N. Leone, Applications of ASP, AI Magazine
37 (3) (2016) 53–68.

[49] M. Gelfond, Strong introspection, in: T. L. Dean, K. McKeown (Eds.),
Proceedings of the AAAI Conference, Vol. 1, AAAI Press/The MIT
Press, 1991, pp. 386–391.

[50] A. P. Leclerc, P. T. Kahl, A survey of advances in epistemic logic pro-
gram solvers, CoRR abs/1809.07141. arXiv:1809.07141.
URL http://arxiv.org/abs/1809.07141

[51] P. Cabalar, J. Fandinno, L. Fariñas del Cerro, Founded world views with
autoepistemic equilibrium logic, Under consideration for 15th Interna-
tional Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR 2019), Corr abs/1902.07741.
URL https://arxiv.org/abs/1902.07741

38

http://arxiv.org/abs/1809.07141
http://arxiv.org/abs/1809.07141
http://arxiv.org/abs/1809.07141
http://arxiv.org/abs/1809.07141
https://arxiv.org/abs/1902.07741
https://arxiv.org/abs/1902.07741
https://arxiv.org/abs/1902.07741

[52] D. Pearce, A new logical characterisation of stable models and an-
swer sets, in: J. Dix, L. M. Pereira, T. C. Przymusinski (Eds.), Non-
Monotonic Extensions of Logic Programming, NMELP 1996, Bad Hon-
nef, Germany, September 5-6, 1996, Selected Papers, Vol. 1216 of Lecture
Notes in Computer Science, Springer, 1996, pp. 57–70.

[53] R. C. Moore, Semantical considerations on nonmonotonic logic, Artificial
Intelligence 25 (1) (1985) 75–94.

[54] G. Aucher, An internal version of epistemic logic, Studia Logica 94 (1)
(2010) 1–22.

[55] R. Fagin, Reasoning about knowledge, MIT Press, 1995.

[56] J. Y. Halpern, Reasoning about knowledge: an overview, in: Theoretical
aspects of reasoning about knowledge, Elsevier, 1986, pp. 1–17.

[57] P. Cabalar, R. Kaminski, T. Schaub, A. Schuhmann, Temporal answer
set programming on finite traces, Theory and Practice of Logic Pro-
gramming 18 (3-4) (2018) 406–420.

[58] H. Kautz, The logic of persistence, in: Proceedings of the 5th National
Conference of Artificial Intelligence, 1986, pp. 401–405.

[59] D. Nelson, Constructible falsity, J. Symbolic Logic 14 (1) (1949) 16–26.

[60] V. Lifschitz, L. R. Tang, H. Turner, Nested expressions in logic programs,
Ann. Math. Artif. Intell. 25 (3-4) (1999) 369–389.

[61] A. Heyting, Die formalen Regeln der intuitionistischen Logik, in:
Sitzungsberichte der Preussischen Akademie der Wissenschaften,
Deutsche Akademie der Wissenschaften zu Berlin, 1930, p. 42–56, reprint
in Logik-Texte: Kommentierte Auswahl zur Geschichte der Modernen
Logik, Akademie-Verlag, 1986.

[62] T. Bolander, A gentle introduction to epistemic planning: The DEL
approach, in: M4M@ICLA, Vol. 243 of EPTCS, 2017, pp. 1–22.

[63] V. Lifschitz, Answer set programming and plan generation, Artificial
Intelligence 138 (1-2) (2002) 39–54.

39

[64] C. Baral, G. Gelfond, E. Pontelli, T. C. Son, Reasoning about the beliefs
of agents in multi-agent domains in the presence of state constraints:
The action language mal, in: J. Leite, T. C. Son, P. Torroni, L. van der
Torre, S. Woltran (Eds.), Computational Logic in Multi-Agent Systems,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2013, pp. 290–306.

40

	Introduction
	Preliminaries
	Dynamic Epistemic Logic with Abstract Updating Objects
	Dynamic Epistemic Logic with Event Model Updates: DEL[E]
	Planning in Answer Set Programming
	Epistemic Logic Programs

	Dynamic Epistemic Logic with ASP Updates: DEL[ASP]
	Characterising information cells in FAEEL
	Epistemic Model Updates with FAEEL

	Conditional Planning in DEL[ASP]
	Conclusions and Future Work

