
Reducing Propositional Theories in Equilibrium
Logic to Logic Programs

Pedro Cabalar1, David Pearce2, and Agust́ın Valverde3

1 Dept. of Computation, Univ. of Corunna, Spain.
cabalar@dc.fi.udc.es

2 Dept. of Informatics, Statistics and Telematics,
Univ. Rey Juan Carlos, (Móstoles, Madrid), Spain.

d.pearce@escet.urjc.es
3 Dept. of Applied Mathematics, Univ. of Málaga, Spain.

a valverde@ctima.uma.es

Abstract. The paper studies reductions of propositional theories in
equilibrium logic to logic programs under answer set semantics. Specifi-
cally we are concerned with the question of how to transform an arbitrary
set of propositional formulas into an equivalent logic program and what
are the complexity constraints on this process. We want the transformed
program to be equivalent in a strong sense so that theory parts can be
transformed independent of the wider context in which they might be
embedded. It was only recently established [1] that propositional theo-
ries are indeed equivalent (in a strong sense) to logic programs. Here this
result is extended with the following contributions. (i) We show how to ef-
fectively obtain an equivalent program starting from an arbitrary theory.
(ii) We show that in general there is no polynomial time transformation
if we require the resulting program to share precisely the vocabulary or
signature of the initial theory. (iii) Extending previous work we show how
polynomial transformations can be achieved if one allows the resulting
program to contain new atoms. The program obtained is still in a strong
sense equivalent to the original theory, and the answer sets of the theory
can be retrieved from it.

1 Introduction

Answer set programming (ASP) is fast becoming a well-established environment
for declarative programming and AI problem solving, with several implemented
systems and advanced prototypes and applications. Though existing answer set
solvers differ somewhat in their syntax and capabilities, the language of disjunc-
tive logic programs with two negations, as exemplified in the DLV system [11]
under essentially the semantics proposed in [7], provides a standard reference
point. Many systems support different extensions of the language, either through
direct implementation or through reductions to the basic language. For example
weight constraints are included in smodels [24], while a system called nlp [22]
for compiling nested logic programs is available as a front-end to DLV. Though
differently motivated, these two kinds of extensions are actually closely related,

since as [6] shows, weight constraints can be represented equivalently by nested
programs of a special kind.

Answer set semantics was already generalised and extended to arbitrary
propositional theories with two negations in the system of equilibrium logic,
defined in [17] and further studied in [18,19,20]. Equilibrium logic is based on a
simple, minimal model construction in the nonclassical logic of here-and-there
(with strong negation), and admits also a natural fixpoint characterisation in the
style of nonmonotonic logics. In [20,13] it was shown that answer set semantics
for nested programs [12] is also captured by equilibrium models.

While nested logic programs permit arbitrary boolean formulas to appear in
the bodies and heads of rules, they do not support embedded implications; so
for example one cannot write in nlp a rule with a conditional body, such as

p← (q ← r).

In fact several authors have suggested the usefulness of embedded implications
for knowledge representation (see eg [3,8,23]) but proposals for an adequate se-
mantics have differed. Recently however Ferraris [5] has shown how, by modifying
somewhat the definition of answer sets for nested programs, a natural extension
for arbitrary propositional theories can be obtained. Though formulated using
program reducts, in the style of [7,12], the new definition is also equivalent to
that of equilibrium model. Consequently, to understand propositional theories,
hence also embedded implications, in terms of answer sets one can apply equally
well either equilibrium logic or the new reduct notion of [5]. Furthermore, [5]
shows how the important concept of aggregate in ASP, understood according to
the semantics of [4], can be represented by rules with embedded implications.
This provides an important reason for handling arbitrary theories in equilibrium
logic and motivates the topic of the present paper.

We are concerned here with the question how to transform a propositional
theory in equilibrium logic into an equivalent logic program and what are the
complexity constraints on this process. We want the transformed theory to be
equivalent in a strong sense so that theory parts can be translated independent
of the wider context in which they might be embedded. It was only recently es-
tablished [1] that propositional theories are indeed equivalent (in a strong sense)
to logic programs. The present paper extends this result with the following con-
tributions. (i) We present an alternative reduction method which seems more
interesting for computational purposes than the one presented in [1], as it ex-
tends the unfolding of nested expressions shown in [12] and generally leads to
simpler logic programs. (ii) We show that in general there is no polynomial trans-
formation if we require the resulting program to share precisely the vocabulary
or signature of the initial theory. (iii) Extending the work of [15,16] we show how
polynomial transformations can be achieved if one allows the resulting program
to contain new atoms. The program obtained is still in a strong sense equivalent
to the original theory, and the answer sets of the latter can be retrieved from
the answer sets of the former.

2 Equilibrium Logic

We assume the reader is familiar with answer set semantics for disjunctive logic
programs [7]. As a logical foundation for answer set programming we use the
nonclassical logic of here-and-there, denoted here by HT, and its nonmonotonic
extension, equilibrium logic [17], which generalises answer set semantics for logic
programs to arbitrary propositional theories (see eg [13]). We give only a very
brief overview here, for more details the reader is referred to [17,13,19] and the
logic texts cited below.4

Given a propositional signature V we define the corresponding propositional
language LV as the set of formulas built from atoms in V with the usual con-
nectives >,⊥,¬,∧,∨,→. A literal is any atom p ∈ V or its negation ¬p. Given
a formula ϕ ∈ LV , the function subf(ϕ) represents the set of all subformulas of
ϕ (including ϕ itself), whereas vars(ϕ) is defined as subf(ϕ)∩V , that is, the set
of atoms occurring in ϕ. By degree(ϕ) we understand the number of connectives
¬, ∧, ∨, → that occur in the formula ϕ. Note that |subf(ϕ)| would be at most5

degree(ϕ) + |vars(ϕ)| plus the number of occurrences of > and ⊥ in ϕ.
As usual, a set of formulas Π ⊆ LV is called a theory. We extend the use of

subf and vars to theories in the obvious way. The degree of a theory, degree(Π),
is defined as the degree of the conjunction of its formulas.

The axioms and rules of inference for HT are those of intuitionistic logic (see
eg [2]) together with the axiom schema:

(¬α→ β)→ (((β → α)→ β)→ β)

The model theory of HT is based on the usual Kripke semantics for intuitionistic
logic (see eg [2]), but HT is complete for Kripke frames 〈W,≤〉 (where as usual
W is the set of points or worlds and ≤ is a partial-ordering on W) having exactly
two worlds say h (‘here’) and t (‘there’) with h ≤ t. As usual a model is a frame
together with an assignment i that associates to each element ofW a set of atoms,
such that if w ≤ w′ then i(w) ⊆ i(w′); an assignment is then extended inductively
to all formulas via the usual rules for conjunction, disjunction, implication and
negation in intuitionistic logic. It is convenient to represent an HT model as
an ordered pair 〈H,T 〉 of sets of atoms, where H = i(h) and T = i(t) under a
suitable assignment i; by h ≤ t, it follows that H ⊆ T .

A formula ϕ is true in an HT model M = 〈H,T 〉, in symbols M |= ϕ, if it
is true at each world in M. A formula ϕ is said to be valid in HT, in symbols
|= ϕ, if it is true in all HT models. Logical consequence for HT is understood
as follows: ϕ is said to be an HT consequence of a theory Π, written Π |= ϕ,

4 As in some ASP systems the standard version of equilibrium logic has two kinds
of negation, intuitionistic and strong negation. For simplicity we deal here with the
restricted version containing just the first negation and based on the logic of here-
and-there. So we do not consider here eg logic programs with strong or explicit
negation.

5 It would be strictly lower if we have repeated subformulas.

iff for all models M and any world w ∈ M, M, w |= Π implies M, w |= ϕ.
Equivalently this can be expressed by saying that ϕ is true in all models of Π.

Clearly HT is a 3-valued logic (usually known as Gödel’s 3-valued logic) and
we can also represent models via interpretations I that assign to every atom p
a value in 3 = {0, 1, 2}, where 2 is the designated value. Given a model 〈H,T 〉,
the corresponding 3-valued interpretation I would assign, to each atom p, the
value: I(p) = 2 iff p ∈ H; I(p) = 1 iff p ∈ T r H and I(p) = 0 iff p 6∈ T .
An assignment I is extended to all formulas using the interpretation of the
connectives as operators in 3. As a result, conjunction becomes the minimum
value, disjunction the maximum, and implication and negation are evaluated by:

I(ϕ→ ψ) =
{

2 if I(ϕ) ≤ I(ψ)
I(ψ) otherwise I(¬ϕ) =

{
2 if I(ϕ) = 0
0 otherwise

For each connective • ∈ {∧,∨,→,¬}, we will denote the corresponding 3-valued
operator as f•.

Equilibrium models are special kinds of minimal HT-models. Let Π be a
theory and 〈H,T 〉 a model of Π. 〈H,T 〉 is said to be total if H = T . 〈H,T 〉 is
said to be an equilibrium model if it is total and there is no model 〈H ′, T 〉 of
Π with H ′ ⊂ H. The expression Eq(V,Π) denotes the set of the equilibrium
models of theory Π on signature V . Equilibrium logic is the logic determined
by the equilibrium models of a theory. It generalises answer set semantics in the
following sense. For all the usual classes of logic programs, including normal,
disjunctive and nested programs, equilibrium models correspond to answer sets.
The ‘translation’ from the syntax of programs to HT propositional formulas is
the trivial one, eg. a ground rule of a disjunctive program of the form

q1 ∨ . . . ∨ qk ← p1, . . . , pm, not pm+1, . . . , not pn

where the pi and qj are atoms, corresponds to the HT sentence

p1 ∧ . . . ∧ pm ∧ ¬pm+1 ∧ . . . ∧ ¬pn → q1 ∨ . . . ∨ qk

Proposition 1 ([17,20,13]). For any logic program Π, an HT model 〈T, T 〉 is
an equilibrium model of Π if and only if T is an answer set of Π.

Two theories, Π1 and Π2 are said to be logically equivalent, in symbols Π1 ≡ Π2,
if they have the same HT models. They are said to be strongly equivalent, in
symbols Π1 ≡s Π2, if and only if for any Π, Π1 ∪ Π is equivalent to (has the
same equilibrium models as) Π2 ∪Π. The two notions are connected via:

Proposition 2 ([13]). Any two theories, Π1 and Π2 are strongly equivalent iff
they are logically equivalent, ie. Π1 ≡s Π2 iff Π1 ≡ Π2.

Strong equivalence is important because it allows us to transform programs or
theories to equivalent programs or theories independent of any larger context in
which the theories concerned might be embedded. Implicitly, strong equivalence
assumes that the theories involved share the same vocabulary, a restriction that
has been removed in [21]. Here, in §4 below, we use a slight generalisation of
strong equivalence, where we allow one language to include the other.

3 Vocabulary-preserving transformations

We first show how to transform an arbitrary theory into a strongly equivalent
logic program in the same signature. [1] explores a similar aim but uses a trans-
formation motivated by obtaining a simple proof of the existence of a translation,
rather than the simplicity of the resulting programs or the final number of steps
involved. To give an example, using the translation in [1], a simple program rule
like ¬a → b ∨ c would be first transformed to remove negations and disjunc-
tions and then converted into a (nested) logic program via a bottom-up process
(starting from subformulas) which eventually yields the program:

¬a→ b ∨ c ∨ ¬b, (b ∨ ¬c) ∧ ¬a→ b, ¬a→ b ∨ c ∨ ¬c, (c ∨ ¬b) ∧ ¬a→ c

The result would further require applying the unfolding rules of [12] to yield a
non-nested program. Note that the original formula was already a non-nested
program rule that did not need any transformation at all.

The transformation we present here adopts the opposite approach. It is a
top-down process that relies on the successive application of several rewriting
rules that operate on sets (conjunctions) of implications. A rewriting takes place
whenever one of those implications does not yet have the form of a (non-nested)
program rule.

Two sets of transformations are described next. A formula is said to be in
negation normal form (NNF) when negation is only applied to literals. As a
first step, we describe a set of rules that move negations inwards until a NNF is
obtained:

¬>⇔⊥ (1) ¬(ϕ ∧ ψ)⇔¬ϕ ∨ ¬ψ (4)
¬⊥⇔> (2) ¬(ϕ ∨ ψ)⇔¬ϕ ∧ ¬ψ (5)

¬¬¬ϕ⇔¬ϕ (3) ¬(ϕ→ ψ)⇔¬¬ϕ ∧ ¬ψ (6)

Transformations (1)-(5) were already used in [12] to obtain the NNF of so-called
nested expressions (essentially formulas without implications). Thus, we have
just included the treatment of a negated implication (6) to obtain the NNF in
the general case.

In the second set of transformations, we deal with sets (conjunctions) of
implications. Each step replaces one of the implications by new implications to be
included in the set. If ϕ is the original formula, the initial set of implications is the
singleton {> → ϕ}. Without loss of generality, we assume that any implication
α→ β to be replaced has been previously transformed into NNF. Furthermore,
we always consider that α is a conjunction and β a disjunction (if not, we just
take α ∧ > or β ∨ ⊥, respectively), and that we implicitly apply commutativity
of conjunction and disjunction as needed.

Left side rules:

> ∧ α→ β ⇔ { α→ β } (L1)
⊥ ∧ α→ β ⇔ ∅ (L2)

¬¬ϕ ∧ α→ β ⇔ { α→ ¬ϕ ∨ β } (L3)

(ϕ ∨ ψ) ∧ α→ β ⇔
{
ϕ ∧ α→ β
ψ ∧ α→ β

}
(L4)

(ϕ→ ψ) ∧ α→ β ⇔

¬ϕ ∧ α→ β
ψ ∧ α→ β

α→ ϕ ∨ ¬ψ ∨ β

 (L5)

Right side rules

α→ ⊥∨ β ⇔ { α→ β } (R1)
α→ >∨ β ⇔ ∅ (R2)

α→ ¬¬ϕ ∨ β ⇔ { ¬ϕ ∧ α→ β } (R3)

α→ (ϕ ∧ ψ) ∨ β ⇔
{
α→ ϕ ∨ β
α→ ψ ∨ β

}
(R4)

α→ (ϕ→ ψ) ∨ β ⇔
{

ϕ ∧ α→ ψ ∨ β
¬ψ ∧ α→ ¬ϕ ∨ β

}
(R5)

As with NNF transformations, the rules (L1)-(L4), (R1)-(R4) were already
used in [12] for unfolding nested expressions into disjunctive program rules. The
additions in this case are transformations (L5) and (R5) that deal with an impli-
cation respectively in the antecedent or the consequent of another implication. In
fact, an instance of rule (L5) where we take α = > was the main tool used in [1]
to provide the first transformation of propositional theories into logic programs.
Note that rules (L5) and (R5) are the only ones to introduce new negations and
that they both result in ¬ϕ and ¬ψ for the inner implication ϕ → ψ. Thus, if
the original propositional formula was in NNF, the computation of NNF in each
intermediate step is needed for these newly generated ¬ϕ and ¬ψ.

Proposition 3. The set of transformation rules (1)-(6), (L1)-(L5), (R1)-(R5)
is sound with respect to HT, that is, |= ϕ ↔ ψ for each transformation rule
ϕ⇔ ψ.

Of course, these transformations do not guarantee the absence of redundant
formulas. As an example, when we have β = ⊥ in (R5), we would obtain the
pair of rules ϕ∧α→ ψ and ¬ψ ∧α→ ¬ϕ, but it can be easily checked that the
latter follows from the former. A specialised version is also possible:

α→ (ϕ→ ψ) ⇔
{
ϕ ∧ α→ ψ

}
(R5’)

Example 1. Let ϕ be the formula (¬p → q) → ¬(p → r). Figure 1 shows a
possible application of rules (L1)-(L5),(R1)-(R5). Each horizontal line represents
a new step. The reference on the right shows the transformation rule that will be
applied next to the corresponding formula on the left. From the final result we
can remove6 trivial tautologies and subsumed rules to obtain: {q∧¬p→ ⊥, q →
¬r,¬r ∨ ¬p} ut

6 In fact, the rule q → ¬r is redundant and could be further removed, although perhaps
not in a directly automated way.

(¬p→ q) → ¬(p→ r) (NNF)

(¬p→ q) → ¬¬p ∧ ¬r (L5)

q → ¬¬p ∧ ¬r
¬¬p → ¬¬p ∧ ¬r (L3)

¬p ∨ ¬q ∨ ¬¬p ∧ ¬r
q → ¬¬p ∧ ¬r (R4)

¬¬p ∧ ¬r ∨ ¬p
¬p ∨ ¬q ∨ ¬¬p ∧ ¬r

q → ¬¬p (R3)
q → ¬r

¬¬p ∧ ¬r ∨ ¬p
¬p ∨ ¬q ∨ ¬¬p ∧ ¬r

q ∧ ¬p → ⊥
q → ¬r

¬¬p ∧ ¬r ∨ ¬p (R4)
¬p ∨ ¬q ∨ ¬¬p ∧ ¬r (R4)

q ∧ ¬p → ⊥
q → ¬r

¬¬p ∨ ¬p (R3)
¬r ∨ ¬p
¬p ∨ ¬q ∨ ¬¬p (R3)
¬p ∨ ¬q ∨ ¬r

q ∧ ¬p → ⊥
q → ¬r
¬p → ¬p

¬r ∨ ¬p
¬p → ¬p ∨ ¬q

¬p ∨ ¬q ∨ ¬r

Fig. 1. Application of transformation rules in example 1

3.1 Complexity

Perhaps the main drawback of the method presented above is the exponential
size of the generated program and the number of steps to obtain it. In fact, it
was already observed in [16] that the set of rules (R1)-(R4) and (L1)-(L5) orig-
inally introduced in [12] (that is, when we do not consider nested implications)
also leads to an exponential blow-up. The main reason is the presence of the
“distributivity” laws (R4) and (L4). To give an example, just note that the suc-
cessive application of (R4) to a formula like (p1 ∧ q1)∨ (p2 ∧ q2)∨ · · · ∨ (pn ∧ qn)
eventually yields 2n disjunctions of n atoms. In this section we show, however,
that this drawback is actually inherent to any transformation that preserves the
vocabulary of the original theory.

A recent result, presented in Theorem 2 in [1], shows that it is possible to
build a strongly equivalent logic program starting from the set of countermod-
els of any arbitrary theory. The method for obtaining such a program is quite
straightforward: it consists in adding, per each countermodel, a rule that refers
to all the atoms in the propositional signature in a way that depends on their
truth assignment in the countermodel. This result seems to point out that the
complexity of obtaining a strongly equivalent program mostly depends on the
generation of the countermodels of the original theory. Now, it is well-known
that in classical logic this generation cannot be done in polynomial time because
the validity problem is coNP-complete. This also holds for several finite-valued
logics, and in particular for the family of Gödel logics (which includes HT) as
shown in:

Proposition 4 (Theorem 5 in [9]). The validity problem for Gödel logics for
an arbitrary theory has a coNP-complete time complexity. ut

The keypoint for our complexity result comes from the observation that va-
lidity of a logic program rule can be checked in polynomial time. To see why, let

us consider for instance an arbitrary program rule like:

a1 ∧ · · · ∧ am ∧ ¬b1 ∧ · · · ∧ ¬bn → c1 ∨ · · · ∨ cs ∨ ¬d1 ∨ · · · ∨ ¬dt (7)

with m,n, s, t ≥ 0 and let us define the sets7 of atoms A = {a1, . . . , am}, B =
{b1, . . . , bn}, C = {c1, . . . , cs} and D = {d1, . . . , dt}.

Lemma 1. An arbitrary rule like (7) (with A,B,C,D defined as above) is valid
in HT iff A ∩B 6= ∅ or A ∩ C 6= ∅ or B ∩D 6= ∅.

Proof. For the left to right direction, assume that (7) is valid but A ∩ B = ∅,
A ∩ C = ∅ and B ∩D = ∅. In this situation, it is possible to build a 3-valued
assignment I where I(a) = 2, I(b) = 0, I(c) 6= 2 and I(d) 6= 0 for each a, b, c, d
in A,B,C,D respectively. Note that for any atom in any of the remaining three
possible intersections A∩D, B ∩C or C ∩D, assignment I is still feasible. Now,
it is easy to see that I assigns 2 to the antecedent of (7) whereas it assigns a
value strictly lower than 2 to its consequent. Therefore, I is a countermodel for
the rule, which contradicts the hypothesis of validity.

For the right to left direction, when A ∩ B 6= ∅, it suffices to note that
p∧¬p∧α→ β is an HT tautology. Similarly, the other two cases are consequences
of the HT tautology α ∧ β → α ∨ γ. ut

Since checking whether one of the intersections A∩B, A∩C or B ∩D is not
empty can be done by a simple sorting of the rule literals, we immediately get
that validity for an arbitrary program rule has a polynomial time complexity.

Theorem 1. There is no polynomial time algorithm to translate an arbitrary
propositional theory in equilibrium logic into a strongly equivalent logic program
in the same vocabulary (provided that coNP 6= P).

Proof. Assume we had a polynomial algorithm that translates the theory into a
strongly equivalent logic program. Checking whether this program is valid can be
done by checking the validity of all its rules one by one. As validity of each rule
can be done in polynomial time (by Lemma 1), the validity of the whole program
is polynomial too. But then, the translation first plus the validity checking of
the resulting program afterwards becomes altogether a polynomial time method
for validity checking of an arbitrary theory. This contradicts Proposition 4, if we
assume that coNP 6= P . ut

4 Polynomial transformations

Let I be an interpretation for a signature U and let V ⊂ U . The expression I∩V
denotes the interpretation I restricted to signature V , that is, (I ∩V)(p) = I(p)
for any atom p ∈ V . For any theoryΠ, subf(Π) denotes the set of all subformulas
of Π.
7 We can use sets instead of multisets without loss of generality, since HT satisfies

the idempotency laws for conjunction and disjunction.

Definition 1. We say that the translation σ(Π) ⊆ LU of some theory Π ⊆ LV
with V ⊆ U is strongly faithful if, for any theory Π ′ ⊆ LV :

Eq(V,Π ∪Π ′) = {J ∩ V | J ∈ Eq(U, σ(Π) ∪Π ′)}

The translations we will consider use a signature VL that contains an atom (a
label) for each non-constant formula in the original language LV , that is:

VL = {Lϕ | ϕ ∈ LV r {⊥,>}}

For convenience, we use Lϕ
def= ϕ when ϕ is >, ⊥ or an atom p ∈ V . This allows

us to consider VL as a superset of V . For any non-atomic formula ϕ • ψ built
with a binary connective •, we call its definition, df(ϕ • ψ), the formula:

Lϕ•ψ↔ Lϕ • Lψ

Similarly df(¬ϕ) represents the formula L¬ϕ↔¬Lϕ.

Definition 2. For any theory Π in LV , we define the translation σ(Π) as:

σ(Π) def= {Lϕ | ϕ ∈ Π} ∪
⋃

γ∈subf(Π)

df(γ)

That is, σ(Π) collects the labels for all the formulas in Π plus the definitions
for all the subformulas in Π.

Theorem 2. For any theory Π in LV : {I | I |= Π} = {J ∩ V | J |= σ(Π)}.

Proof. Firstly note that I |= ϕ iff I(ϕ) = 2 and I |= ϕ↔ ψ iff I(ϕ) = I(ψ).
‘⊆’ direction: Let I be a model of Π and J the assignment defined as J(Lϕ) =
I(ϕ) for any formula ϕ ∈ LV . Note that as J(Lp) = J(p) = I(p) for any atom
p ∈ V , J ∩ V = I. Furthermore, J |= Lϕ for each formula ϕ ∈ Π too, since
I |= Π. Thus, it remains to show that J |= df(γ) for any γ ∈ subf(Π). For any
connective • we have J |= Lϕ•ψ↔ Lϕ • Lψ because:

J(Lϕ•ψ) = I(ϕ • ψ) = f•(I(ϕ), I(ψ)) = f•(J(Lϕ), J(Lψ)) = J(Lϕ • Lψ)

This same reasoning can be applied to prove that J |= df(¬ϕ).
‘⊇’ direction: We must show that J |= σ(Π) implies J ∩ V |= Π, that is,
J |= Π. First, by structural induction we show that for any subformula γ of Π,
J(Lγ) = J(γ). When the subformula γ has the shape >, ⊥ or an atom p this is
trivial, since Lγ = γ by definition. When γ = ϕ • ψ for any connective • then:

J(Lϕ•ψ) ∗= J(Lϕ • Lψ) = f•(J(Lϕ), J(Lψ)) ∗∗= f•(J(ϕ), J(ψ)) = J(ϕ • ψ)

In (∗) we have used that J |= df(ϕ • ψ) and in (∗∗) we apply the induction
hypothesis. The same reasoning holds for the unary connective ¬. Finally, as J
is a model of σ(Π), in particular, we have that J |= Lϕ for each ϕ ∈ Π. But, as
we have seen, J(Lϕ) = J(ϕ) and so J |= ϕ. ut

γ df(γ) π(γ) γ df(γ) π(γ)

ϕ∧ψ Lϕ∧ψ↔ Lϕ∧Lψ Lϕ∧ψ → Lϕ ¬ϕ L¬ϕ↔¬Lϕ ¬Lϕ → L¬ϕ

Lϕ∧ψ → Lψ L¬ϕ → ¬Lϕ
Lϕ∧Lψ → Lϕ∧ψ

ϕ∨ψ Lϕ∨ψ↔ Lϕ∨Lψ Lϕ → Lϕ∨ψ ϕ→ψ Lϕ→ψ↔ (Lϕ→Lψ) Lϕ→ψ∧Lϕ → Lψ

Lψ → Lϕ∨ψ ¬Lϕ → Lϕ→ψ

Lϕ∨ψ → Lϕ∨Lψ Lψ → Lϕ→ψ

Lϕ∨¬Lψ∨Lϕ→ψ

Fig. 2. Transformation π(γ) generating a generalised disjunctive logic program.

Clearly, including an arbitrary theory Π ′ ⊆ LV in Theorem 2 as follows:

{I | I |= Π ∪Π ′} = {J ∩ V | J |= σ(Π) ∪Π ′}

and then taking the minimal models on both sides trivially preserves the equality.
Therefore, the following is straightforward.

Corollary 1. Translation σ(Π) is strongly faithful.

Modularity of σ(Π) is quite obvious, and the polynomial complexity of its com-
putation can also be easily deduced. However, σ(Π) does not have the shape of
a logic program: it contains double implications where the implication symbol
may occur nested. Fortunately, we can unfold these double implications in linear
time without changing the signature VL (in fact, we can use transformations
in Section 3 for this purpose). For each definition df(γ), we define the strongly
equivalent set (understood as the conjunction) of logic program rules π(γ) as
shown in Figure 2. The fact df(γ) ≡s π(γ) can be easily checked in here-and-
there. The main difference with respect to [16] is of course the treatment of the
implication. In fact, the set of rules π(ϕ→ ψ) was already used in [15] to unfold
nested implications in an arbitrary theory, with the exception that, in that work,
labelling was exclusively limited to implications. The explanation for this set of
rules can be easily outlined using transformations in Section 3. For the left to
right direction in df(ϕ → ψ), that is, the implication Lϕ→ψ → (Lϕ → Lψ), we
can apply (R5’) to obtain the first rule shown in Figure 2 for π(ϕ → ψ). The
remaining three rules are the direct application of (L5) (being α = >) for the
right to left direction (Lϕ → Lψ)→ Lϕ→ψ.

The program π(Π) is obtained by replacing in σ(Π) each subformula defini-
tion df(ϕ) by the corresponding set of rules π(ϕ). As π(Π) is strongly equivalent
to σ(Π) (under the same vocabulary) it preserves strong faithfulness with re-
spect to Π. Furthermore, if we consider the complexity of the direct translation
from Π to π(Π) we obtain the following result.

Theorem 3. Translation π(Π) is linear and its size can be bounded as follows:
|vars(π(Π)| ≤ |vars(Π)|+ degree(Π), degree(π(Π)) ≤ |Π|+ 12 degree(Π).

df(¬ϕ) π′(¬ϕ) df(ϕ→ ψ) π′(ϕ→ ψ)

L¬ϕ↔¬Lϕ ¬Lϕ → L¬ϕ Lϕ→ψ↔ (Lϕ → Lψ) Lϕ→ψ ∧ Lϕ → Lψ

L¬ϕ ∧ Lϕ → ⊥ ¬Lϕ → Lϕ→ψ

Lψ → Lϕ→ψ

Lϕ ∨ L¬ψ ∨ Lϕ→ψ

¬Lψ → L¬ψ

L¬ψ ∧ Lψ → ⊥

Fig. 3. Transformation π′(γ) generating a disjunctive logic program.

Proof. As we explained before, we use a label in π(Π) per each non-constant
subformula inΠ (including atoms). We can count the subformulas as the number
of connectives8, ≤ degree(Π), plus the number of atoms in Π, |vars(Π)|.

As for the second bound, note that π(Π) consists of two subtheories. The first
one contains a label Lϕ per each formula ϕ in Π. The amount |Π| counts implicit
conjunction used to connect each label to the rest of the theory. The second part
of π(Π) collects a set of rules π(γ) per each subformula γ of Π. The worst case,
corresponding to the translation of implication, uses eight connectives plus four
implicit conjunctions to connect the four rules to the rest of the theory. ut

A possible objection to π(Π) is that it makes use of negation in the rule heads,
something not usual in the current tools for answer sets programming. Although
there exists a general translation [10] for removing negation in the head, it is
possible to use a slight modification of π(Π) to yield a disjunctive program in a
direct way. To this end, we define a new π′(γ) for each subformula γ of T that co-
incides with π(γ) except for implication and negation, which are treated as shown
in Figure 3. As we can see, the use of negation in the head for π(¬ϕ) can be easily
removed by just using a constraint L¬ϕ∧Lϕ → ⊥. In the case of implication, we
have replaced negated label ¬Lψ by the labeled negation L¬ψ in the resulting dis-
junctive rule.The only problem with this technique is that ¬ψ need not occur as
subformula in the original theoryΠ. Therefore, we must include the definition for
the newly introduced label L¬ψ, that leads to the last two additional rules, and
we need a larger signature, VL = {Lϕ,L¬ϕ | ϕ ∈ LV r{⊥,>}}. If we consider now
the translation π′(Π) it is not difficult to see that modularity and strong faith-
fulness are still preserved, while its computation can be shown to be polynomial,
although using slightly greater bounds |vars(π(Π))| ≤ 2 |vars(Π)|+2 degree(Π)
and degree(π(Π)) ≤ |Π|+ 22 degree(Π).

5 Concluding remarks

Equilibrium logic provides a natural generalisation of answer set semantics to
propositional logic. It allows one to handle embedded implications, in particular

8 Note that degree(Π) also counts the implicit conjunction of all formulas in T

to write programs containing rules with conditional heads or bodies. As [5] has
recently shown, such rules can be used to represent aggregates in ASP under the
semantics of [4].

In this paper we have explored different ways in which arbitrary proposi-
tional theories in equilibrium logic can be reduced to logic programs and thus
implemented in an ASP solver. First, we presented rules for transforming any
theory into a strongly equivalent program in the same vocabulary. Second, we
showed that there is no polynomial algorithm for such a transformation. Third,
we showed that if we allow new atoms or ‘labels’ to be added to the language
of a theory, it can be reduced to a logic program in polynomial time. The pro-
gram is still in a strong sense equivalent to the original theory and the theory’s
equilibrium models or answer sets can be be retrieved from the program.

We have extended several previous works in the following way. In [12] several
of the reduction rules of §3 were already proposed in order to show that nested
programs can be reduced to generalised disjunctive programs. In [1] it is shown
for the first time that arbitrary propositional theories have equivalent programs
in the same vocabulary; but complexity issues are not discussed. In [16] a re-
duction is proposed for nested programs into disjunctive programs containing
new atoms. The reduction is shown to be polynomial and has been implemented
as a front-end to DLV called nlp. Following the tradition of structure-preserving
normal form translations for nonclassical logics, as illustrated in [14], the reduc-
tion procedure of [16] uses the idea of adding labels as described here. Our main
contribution has been to simplify the translation and the proof of faithfulness as
well as extend it to the full propositional language including embedded implica-
tions. The formulas we have added for eliminating implications were previously
mentioned in [15]. However that work does not provide any details on the com-
plexity bounds of the resulting translation, nor does it describe the labelling
method in full detail.

Many issues remain open for future study. Concerning the transformation
described in §3, for example, several questions of efficiency remain open. In par-
ticular the logic program obtained by this method is not necessarily ‘optimal’
for computational purposes. In the future we hope to study additional transfor-
mations that lead to a minimal set of program rules. Concerning the reduction
procedure of §4, since, as mentioned, it extends a system nlp [22] already avail-
able for nested programs, it should be relatively straightforward to implement
and test. One area for investigation here is to see if such a system might provide
a prototype for implementing aggregates in ASP, an issue that is currently under
study elsewhere.

Another area of research concerns the language of equilibrium logic with an
additional, strong negation operator for expressing explicit falsity. The relation
between intermediate logics and their least strong negation extensions has been
well studied in the literature. From this body of work one can deduce that most
of the results of this paper carry over intact to the case of strong negation.
However, the reductions are not as simple as the methods currently used for
eliminating strong negation in ASP. In particular, for the polynomial translations

of propositional theories additional defining formulas are needed. We postpone
the details for a future work.

References

1. P. Cabalar & P. Ferraris. Propositional Theories are Strongly Equivalent to Logic
Programs. Unpublished draft, 2005, available at
http://www.dc.fi.udc.es/~cabalar/pt2lp.pdf.

2. D. van Dalen. Intuitionistic logic. In Handbook of Philosophical Logic, Volume III:
Alternatives in Classical Logic, Kluwer, Dordrecht, 1986.

3. P. M. Dung. Declarative Semantics of Hypothetical Logic Programing with Nega-
tion as Failure. in Proceedings ELP 92, 1992, 99. 45-58.

4. W. Faber, N. Leone & G. Pfeifer. Recursive Aggregates in Disjunctive Logic Pro-
grams: semantics and Complexity. in J.J. Alferes & J. Leite (eds), Logics In Arti-
ficial Intelligence. Proceedings JELIA’04, Springer LNAI 3229, 2004, pp. 200-212.

5. P. Ferraris. Answer Sets for Propositional Theories. In Eighth Intl. Conf. on Logic
Programming and Nonmonotonic Reasoning (LPNMR’05), 2005 (to appear).

6. P. Ferraris & V. Lifschitz. Weight Constraints as Nested Expressions. Theory and
Practice of Logic Programming (to appear).

7. M. Gelfond & V. Lifschitz. Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9:365–385, 1991.

8. L. Giordano & N. Olivetti. Combining Negation-as-Failure and Embedded Impli-
cations in Logic Programs. Journal of Logic Programming 36 (1998), 91-147.

9. R. Hähnle. Complexity of Many-Valued Logics. In Proc. 31st International Sym-
posium on Multiple-Valued Logics, IEEE CS Press, Los Alamitos (2001) 137–146.

10. T. Janhunen, I. Niemelä, P. Simons & J.-H. You. Unfolding Partiality and Dis-
junctions in Stable Model Semantics. In A. G. Cohn, F. Giunchiglia & B. Sel-
man (eds), Principles of Knowledge Representation and Reasoning (KR-00), pages
411424. Morgan Kaufmann, 2000.

11. N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri & F. Scarcello. The
dlv System for Knowledge Representation and Reasoning. CoRR: cs.AI/0211004,
September 2003.

12. V. Lifschitz, L. R. Tang & H. Turner. Nested Expressions in Logic Programs.
Annals of Mathematics and Artificial Intelligence, 25 (1999), 369–389.

13. V. Lifschitz, D. Pearce & A. Valverde. Strongly Equivalent Logic Programs. ACM
Transactions on Computational Logic, 2(4):526–541, 2001.

14. G. Mints. Resolution Strategies for the Intuitionistic Logic. In B. Mayoh, E. Tyugu
& J. Penjaam (eds), Constraint Programming NATO ASI Series, Springer, 1994,
pp.282-304.

15. M. Osorio, J. A. Navarro Pérez & J. Arrazola Safe Beliefs for Propositional Theories
Ann. Pure & Applied Logic (in press).

16. D. Pearce, V. Sarsakov, T. Schaub, H. Tompits & S. Woltran. Polynomial Trans-
lations of Nested Logic Programs into Disjunctive Logic Programs. In Proc. of the
19th Int. Conf. on Logic Programming (ICLP’02), 405–420, 2002.

17. D. Pearce. A New Logical Characterisation of Stable Models and Answer Sets. In
Non-Monotonic Extensions of Logic Programming, NMELP 96, LNCS 1216, pages
57–70. Springer, 1997.

18. D. Pearce. From Here to There: stable negation in logic programming. In D. Gab-
bay & H. Wansing, eds., What is Negation?, pp. 161–181. Kluwer Academic Pub.,
1999.

19. D. Pearce, I. P. de Guzmán & A. Valverde. A Tableau Calculus for Equilibrium
Entailment. In Automated Reasoning with Analytic Tableaux and Related Methods,
TABLEAUX 2000, LNAI 1847, pages 352–367. Springer, 2000.

20. D. Pearce, I.P. de Guzmán & A. Valverde. Computing Equilibrium Models using
Signed Formulas. In Proc. of CL2000, LNCS 1861, pp. 688–703. Springer, 2000.

21. D. Pearce & A. Valverde. Synonymous Theories in Answer Set Programming and
Equilibrium Logic. in R. López de Mántaras & L. Saitta (eds), Proceedings ECAI
04, IOS Press, 2004, pp. 388-392.

22. V. Sarsakov, T. Schaub, H. Tompits & S. Woltran. nlp: A Compiler for Nested
Logic Programming. in Proceedings of LPNMR 2004, pp. 361-364. Springer LNAI
2923, 2004.

23. D. Seipel. Using Clausal Deductive Databases for Defining Semantics in Disjunctive
Deductive Databases. Annals of Mathematics and Artificial Intelligence 33 (2001),
pp. 347-378.

24. P. Simons, I. Niemelä & T. Soininen. Extending and implementing the stable
model semantics. Artificial Intelligence, 138(1–2):181–234, 2002.

	Reducing Propositional Theories in Equilibrium Logic to Logic Programs
	Pedro Cabalar (Corunna University), David Pearce (Universidad Rey Juan Carlos), Agustín Valverde (Málaga University)

