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Abstract. In this work we further investigate the relation,
first found by Truszczyński, between modal logic S4F and De-
fault Logic (DL), analyzing some interesting properties and
showing its application to other general non-monotonic for-
malisms. For comparison purposes, we start defining a sub-
set of S4F we called Intuitionistic Default Logic (IDL), which
consists in incorporating an additional set of propositional op-
erators. These operators are translated into modal formulas
using Gödel’s pattern for encoding Intuitionistic Logic into S4.
Then, we prove that, under a particular models minimization
policy, IDL generalizes Turner’s Nested Default Logic (NDL),
in the sense that the latter does not allow nesting or com-
bining the rule conditional operator. This result is also used
to show that strong equivalence of default theories can be
reduced to a simple S4F equivalence test. Finally, we prove
that IDL also generalizes Pearce’s Equilibrium Logic, which
encodes logic programs into the intermediate logic of Here-
and-There.

1 INTRODUCTION

The advantages of capturing a Nonmonotonic Reasoning
(NMR) formalism in logical terms are both theoretical and
practical. From a theoretical point of view, we get a clear
semantic interpretation for all the constructs of the NMR for-
malism and, usually, a glimpse on their possible generaliza-
tion. From a practical point of view, we can convert the study
of NMR theories into theorem proving inside the underlying
logical framework. While some NMR formalisms [14] are de-
fined in logical terms from the very beginning, encodings for
other popular nonmonotonic frameworks have been frequently
considered in the literature. For instance, in the case of Re-
iter’s Default Logic (DL) [19], there exists a whole family of
nonmonotonic modal characterizations studied in [13]. An-
other example, directly related to DL, is the recently renewed
interest in logical characterizations of Programming (LP) un-
der stable models semantics [4]. The most relevant encoding in
this case is, perhaps, Pearce’s Equilibrium Logic [17] which re-
lies on Heyting’s intermediate logic of Here-and-There (HT).

As shown in [10], the HT characterization has an important
additional advantage: strong equivalence of logic programs
corresponds to HT-equivalence of their logical translations.
We say that two logic programs P1 and P2 are strongly equiv-
alent when P1 ∪ P and P2 ∪ P yield the same consequences,
for any additional set of rules P . Usually, a logical encoding
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provides a sufficient condition for strong equivalence, but per-
haps not a necessary one – our claim is that this last feature
is a desirable property. Apart from HT, other approaches have
been used to provide necessary and sufficient conditions for
strong equivalence of logic programs (for instance, relying on
classical propositional logic [18, 12], three-valued logic [1] or
a whole family of intermediate logics [3]). In all these cases,
the result is still applicable for the general syntax of nested
LP [11], where default negation, conjunction and disjunction
can be freely combined both in the head and the body of rules.
Strong equivalence for default theories has been characterized
by Turner in [21], who actually deals with a generalization of
DL called Nested Default Logic (NDL) – essentially, nested
LP where atoms can be replaced by classical formulas.

In this paper, we study some interesting properties of the
translation of DL into (non-monotonic) modal logic S4F. This
translation was introduced by Truszczyński in [20] and was
later observed to follow Gödel’s general pattern [6] for encod-
ing2 Intuitionistic Logic into S4. In our work, the straight-
forward application of Gödel’s pattern allows us to propose
one more generalization of DL we have called Intuitionistic
Default Logic (IDL), and which we show extremely useful for
comparison purposes. This generalization consists in freely
combining intuitionistic operators, but allowing classical for-
mulas to play the role of “atoms.” As a result, we can prove
that: (1) IDL generalizes NDL, in the sense that it does not
impose any restriction for combining intuitionistic operators
(curiously, despite of its name, NDL does not allow nesting
default rules); (2) equivalence of IDL theories (under S4F) is
a necessary and sufficient condition for strong equivalence of
default theories; and (3), IDL is a proper generalization of
HT, when we consider classical formulas instead of atoms.

The rest of the paper is organized as follows. Section 2
contains some definitions and notation, together with a brief
recall of modal logic. The next section introduces a nonmono-
tonic version of S4F and proceeds then to define IDL inside
this framework. Sections 4 and 5 study the relation to NDL
and HT, respectively. Finally, Section 6 concludes the paper.
The proofs for the main results have been included in [2].

2 PRELIMINARIES

All languages described in the paper are assumed to be propo-
sitional. The finite set At, called signature, contains all the

2 Gödel’s pattern has been frequently used for discovering modal
companions of intermediate logics. Its application to nonmono-
tonic formalisms is first explicitly mentioned in [16].



propositional atoms. We adopt the following notation for lan-
guages [op1 op2 . . . opn](At) standing for all the formulas
constructed with elements of signature At combined with op-
erators opi. Note that signature can be different from At: some
languages can use as “atoms” the set of formulas of another
language. Operators [∨ ∧ ⊃ ≡ ¬ ⊥ >] will be called classical
and defined with their standard arity and precedence. We will
also use a second set of operators [not , ; ←] called intuition-
istic and inherited from LP syntax with the usual arity and
precedence (‘,’ stands for conjunction and ‘;’ for disjunction).
The reason for the name “intuitionistic” is that, in fact, we
will use the same notation for logic programs, default the-
ories and intuitionistic logic, in order to reduce translation
efforts. When combined, we assume that classical operators
have higher priority than intuitionistic ones.

The set of classical formulas, L, is defined as [∨ ¬ ⊥](At).
(the rest of classical operators are derived from the previous
ones in the usual way). We will use capital letters F,G, . . . to
denote classical formulas.

Given a set of atoms At, a propositional interpretation, I, is
any subset I ⊆ At containing all the atoms valuated as true.
If S is a set of propositional interpretations, then we define
Th(S) as the set of classical formulas that are satisfied by all
interpretations in S:

Th(S)
def
= {F ∈ L | for all I ∈ S, I |= F}

For the following definitions regarding modal logic, we have
mostly followed [13]. The language of modal formulas is de-
fined as LL = [∨ ¬ ⊥ L](At), that is, classical operators plus
an additional unary operator L, called the necessity functor.
The dual operator M , called possibility, is derived from L as

Mφ
def
= ¬L¬φ. A modal theory is any subset of LL.

A modal logic S is usually described in terms of a set of
axioms. We write T `S φ to express that formula φ is derivable
from T and axioms of S using the inference rules of modus
ponens (MP) and necessitation (N):

φ, φ ⊃ ψ
ψ

(MP)
`S φ

`S Lφ
(N)

We define the consequences of any modal theory T under logic

S as CnS(T )
def
= {φ ∈ LL | T `S φ}.

We will be particularly interested in the following set of
axioms:

k. L(φ ⊃ ψ) ⊃ (Lφ ⊃ Lψ)
t. Lφ ⊃ φ
4. Lφ ⊃ LLφ
f. φ ∧MLψ ⊃ L(Mφ ∨ ψ)
5. Mφ ⊃ LMφ

Modal logic S4 corresponds to the set of axioms {k, t,4},
logic S4F is defined as S4+{f} whereas S5 corresponds to
S4+{5}.

The semantics of these three logics can be captured in terms
of the so-called Kripke models. A Kripke model is a triple
M = 〈W,R, V 〉 where W is a nonempty set (whose elements
are the worlds of M), R ⊆ W ×W is called the accessibility
relation among worlds, and finally, V is a set of propositional
interpretations, one Iw for each world w ∈W . We define when
M satisfies a modal formula φ at a given world w, written
(M, w) |= φ, recursively as follows:

1. (M, w) |= p iff p ∈ Iw for any atom p.
2. (M, w) |= ¬φ iff (M, w) 6|= φ.
3. (M, w) |= φ ∨ ψ iff (M, w) |= φ or (M, w) |= ψ.
4. (M, w) |= Lφ iff for all w′ ∈W s.t. wRw′, (M, w′) |= φ.

When φ is satisfied at any world w of M we simply write
M |= φ and say that φ is valid inM. It is not difficult to see
that:

Proposition 1 If relation R is reflexive:
M |= φ iff M |= Lφ. �

Similarly, a modal theory T is valid in M, also written
M |= T , when all the formulas in T are valid in M. Given
a class of Kripke models K, any theory T and any formula
φ, we write T |=K φ to represent that any M ∈ K such that
M |= T satisfiesM |= φ. As expected, |=K φ means that φ is
true in any Kripke model of class K.

A modal logic S is said to be characterized by a class of
Kripke models K iff deduction and entailment coincide, that
is, for any T and φ: T `S φ iff T |=K φ.

The class of Kripke models characterizing S4 consists of
those with a transitive and reflexive accessibility relation.
Kripke models for S5 have the shape 〈W,W × W,V 〉 (that
is, they are transitive, reflexive and symmetric). Usually, S5-
models are directly represented as 〈W,V 〉. Finally, the most
interesting structure for our purpose is the class of Kripke
models characterizing S4F, which have the shape 〈W, (W1 ×
W ) ∪ (W ×W2), V 〉 where W = W1 ∪W2, W1 ∩W2 = ∅ and
W2 6= ∅. In other words, each S4F-model consists of a pair
of S5 clusters, W1 and W2, where W1 is fully connected to
W2. We will directly represent the S4F-model as 〈W1,W2, V 〉.
Note that, when W1 = ∅, we can consider that it actually
amounts to an S5-model 〈W2, V 〉.

It is perhaps interesting to note that the number of different
modalities in each of the three mentioned logics is relatively
small. By different modality we mean a string of modal op-
erators which cannot be equivalently reduced into a smaller
string. It is well-known [8] that S4 has the following six differ-
ent modalities3 L,M,LM,ML,LML,MLM . For instance, in
S4 we have:

LLφ ≡ Lφ (1)

MMφ ≡ Mφ (2)

In S5, there are only two modalities: L and M . In a similar
way, the following theorem:

MLφ ⊃ LMφ (3)

from S4F can be used to prove:

LMLφ ≡ MLφ (4)

MLMφ ≡ LMφ (5)

showing that this logic has the four modalities L,M,LM and
ML. In fact, we can just consider L and ML, seeing M and
LM as their respective negations. The following theorems of
S4F describe some unfolding properties of these modalities
which will be especially useful later:

3 We omit everywhere the case of non-modal formulas, which could
also be considered as an additional “empty” modality.



L¬MLφ ≡ ¬MLφ (6)

L(φ ∧ ψ) ≡ Lφ ∧ Lψ (7)

L(Lφ ∨ Lψ) ≡ Lφ ∨ Lψ (8)

L(Lφ ⊃ Lψ) ≡ (Lφ ⊃ Lψ) ∧ (MLφ ⊃MLψ) (9)

ML¬MLφ ≡ ¬MLφ (10)

ML(φ ∧ ψ) ≡ MLφ ∧MLψ (11)

ML(Lφ ∨ Lψ) ≡ MLφ ∨MLψ (12)

ML(Lφ ⊃ Lψ) ≡ MLφ ⊃MLψ (13)

3 NONMONOTONIC S4F

The most usual way of defining a nonmonotonic version of a
modal logic is using McDermott and Doyle’s fixpoint defini-
tion [14] of the concept of expansion. Given a modal logic S,
we say that theory E is an S-expansion of theory T iff E is
consistent with S and satisfies: E = CnS(T ∪{¬Lφ | φ 6∈ E}).

In this work, however, we propose a different characteriza-
tion in terms of minimal models. To this aim, we begin defin-
ing for any S4F model, an associated pair of sets formulas.
We call candidate set to any consistent, logically closed set of
classical formulas. For any S4F-model M = 〈W1,W2, V 〉 we
define the pair of candidate sets (HM, TM) as:

HM
def
= Th(Iw | w ∈W1 ∪W2)

TM
def
= Th(Iw | w ∈W2)

Looking at their definition, it is clear that HM ⊆ TM.
A possible interpretation of (HM, TM) is that it describes a
set of beliefs in a partial way: we believe all formulas in HM
whereas we do not believe any formula not in TM. Thus, there
is no particular belief with respect to formulas in TM −HM.

This structure has a straightforward correspondence with
modalities in S4F, as asserted by the following theorem:

Theorem 1 For any classical formula F :
(F ∈ HM iff M |= LF ) and (F ∈ TM iff M |= MLF ). �

Given two S4F models M,M′ we define the ordering re-
lation: M ≤ M′ iff TM = TM′ and HM ⊆ HM′ . In
other words, ≤-minimal models correspond to fixing the non-
believed formulas and minimizing the believed ones.

Definition 1 (Selected model) An ≤-minimal S4F-model
M of a theory T is said to be selected iff HM = TM. �

3.1 Intuitionistic Default Logic

We can now define an interesting subset of nonmonotonic
S4F by restricting the use of modal operators in the following
way. The language of Intuitionistic Default Logic (IDL) corre-
sponds to [not , ; ←](L). In other words, we construct formu-
las with intuitionistic operators but using the set of classical
formulas as “atoms”. The name IDL should not lead to con-
fusion: it is not an intuitionistic variant of Default Logic, but
an intuitionistic interpretation of default constructs instead 4.

4 The DL variant proposed in [15], for instance, not only inter-
prets default rules as intuitionistic operators, but also proposes
closing default theories under constructive rather than classical
deduction.

We say that IDL is a subset of S4F because intuitionistic con-
nectives are actually defined in terms of modal expressions,
following Gödel’s translation [6]:

(not φ)
def
= L¬Lφ

(φ, ψ)
def
= φ ∧ ψ

(φ;ψ)
def
= Lφ ∨ Lψ

(φ← ψ)
def
= Lψ ⊃ Lφ

The translation of negation5 is equivalent to ¬MLφ. Thus,
by Theorem 1, an intuitive interpretation of (not F ) is F 6∈
TM, that is, F is not believed by the agent. It is not difficult
to show that the following equivalences are theorems in S4F:

not not not φ ≡ not φ (14)

not (φ, ψ) ≡ (not φ;not ψ) (15)

not (φ;ψ) ≡ (not φ,not ψ) (16)

The importance of these properties is that they show that
formulas of sub-language [not , ; ](L) can be unfolded until
occurrences of not have the shape (not F ) or (not not F ),
being F a classical formula.

It should perhaps be observed that, due to Proposition 1,
requiringM |= φ in IDL is the same thanM |= Lφ, and so, all
expressions are implicitly in the scope of a necessity operator.
The way in which this L operator can be unfolded with respect
to intuitionistic operators is described by equivalences (1), (2)
and (4)-(13).

The use of LP notation for intuitionistic operators allows es-
tablishing a direct syntactic correspondence with most classes
of logic programs. For this reason, we have preferred to main-
tain the use of LP conjunction (φ, ψ), although as seen above,
it does not differ from classical conjunction. In the case of vari-
ants of default theories the correspondence for our notation
is not so straightforward, although it can be easily deduced.
A disjunctive default rule like:

A : B1, . . . , Bn

C1| . . . |Cm

would be represented in IDL as:

C1; . . . ;Cm ← A,not ¬B1, . . . ,not ¬Bn

The following property can be easily checked:

Property 1 For any IDL formula φ, if 〈W1,W2, V 〉 |= φ
then 〈W2, V 〉 |= φ. �

That is, if a S4F model satisfies an IDL formula φ, then the
S5-model just consisting of cluster W2 also satisfies φ.

4 NESTED DEFAULT LOGIC

The syntax of Nested Default Logic (NDL) is a subset of IDL
where connective ‘←’ cannot be in the scope of other oper-
ator. Therefore, a NDL theory is a set of rules like φ ← ψ,

5 For translating not φ, Gödel actually proposed a second alterna-
tive ¬Lφ. Although most results in the paper are still valid under
this choice, we have preferred the stronger version L¬Lφ in order
to obtain simpler proofs and provide a more direct interpretation
of negation in terms of TM.



where φ and ψ belong to language [not , ; ](L) (called the set
of NDL formulas). Classical formulas can be included in the
NDL theory as rules like F ← >.

The satisfaction of an NDL formula φ by a candidate set
X is denoted as X |=ND φ and recursively defined as follows:

• X |=ND F iff F ∈ X, for any classical formula F .
• X |=ND (φ, ψ) iff X |=ND φ and X |=ND ψ
• X |=ND (φ;ψ) iff X |=ND φ or X |=ND ψ
• X |=ND not φ iff X 6|=ND φ

As expected, X is a model of a NDL theory D, also written
X |=ND D, when X |=ND ψ implies X |=ND φ, for any rule
φ ← ψ in D. The reduct of a NDL formula φ with respect
to X, denoted as φX , is the result of replacing any maximal6

subformula not ψ either by ⊥ or > depending on whether
X |=ND ψ or not, respectively. The reduct of a default theory
D, written DX , is obtained by replacing each rule φ ← ψ in
D by φX ← ψX .

Definition 2 (Extension) A candidate set X is an exten-
sion of a default theory D iff X is a minimal (w.r.t. set inclu-
sion) model of DX . �

In [21] it is shown that NDL properly generalizes Reiter’s
Default Logic and its extension for disjunctive defaults intro-
duced in [5]. The following theorem shows that IDL semantics
covers, in its turn, NDL extensions:

Theorem 2 Let D be a NDL theory, X a candidate set and
M a S4F model for which HM = TM = X. Then, X is an
extension of D iffM is a selected model for D under IDL. �

The structure of a single candidate set does not suffice,
however, for capturing the property of strong equivalence of
default theories.

Definition 3 (SE-model) We define a SE-model of some
default theory D as a pair (X,Y ) of candidate sets satisfying
X ⊆ Y , X |=ND D

Y and Y |=ND D
Y . �

The idea of handling these two sets is that we will take into
account both the “initial” candidate set Y used for getting the
reduct, and the “resulting” candidate sets X that are models
of the reduct.

Proposition 2 (From Theorem 3 in [21]) Two NDL theories
are strongly equivalent iff they have the same SE-models. �

Now, the following theorem is essential for adapting this
result for IDL:

Theorem 3 Let (X,Y ) be a pair of candidate sets with X ⊆
Y and let M be some S4F model such that X = HM and
Y = TM. Then, for any NDL theory D, (X,Y ) is an SE-
model of D iff M |= D in IDL. �

This directly means that we can rephrase now Proposition
2 so that strong equivalence of NDL theories corresponds to
S4F-equivalence of their modal translations. In fact, this re-
sult is even more general. Since Turner’s proof for Proposition
2 exclusively deals with sets of SE-models (without reference
to the syntax of their original theories), and thanks to corre-
spondence established in Theorem 2, it is not difficult to see
that:

6 That is, any subformula (not ψ) of φ which is not, in its turn, in
the scope of an outer not .

Corollary 1 Two IDL theories are strongly equivalent iff
their modal encodings are S4F equivalent. �

5 HERE-AND-THERE

The previous section has shown that IDL generalizes NDL
which, in its turn, is a generalization of nested LP. On the
other hand, as said in the introduction, Lifschitz, Pearce and
Valverde [10] showed that the HT encoding of LP also cap-
tures nested expressions. However, the HT encoding is still
applicable to more general expressions than nested LP syn-
tax, providing an intuitive meaning to constructions in which
the rule arrow is inside the scope of other operator. For in-
stance, in HT we have:

(p← q)← r ⇔ p← q, r

not (p← q) ⇔ (⊥ ← not q), (⊥ ← p)

where ⇔ stands for semantic equivalence. This nice feature
may be lost for other encodings, like shown for instance in [1],
for the case of three-valued logic.

The question now is, when we move to consider classical for-
mulas instead of atoms, does IDL provide an intuitive mean-
ing for this type of constructions? In this section we show
that, in fact, the monotonic basis of IDL (that is, its S4F
translation) is a proper generalization of HT. In other words,
Gödel’s pattern for translating intuitionistic logic into S4 is
also valid for translating HT into S4F.

We use the language [not , ; ← ⊥](At), called intuitionistic
formulas, for describing the syntax of Here-and-There (HT).
We will understand not φ as an abbreviation of ⊥ ← φ. The
semantics of HT is described as follows. An HT world is any
element of the set {h, t} (respectively standing for here and
there). We define an accessibility relation � so that h � h,
t � t and h � t.

Definition 4 (HT-interpretation) Given a propositional
signature At, an HT interpretation is defined as the pair I =
(Ih, It) where Ih ⊆ It ⊆ At. �

The HT interpretation can be understood as a partial truth
valuation for atoms in the signature. Intuitively, Ih contains
the true atoms, Σ − It the false atoms and, finally, It − Ih

corresponds to those atoms that are left undefined. An in-
terpretation of shape (I, I) is said to be total (there are no
undefined atoms).

Definition 5 (Satisfaction of a formula) We recursively
define the satisfaction of a formula φ by an interpretation I =
(Ih, It) at a world w, written (I, w) |=HT φ, in the following
way:

1. (I, w) |=HT p iff p ∈ Iw

2. (I, w) |=HT (φ, ψ) iff (I, w) |=HT φ and (I, w) |=HT ψ
3. (I, w) |=HT (φ;ψ) iff (I, w) |=HT φ or (I, w) |=HT ψ
4. (I, w) |=HT (ψ ← φ) iff for all w′ such that w � w′,

(I, w′) 6|=HT φ or (I, w) |=HT ψ
5. (I, w) 6|=HT ⊥

�

We say that an HT interpretation I is a model of a theory
T iff (I, h) |=HT φ for all φ in T . The following property of
HT corresponds, somehow, to Property 1 for IDL:



Property 2 For all intuitionistic formula φ,
if (I, h) |= φ then (I, t) |= φ. �

Definition 6 Given a S4F model M we define the corre-
sponding HT interpretation IM = (Ih

M, It
M) as:

Ih
M

def
=

\
w∈W1∪W2

Iw It
M

def
=

\
w∈W2

Iw

�

In other words, Ih
M (resp. It

M) collects all the atoms in-
cluded in HM (resp. TM). Note that different S4F models
may lead to the same IM.

Lemma 1 Let φ be an intuitionistic formula, M =
〈W1,W2, V 〉 an S4F model and IM its corresponding HT in-
terpretation. Then:
(a) (IM, h) |=HT φ iff M |= φ.
(b) (IM, t) |=HT φ iff 〈W2, V 〉 |= φ. �

Theorem 4 For any intuitionistic formula φ:
|=HT φ iff |= φ under S4F. �

6 CONCLUSION

We have reconsidered the S4F encoding of Default Logic (DL)
by first interpreting default constructs as intuitionistic opera-
tors (we called this Intuitionistic DL) and then using Gödel’s
translation into modal logic. This orientation has allowed us,
for instance, to capture Turner’s Nested DL (NDL) and gen-
eralize his result for characterizing strong equivalence of de-
fault theories. Besides, some important new advantages can
be obtained with respect to NDL. As an example, we can
show properties about default theories in terms of theorem
proving in S4F, what can be automated with a tableaux-style
prover (like the one proposed in [7], for instance). Note that,
on the contrary, when we directly use NDL definitions, au-
tomated reasoning is not straightforward: (meta)proofs for
properties are ad hoc, using non-logical constructs (like the
theory reduct) and logically closed sets of formulas. Another
advantage is that our approach still provides a meaning for
expressions where the rule conditional is in the scope of other
operators. Thus, we can really nest default rules, something
not possible in NDL, and preserve the same meaning than the
one provided by Here-and-There with respect to logic pro-
grams. In fact, the relation we established between S4F and
Here-and-There, allows using modal S4F provers for proving
theorems in that intermediate logic.

Some open topics are left for future work. For instance, it
remains to prove that the S4F models minimization proposed
in this paper actually corresponds to the standard McDermott
and Doyle’s syntactic fixpoint definition. Another interesting
topic is the relation to the bimodal logic of Minimal Belief
and Negation as Failure (MBNF) [9]. Our conjecture is that
MBNF is weaker than S4F, and this weakness will prevent to
obtain a necessary condition for strong equivalence of default
theories.
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