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Abstract. We introduce an implementation of an extension of An-
swer Set Programming (ASP) with language constructs from dynamic
(and temporal) logic that provides an expressive computational frame-
work for modeling dynamic applications. Starting from logical foun-
dations, provided by dynamic and temporal equilibrium logics over
finite linear traces, we develop a translation of dynamic formulas into
temporal logic programs. This provides us with a normal form result
establishing the strong equivalence of formulas in different logics. Our
translation relies on the introduction of auxiliary atoms to guarantee
polynomial space complexity and to provide an embedding that is
doomed to be impossible over the same language. Finally, the reduc-
tion of dynamic formulas to temporal logic programs allows us to
extend ASP with both approaches in a uniform way and to implement
both extensions via temporal ASP solvers such as telingo.

1 Introduction

Humans are not bothered at all when it comes to choosing a way
home among a plethora of alternatives. Similarly, in reasoning about
action or planning, the underlying specifications admit an abundance
of feasible plans. Among them, we usually find only a few reasonable
alternatives while the majority bear an increasing number of redun-
dancies, leading to infinite solutions in the worst case. Popular ways
to counterbalance this are to extend the specification by objectives,
like shortest plans, and/or imposing limits on the plan length. Both are
often implemented with optimization procedures and/or incremental
reasoning methods (extending insufficient plan lengths). However,
computing a valid plan with such techniques usually involves solving
numerous sub-problems of nearly the same scale as the actual problem
— not to mention that solving somehow optimal plans is often particu-
larly hard (due to phase transition phenomena). This rules out such
techniques when it comes to highly demanding dynamic problems, as
we witnessed in applications to robotic intra-logistics [14].

This motivates our approach to pair action theories with control the-
ories in order to restrict our attention to plans selected by the control
theory among all feasible ones induced by the action theory. This ap-
proach was pioneered by Levesque et al. in [20] by combining action
theories in the Situation Calculus with control programs expressed in
Golog. The rough idea is that a plan induced by an action theory must
be compatible with a run of the associated Golog program. Although
Golog’s design was inspired by Dynamic Logic [17], its semantics is
given by a reduction to first-order logic. Unlike this, we developed
in [3, 6] the foundations of an approach integrating Answer Set Pro-
gramming (ASP [21]) with (linear) Dynamic Logic. More precisely,
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we are interested in the combination of the logic of Here-and-There
(HT [19]) with linear Dynamic Logic over finite traces (LDLf [11]),
called Dynamic logic of Here-and-There (DHTf ) and particularly its
non-monotonic extension, Dynamic Equilibrium Logic (DELf [6]).
We review both logics in Section 2. ASP as such is known to constitute
a fragment of Equilibrium Logic [22].

In what follows, our focus lies on implementing temporal and dy-
namic ASP via a reduction to regular ASP. This aligns with the above
discussion insofar as temporal logic programs, featuring one step op-
erators, are well-suited for providing action theories, while dynamic
formulas allow for imposing compatibilities with path expressions,
that amount to regular expressions over primitive actions.4 To this
end, in this paper, we present the following contributions:

(i) we develop a three-valued characterization of DHTf ;
(ii) we establish a normal form for DHTf showing that dynamic

formulas can be reduced to (so-called) temporal logic programs;
(iii) we use this reduction to implement a solver accepting dynamic

formulas in DELf .

For (i), we extend the three-valued characterization from [16] to dy-
namic formulas, something that allows for greatly simplifying proofs
and has thus benefits well beyond this paper. Also, it is, to the best
of our knowledge, the first time this type of construction is used to
capture dynamic logics and thus path expressions. This three-valued
definition also allows for establishing (ii), which shows that any dy-
namic formula can be equivalently reduced to a syntactic fragment
called temporal logic programs. This translation relies on the introduc-
tion of auxiliary atoms (in a Tseitin-style [25]) for, first, guaranteeing
that its result is of polynomial size wrt the input formula, and, second,
surmounting the fact that translations of dynamic into temporal formu-
las are usually impossible without extending the language. We explain
both issues in more detail in Section 3. Finally, the great benefit of this
reduction is that we can use it for (iii), that is, implementing dynamic
formulas in DELf , since temporal logic programs can be processed by
an existing solver for temporal ASP, viz. telingo [8]. We describe the
resulting implementation in Section 4 and show the potential impact
of pairing action and control theories via an empirical analysis of an
elevator scenario borrowed from [20].

2 Linear Dynamic Equilibrium Logic

We start from the syntax of Linear Dynamic Logic (LDL) defined
in [11]. Given a set A of propositional variables (called alphabet),
dynamic formulas ϕ and path expressions ρ are mutually defined by

4 Temporal formulas constitute a proper fragment of DHTf (cf. Section 2).



the pair of grammar rules:

ϕ ::= a | ⊥ | > | [ρ]ϕ | 〈ρ〉ϕ

ρ ::= τ | ϕ? | ρ+ ρ | ρ ; ρ | ρ∗ | ρ−

This syntax is similar to the one of Dynamic Logic (DL [17]) but
differs in the construction of atomic path expressions: while DL uses
a different alphabet for atomic actions, in LDL there is a unique alpha-
betA (atomic propositions) and the only atomic path expression is the
constant τ 6∈ A (read as “step”) that we also write as > (see below),
overloading the constant truth symbol. As we show further below, the
above language allows us to capture several derived operators, like
the Boolean and temporal ones:

ϕ ∧ ψ def
= 〈ϕ?〉ψ ϕ ∨ ψ def

= 〈ϕ? + ψ?〉>
ϕ→ ψ

def
= [ϕ?]ψ ¬ϕ def

= ϕ→ ⊥
F def

= [>]⊥ I def
= [>−]⊥

◦ϕ def
= 〈>〉ϕ •ϕ def

= 〈>−〉ϕ
◦̂ϕ def

= [>]ϕ •̂ϕ def
= [>−]ϕ

3ϕ
def
= 〈>∗〉ϕ �ϕ def

= 〈>∗−〉ϕ
�ϕ def

= [>∗]ϕ �ϕ def
= [>∗−]ϕ

ϕU ψ
def
= 〈(ϕ?;>)∗〉ψ ϕ S ψ def

= 〈(ϕ?;>)∗−〉ψ
ϕ R ψ def

= (ψ U (ϕ ∧ ψ)) ∨�ψ ϕ T ψ def
= (ψ S (ϕ ∧ ψ)) ∨�ψ

All connectives are defined in terms of the dynamic operators 〈·〉 and
[·] . This involves the Booleans’ ∧, ∨, and→, among which the defi-
nition of→ is most noteworthy since it hints at the implicative nature
of [·] . Negation ¬ is then expressed via implication, as usual in HT.
Then, 〈·〉 and [·] also allow defining the future temporal operators
F, ◦, ◦̂, 3, �, U, R, standing for final, next, weak next, eventually,
always, until, and release, and their past-oriented counterparts: I, •, •̂,
�, �, S, T. The weak one-step operators, ◦̂ and •̂, are of particular
interest when dealing with finite traces, since their behavior differs
from their genuine counterparts only at the ends of a trace. In fact,
◦̂ϕ can also be expressed as ◦ϕ ∨ F (and •̂ as •ϕ ∨ I). A formula
is propositional, if all its connectives are Boolean, and temporal, if
it includes only Boolean and temporal ones. As usual, a (dynamic)
theory is a set of (dynamic) formulas. Following the definition of
linear DL (LDL) in [11], we sometimes use a propositional formula
φ as a path expression actually standing for (φ?; τ). This means that
the reading of > as a path expression amounts to (>?; τ) which is
just equivalent to τ, as we see below. Another abbreviation is the
sequence of n repetitions of some expression ρ defined as ρ0 def

= >?
and ρn+1 def

= ρ; ρn. For instance, ρ3 = ρ; ρ; ρ;>? which amounts to
ρ; ρ; ρ, as we see below.

Given a ∈ N and b ∈ N ∪ {ω}, we let [a..b] stand for the set
{i ∈ N | a ≤ i ≤ b} and [a..b) for {i ∈ N | a ≤ i < b}. For the
semantics, we start by defining a trace of length λ over alphabet A as
a sequence 〈Hi〉i∈[0..λ) of sets Hi ⊆ A. A trace is infinite if λ = ω
and finite otherwise, that is, λ = n for some natural number n ∈ N.
Given traces H = 〈Hi〉i∈[0..λ) and H′ = 〈H ′i〉i∈[0..λ) both of length
λ, we write H ≤ H′ if Hi ⊆ H ′i for each i ∈ [0..λ); accordingly,
H < H′ iff both H ≤ H′ and H 6= H′.

Although DHT shares the same syntax as LDL, its semantics
relies on traces whose states are pairs of sets of atoms. A Here-and-
There trace (for short HT-trace) of length λ over alphabet A is a
sequence of pairs 〈Hi, Ti〉i∈[0..λ) such that Hi ⊆ Ti ⊆ A for any
i ∈ [0..λ). As before, an HT-trace is infinite if λ = ω and finite
otherwise. The intuition of using these two sets stems from HT and

Equilibrium Logic: atoms in Hi are those that can be proved; atoms
not in Ti are those for which there is no proof; and, finally, atoms
in Ti \Hi are assumed to hold, but have not been proved. We often
represent an HT-trace as a pair of traces 〈H,T〉 of length λ where
H = 〈Hi〉i∈[0..λ) and T = 〈Ti〉i∈[0..λ) and H ≤ T. The particular
type of HT-traces that satisfy H = T are called total. Given any HT-
trace M = 〈H,T〉, we define DHT satisfaction of formulas, namely,
M, k |= ϕ, in terms of an accessibility relation for path expressions
‖ρ‖M ⊆ N2 whose extent depends again on |= by double, structural
induction.

Definition 1 (DHT satisfaction [6]) An HT-trace M = 〈H,T〉 of
length λ over alphabet A satisfies a dynamic formula ϕ at time point
k ∈ [0..λ), written M, k |= ϕ, if the following conditions hold:

1. M, k |= > and M, k 6|= ⊥
2. M, k |= a if a ∈ Hk for any atom a ∈ A
3. M, k |= 〈ρ〉ϕ if M, i |= ϕ for some i with (k, i) ∈ ‖ρ‖M

4. M, k |= [ρ]ϕ if M′, i |= ϕ for all i with (k, i) ∈ ‖ρ‖M
′

for both M′ = M and M′ = 〈T,T〉

where, for any HT-trace M, ‖ρ‖M ⊆ N2 is a relation on pairs of
time points inductively defined as follows.

5. ‖τ‖M def
= {(k, k + 1) | k, k + 1 ∈ [0..λ)}

6. ‖ϕ?‖M def
= {(k, k) |M, k |= ϕ}

7. ‖ρ1 + ρ2‖M def
= ‖ρ2‖M ∪ ‖ρ2‖M

8. ‖ρ1 ; ρ2‖M def
= { (k, i) | (k, j) ∈ ‖ρ1‖M and

(j, i) ∈ ‖ρ2‖M for some k }
9. ‖ρ∗‖M def

=
⋃
n≥0 ‖ρ

n‖M

10. ‖ρ−‖M def
= {(k, i) | (i, k) ∈ ‖ρ‖M}

We see that 〈ρ〉ϕ and [ρ]ϕ quantify over time points i that are
reachable via path expression ρ from the current point k, that is,
(k, i) ∈ ‖ρ‖M ⊆ [0..λ) × [0..λ). An HT-trace M is a model of a
dynamic theory Γ if M, 0 |= ϕ for all ϕ ∈ Γ. We write DHT(Γ, λ)
to stand for the set of DHT models of length λ of a theory Γ, and
define DHT(Γ)

def
=
⋃ω
λ=0 DHT(Γ, λ), that is, the whole set of mod-

els of Γ of any length. When Γ = {ϕ} we just write DHT(ϕ, λ) and
DHT(ϕ).

A formula ϕ is a tautology (or is valid), written |= ϕ, iff M, k |= ϕ
for any HT-trace M and any k ∈ [0..λ). We call the logic induced
by the set of all tautologies (Linear) Dynamic logic of Here-and-
There (DHT for short). Two formulas ϕ,ψ are said to be equivalent,
written ϕ ≡ ψ, whenever M, k |= ϕ iff M, k |= ψ for any HT-
trace M and any k ∈ [0..λ). This allows us to replace ϕ by ψ and
vice versa in any context, and is the same as requiring that ϕ ↔
ψ is a tautology. Note that this relation, ϕ ≡ ψ, is stronger than
coincidence of models, viz. DHT(ϕ) = DHT(ψ). For instance,
DHT(•>) = DHT(〈>−〉>) = ∅ because models are checked at
the initial situation k = 0 and there is no previous situation at that
point, so DHT(•>) = DHT(⊥). However, in general, •> 6≡ ⊥
since •> is satisfied for any k > 0 (for instance ◦•> 6≡ ◦⊥ but
◦•> ≡ > instead). As with formulas, we say that path expressions
ρ1, ρ2 are equivalent, written ρ1 = ρ2, whenever ‖ρ1‖M = ‖ρ2‖M
for any HT-trace M.

The following equivalences of path expressions allow us to push
the converse operator inside, until it is only applied to τ.

Proposition 1 ([6]) For all path expressions ρ1, ρ2 and ρ and for all
formulas ϕ, the following equivalences hold:

(ρ−)− = ρ (ϕ?)− = ϕ? (ρ∗)− = (ρ−)∗

(ρ1 + ρ2)− = ρ−1 + ρ−2 (ρ1; ρ2)− = ρ−2 ; ρ−1



We say that ϕ is in converse normal form if all occurrences of the
converse operator in ϕ are applied to τ.

We now introduce non-monotonicity by selecting a particular set
of traces that we call temporal equilibrium models. First, given an
arbitrary set S of HT-traces, we define the ones in equilibrium as
follows.

Definition 2 (Temporal Equilibrium/Stable models [6]) Let S be
some set of HT-traces. A total HT-trace 〈T,T〉 ∈ S is an equilib-
rium trace of S iff there is no other 〈H,T〉 ∈ S such that H < T.

If 〈T,T〉 is such an equilibrium trace, we also say that trace T is a
stable trace of S. We further talk about temporal equilibrium or tem-
poral stable models of a theory Γ when S = DHT(Γ), respectively.

We write DEL(Γ, λ) and DEL(Γ) to stand for the temporal equi-
librium models of DHT(Γ, λ) and DHT(Γ) respectively. Note that
stable traces in DEL(Γ) are also LDL-models of Γ and, thus, DEL
is stronger than LDL. Besides, as the ordering relation among traces
is only defined for a fixed λ, it is easy to see the following result:

Proposition 2 ([6]) The set of temporal equilibrium models of Γ can
be partitioned by the trace length λ, that is,

⋃ω
λ=0 DEL(Γ, λ) =

DEL(Γ).

(Linear) Dynamic Equilibrium Logic (DEL) is the non-monotonic
logic induced by temporal equilibrium models of dynamic theories.
We obtain the variants DELω and DELf by applying the correspond-
ing restriction to infinite or finite traces, respectively.

To illustrate non-monotonicity, take the formula:

[(¬h)∗] (¬h→ s) (1)

whose reading is “keep sending an sos (s) while no help (h) is per-
ceived.” Intuitively, [(¬h)∗] behaves as a conditional referring to
any future state after n ≥ 0 repetitions of (¬h?;>). Then, ¬h→ s
checks whether h fails one more time at k = n: if so, it makes s
true again. Without additional information, this formula has a unique
temporal stable model per each length λ satisfying 2(¬h∧ s), that is,
h is never concluded, and so, we repeat s all over the trace. Suppose
we add now the formula 〈>5〉h, that is, h becomes true after five
transitions. Then, there is a unique temporal stable model for each
λ > 5 satisfying:

〈(¬h ∧ s)5;h ∧ ¬s; (¬h ∧ ¬s)∗〉>

Clearly, 2(¬h ∧ s) is not entailed any more (under temporal equilib-
rium models) showing that DEL is non-monotonic.

To conclude this section, we provide an alternative three-valued
characterization of DHT that is particularly useful for formal elab-
orations involving auxiliary atoms. This alternative characterization
relies on the idea of temporal three-valued interpretation in [4] for
the case of TEL and is inspired, in its turn, in the characterization
of HT in terms of Gödel’s G3 logic [16]. Under this orientation, we
deal with three truth values {0, 1, 2} standing for: 2 (or proved true)
meaning satisfaction “here”; 0 (or assumed false) meaning falsity
“there”; and 1 (potentially true) that are formulas assumed true but
not proved. Given an HT-trace M = 〈H,T〉 we define its associated
truth valuations as a pair of mutually recursive functions m(k, ϕ)
and m(k, i, ρ) that assign a truth value in the set {0, 1, 2} to formula
ϕ at time point k ∈ [0..λ) or to the pair (k, i) for path expression ρ,

respectively. The valuation of formulas follows the next rules:

m(k,⊥)
def
= 0

m(k,>)
def
= 2

m(k, a)
def
=


0 if a 6∈ Tk
1 if a ∈ Tk \Hk
2 if a ∈ Hk

for any atom a ∈ A

m(k, [ρ]ψ)
def
= min { imp(m(k, i, ρ),m(i, ψ)) | i ∈ [0..λ) }

where

imp(x, y)
def
=

{
2 if x ≤ y
y otherwise

m(k, 〈ρ〉ψ)
def
= max {min(m(k, i, ρ),m(i, ψ)) | i ∈ [0..λ) }

whereas the function for path expressions is defined as follows:

m(k, j, τ)
def
=

{
2 if j = k + 1

0 otherwise.

m(k, j, ϕ?)
def
=

{
m(k, ϕ) if j = k

0 otherwise.

m(k, j, ρ1 + ρ2)
def
= max(m(k, j, ρ1),m(k, j, ρ2))

m(k, j, ρ1 ; ρ2)
def
= max{min(m(k, i, ρ1),

m(i, j, ρ2)) | i ∈ [0..λ) }
m(k, j, ρ∗)

def
= max{m(k, j, ρn) | for all n ≥ 0}

m(k, j, ρ−)
def
= m(j, k, ρ)

This results in the following three-valued characterisation of HT-
traces in DELf . 5

Theorem 1 Let 〈H,T〉 be a HT-trace of length λ, m its associated
valuation and k ∈ [0..λ):

1. 〈H,T〉, k |= ϕ iff m(k, ϕ) = 2
2. 〈T,T〉, k |= ϕ iff m(k, ϕ) 6= 0

3. (k, j) ∈ ‖ρ‖〈H,T〉 iff m(k, j, ρ) = 2

4. (k, j) ∈ ‖ρ‖〈T,T〉 iff m(k, j, ρ) 6= 0

3 Reduction to temporal logic programs
In this section, we elaborate upon a reduction of arbitrary dynamic
formulas6 into a syntactic subclass called temporal logic programs [9].
A temporal logic program is a conjunction of temporal formulas with a
restricted syntax that, when interpreted under temporal stable models,
have a close relation to rules from disjunctive logic programming.
Temporal logic programs were proved in [9] to constitute a normal
form for TELf (if we allow for auxiliary atoms) and used later on as
a basic syntax for the temporal ASP system telingo [8]. We proceed
next to describe their syntax.

Given a set of propositional variables A, we define the set of
temporal literals as {a,¬a, •a,¬•a, | a ∈ A}. A temporal logic
program is a set formed by three different types of rules:

1. an initial rule is of the form B → A
2. a dynamic rule is of the form ◦̂� (B → A)

5 An extended version of the paper with the proofs is available at http:
//arxiv.org/abs/2002.06916

6 This covers finite dynamic theories, understood as the conjunction of their
formulas.



3. a final rule is of the form � (F→ (B → A))

where B = b1 ∧ · · · ∧ bn (with n ≥ 0) and A = a1 ∨ · · · ∨ am (with
m ≥ 0) and bi and aj are temporal literals in the case of dynamic
rules and regular literals (i.e. {a,¬a | a ∈ A}) in the case of initial
and final rules. We also allow for global rules of the form � (B → A)
that stand for the conjunction of an initial rule B → A and a dynamic
rule ◦̂� (B → A).

Theorem 2 (Normal form) Every dynamic formula γ can be con-
verted into a temporal program being DHTf -equivalent to γ.

To prove the above theorem, we provide a sound transformation from
any dynamic formula γ into a temporal logic program π(γ). As a first
step, we assume that γ is already in converse normal form: this can
be achieved by repeatedly applying the equivalences in Proposition 1.
The reduction of γ into temporal program π(γ) uses an extended
alphabetA+ ⊇ A that additionally contains new atoms `ϕ (aka label)
for formulas ϕ overA that are either subformulas of γ or elaborations
of them. This set of formulas is called the Fisher-Ladner closure [12]
of γ and formally defined below.

Definition 3 (Fisher-Ladner closure [12]) The Fisher-Ladner clo-
sure FL(γ) of a dynamic formula γ (in converse normal form) is a
set of dynamic formulas inductively defined as follows:

1. γ ∈ FL(γ)
2. (ϕ⊗ ψ) ∈ FL(γ) implies ϕ ∈ FL(γ) and ψ ∈ FL(γ),

where ⊗ ∈ {∧,∨,→}
3. If 〈ρ〉ϕ ∈ FL(γ) then ϕ ∈ FL(γ)
4. If [ρ]ϕ ∈ FL(γ) then ϕ ∈ FL(γ)
5. If 〈ψ?〉ϕ ∈ FL(γ) then ψ ∈ FL(γ) and ϕ ∈ FL(γ)
6. If [ψ?]ϕ ∈ FL(γ) then ψ ∈ FL(γ) and ϕ ∈ FL(γ)
7. If 〈ρ1 ; ρ2〉ϕ ∈ FL(γ) then 〈ρ1〉 〈ρ2〉ϕ ∈ FL(γ)
8. If [ρ1 ; ρ2]ϕ ∈ FL(γ) then [ρ1] [ρ2]ϕ ∈ FL(γ)
9. If 〈ρ1 + ρ2〉ϕ ∈ FL(γ) then 〈ρ1〉ϕ ∈ FL(γ) and 〈ρ2〉ϕ ∈

FL(γ)
10. If [ρ1 + ρ2]ϕ ∈ FL(γ) then [ρ1]ϕ ∈ FL(γ) and [ρ2]ϕ ∈ FL(γ)
11. If 〈ρ∗〉ϕ ∈ FL(γ) then 〈ρ〉 〈ρ∗〉ϕ ∈ FL(γ)
12. If [ρ∗]ϕ ∈ FL(γ) then [ρ] 〈ρ∗〉ϕ ∈ FL(γ)

Any set satisfying these conditions is called closed.

Proposition 3 For any dynamic formula γ, its closure FL(γ) is finite.

Thus, given the dynamic formula γ on alphabet A to be translated,
we define the extended alphabet A+ def

= A ∪ {`µ | µ ∈ FL(γ)}. For

convenience, we simply use `ϕ
def
= ϕ if ϕ is >,⊥ or an atom a ∈ A.

As happened with the normal form reduction for TELf in [9],
the translation is done in two phases: we first obtain a temporal
theory containing double implications, and then we unfold them into
temporal rules. We start by defining the temporal theory σ(γ) that
introduces new labels `µ for each formula µ ∈ FL(γ). This theory
contains the formula `γ and, per each label `µ, a set of formulas η(µ)
fixing the label’s truth value. Formally:

σ(γ) = {`γ} ∪ {η(µ) | µ ∈ FL(Γ)}

Table 1 shows the definitions η(µ) for each µ in the closure FL(γ)
depending on the outer modality in the formula.

As an example, take the dynamic formula γ = 〈(p?;>)∗〉 q (which
corresponds to the temporal formula pU q). In the first step, we get

�(`γ ↔ q ∨ `α) (2)

�(F→ (`γ ↔ q)) (3)

µ ∈ FL(γ) η(µ)

〈τ〉ϕ ◦̂�(•`µ ↔ `ϕ) �(F→ ¬`µ)

[τ]ϕ ◦̂�(•`µ ↔ `ϕ) �(F→ `µ)

〈τ−〉ϕ ◦̂�(`µ ↔ •`ϕ) ¬`µ
[τ−]ϕ ◦̂�(`µ ↔ •`ϕ) `µ

〈ϕ?〉ψ �(`µ ↔ `ϕ ∧ `ψ)

[ϕ?]ψ �(`µ ↔ (`ϕ → `ψ))

〈ρ+ ρ′〉ϕ �(`µ ↔ `α ∨ `β) with α = 〈ρ〉ϕ, β = 〈ρ′〉ϕ

[ρ+ ρ′]ϕ �(`µ ↔ `α ∧ `β) with α = [ρ]ϕ, β = [ρ′]ϕ

〈ρ; ρ′〉ϕ η( 〈ρ〉 〈ρ′〉ϕ )

[ρ; ρ′]ϕ η( [ρ] [ρ′]ϕ )

〈ρ∗〉ϕ �(`µ ↔ `ϕ ∨ `α) with α = 〈ρ〉 〈ρ∗〉ϕ
�(F→ (`µ ↔ `ϕ))

[ρ∗]ϕ �(`µ ↔ `ϕ ∧ `α) with α = [ρ] [ρ∗]ϕ

�(F→ (`µ ↔ `ϕ))

Table 1. Normal form translation

where we just used q as its label `q , and α stands for
〈p?;>〉 〈(p?;>)∗〉 q which belongs to FL(γ). The truth of `α is
determined by η(α) which, in the table, is first unfolded into
η(〈p?〉 〈>〉 〈(p?;>)∗〉 q) leading to:

�(`α ↔ p ∧ `β) (4)

with β = 〈>〉 〈(p?;>)∗〉 q also in FL(γ). Notice now that β contains
γ as a subformula, so it can be written as: β = 〈>〉 γ. Then η(β) just
corresponds to the pair of formulas:

◦̂�(•`β ↔ `γ) (5)

�(F→ ¬`β) (6)

and the whole translation amounts to σ(γ) = {`γ} ∪ {(2)− (6)}.
As a second example, consider the formula γ = [(>;>)∗] p mean-

ing that p holds in all even time points (this formula is well-known
not to be LTL representable). The formulas obtained for η(γ) are:

�(`γ ↔ p ∧ `α) (7)

�(F→ (`γ ↔ p)) (8)

with α = [>;>] [(>;>)∗] p and η(α) = η([>] [>] [(>;>)∗)] p) is:

◦̂�(•`α ↔ `β) (9)

�(F→ `α) (10)

with β = [>] [(>;>)∗)] p. Since β is actually [>] γ, we get η(β):

◦̂�(•`β ↔ `γ) (11)

�(F→ `β) (12)

As we have seen, in the general case, formulas in η(µ) are not
temporal rules, since they sometimes contain double implications.
However, they all have the forms ϕ, �ϕ, ◦̂�ϕ or �(F → ϕ), for
some inner propositional formula ϕ formed with temporal literals. For



instance, in (2), the inner ϕ corresponds to the propositional formula
`γ ↔ p ∨ `α. As first shown in [7] propositional formulas in HT
can be reduced to conjunctions of disjunctive rules. In this way, we
can apply HT transformations (as those in [10]) and THT axioms [1]
to eventually obtain a temporal logic program. In the case of (2),
the inner double implication is unfolded into three rules that, after
applying property �(α ∧ β)↔ �α ∧�β, eventually lead to:

�(`γ → q ∨ `α) �(q → `γ) �(`α → `γ)

Given an HT-trace 〈H,T〉def= 〈Hi, Ti〉λi=0, we define its restriction
to alphabetA as 〈H,T〉|A def

= 〈Hi∩A, Ti∩A〉λi=0. Similarly, for any
set S of HT-traces we write S|A to stand for {〈H,T〉|A | 〈H,T〉 ∈
S} as expected.

The following lemma shows that `µ and µ are equivalent:

Lemma 1 Let γ be a dynamic formula over A and let 〈H,T〉 be a
DHTf model of σ(γ) being associated with the three-valuation m.

Then, for any µ ∈ FL(Γ) and any k ∈ [0..λ), we have
m(k, `µ) = m(k, µ).

Theorem 3 For any dynamic formula γ and any length λ, we have

DHT(γ, λ) = DHT(σ(γ), λ)|A.

Corollary 1 Let γ be a dynamic formula over A.
Then, translation σ(γ) is strongly faithful, that is:

DEL(γ ∧ γ′) = DEL(σ(γ) ∧ γ′)|A.

for any arbitrary dynamic formula γ′ over A.

Proposition 4 Translation σ(γ) has a polynomial size with respect
to the size of γ.

4 Extending telingo with dynamic formulas
We have extended the temporal ASP solver telingo7 with dynamic for-
mulas over finite traces. More precisely, the current version supports
negated occurrences of dynamic formula, as in integrity constraints; it
is available at https://github.com/potassco/telingo/
releases/tag/v2.0.0.

To this end, telingo provides (theory) atoms of form ‘&del{ϕ}’
that encapsulate arbitrary dynamic formulas ϕ. Their syntax is given
in Table 2; it is supplied as a theory grammar to the underlying ASP
system clingo [13].8 The one of the dynamic operators [ρ] and 〈ρ〉
follows that of � and 3, respectively, by extending ‘>*’ and ‘>?’
by prepending path expressions ρ separated by a dot, viz. ‘ρ.>*’
and ‘ρ.>?’ . For instance, the dynamic formula 〈(p?;>)∗〉 q from
Section 3 is expressed as

&del{ * (?p ;; &true ) . >? q }

The current restriction to negated dynamic formulas allows for an
easier algorithmic treatment since formulas in the scope of negation
are interpreted as in LDLf (just as negated formulas in HT can be
treated as in classical logic). Although this restriction will be lifted in
a next release, it already supports an agreeable modeling methodol-
ogy for dynamic domain separating action and control theories. The
idea is to model the actual action theory with temporal rules, fixing
static and dynamic laws, while the control theory, enforcing certain

7 Details on the functioning of telingo are given in [8]; its implementation is
available at https://github.com/potassco/telingo.

8 Note that # and & indicate basic ASP and customizable theory concepts.

1#program always.

3{wait; up; down; serve} = 1 :- not &final.
4:- up, at(X), not floor(X+1).
5:- down, at(X), not floor(X-1).

7at(X+1):- ’up, ’at(X).
8at(X-1):- ’down, ’at(X).
9at(X) :- ’at(X), not ’up, not ’down.
10called(X):- ’called(X), #false:’at(X), ’serve.

12:- called(X), &final.

14ready :- called(X), at(X).

16#program initial.

18:- not &del{ *( (*up + *down) ;; ?ready ;; serve)
19;; *wait .>? &final }.

Listing 1. telingo encoding for the elevator problem

(sub)trajectories, is expressed by integrity constraints using dynamic
formulas. This is similar to the pairing of action theories in situation
calculus and Golog programs [20].

Let us illustrate this with the example in Listing 1 that aims at
modeling a simple elevator. This example is borrowed from [20].
The temporal program in Lines 1-14 constitutes the action theory;
it is expressed in TELf . All its rules in the scope of the program
declaration headed by always are thought of as being preceded by
�, that is, they are added as global rules (see beginning of Section 3).
Line 3 tells us that exactly one of the four actions wait , up, down ,
or serve, occurs at any time before the end of the trace. The next
two lines check the preconditions of action up and down . Lines 7-9
provide effect and inertia axioms for the fluent at , which reflects the
current floor of the elevator. Line 10 expresses that a call at a floor
persists unless the floor was served. Line 12 gives the actual goal
condition, requiring that no call remains unserved in the final state.
Line 14 indicates that the elevator is ready to serve, whenever it is at
a floor that it was called to.9

The integrity constraint in Line 18-19 represents the following
dynamic formula:

⊥ ← ¬〈((up∗ + down∗); ready?; serve)∗;wait∗〉F (13)

The purpose of this constraint is to eliminate fruitless wandering
of the elevator. More precisely, it provides a simple control theory
stipulating that the elevator must pick one direction, either up or down,
and move in this direction until it reaches a floor to which it was called,
and serve this floor; this process is repeated an arbitrary number of
times; finally, the elevator may have to wait until the end of the trace.
Note that (13) is posed as an initial temporal rule, as indicated by
the program directive in Line 16. Hence, its path expression must be
matched by a trajectory from the initial to the final state, enforced by
F in (13) and &final in Line 19 in Listing 1, respectively.

For computation, programs as in Listing 1 are treated according
to the translation introduced in Section 3. That is, at the outset, all
dynamic formulas are transformed into temporal rules. Each dynamic
formula γ is recursively rewritten using translation η until the formula
is free of any dynamic constructs. This is accomplished via clingo’s
functionalities for manipulating abstract syntax trees. Then, telingo’s
API allows us to turn the obtained equivalences among temporal
formulas directly into a regular logic program. This involves the

9 The rule in Line 14 only provides an auxiliary atom used in Line 17 below,
and may thus be regarded as not belonging the actual action theory.



#true > true #false ⊥ false
TELf &initial I initial &final F final

’p •p previous p’ ◦p next
<ϕ •ϕ previous >ϕ ◦ϕ next
φ<?ϕ φ S ϕ since φ>?ϕ φU ϕ until
φ<*ϕ φ T ϕ trigger φ>*ϕ φ R ϕ release
<?ϕ �ϕ eventually before >?ϕ 3ϕ eventually afterward
<*ϕ �ϕ always before >*ϕ �ϕ always afterward
<:ϕ •̂ϕ weak previous >:ϕ ◦̂ϕ weak next

DELf ρ.>*ϕ [ρ]ϕ always
ρ.>?ϕ 〈ρ〉ϕ eventually

?ϕ ϕ? test *ρ ρ∗ star
ρ1;;ρ2 ρ1 ; ρ2 sequence ρ1+ρ2 ρ1 + ρ2 choice

Table 2. Past and future temporal operators in telingo and their DELf and TELf counterparts

extension of predicates with time variables as well as the introduction
of variables and rules reflecting the successive lengthening of finite
traces (cf. [8]; temporal rules are treated analogously). This is needed
to be able to solve temporal logic programs incrementally. That is,
traces of increasing length are investigated by incrementally extending
the underlying logic program. Once a model is found, the search stops
and the corresponding traces are provided as output. This amounts to
computing a nonempty set DEL(P, λ) of stable traces for the smallest
λ ≥ 0 and some temporal program P at hand.

Finally, let us examine the impact of the dynamic formula in List-
ing 1 on the trajectories induced by the action theory as well as solver
performance. Although we believe that (13) allows us to significantly
reduce the number of trajectories induced by the action theory in
lines 1-14, its impact on search is less clear cut because it comes with
an augmentation of the number of constraints in the solver.

To analyze this, we consider the following simple elevator prob-
lems: We look at n = 5, 7, 9, 11 floors, respectively, and initially
place a call at the ground and top floor while the elevator sits on the
middle floor. The goal is to have all floors served at the end of a trace
(cf. Line 12). This can be expressed by the following facts.

#program always. floor(1..n).

#program initial. at((n+1)/2). called(1;n).

We run each instance with different horizons, beginning with the
minimum lengths of satisfiable traces, viz. b3n + 1c/2, and gradually
extending this by 1 to 4 to introduce more room for redundancies.
Our experiments were run with telingo 2-α (based on clingo 5.4.1)
and obtained without imposing any time or memory restrictions. Our
results are summarized in Table 3. Each entry, a/c, contrasts statistics
obtained from the pure action theory in Line 1-14, viz. a, with the
combination of action and control theory in Line 1-19, c.

For each setting, we give the number of traces, number of choices
during search, and the number of constraints in the solver (after
all translations, preprocessing etc.). First of all, we notice that the
addition of (13) yields exactly two valid traces, no matter what setting
is considered. In the first trace, the elevator goes first up all the way
and then straight down, and vice versa in the second trace. Both traces
are actually minimal as witnessed throughout the first column. This is
because the elevator is placed at the mid floor, otherwise one would be
shorter than the other. Next, we observe how drastically the number of
trajectories and the underlying search increases for the action theories

with each extension of the horizon. For instance, for 11 floors and an
horizon of 19 (11+5+4) the mere action theory admits 200900 valid
traces, among which only two are conformant with (13). Looking
at the underlying search, it is amazing how radically (13) trims the
search, in that only nine choices are needed to find the two traces.
This is also astonishing since its addition led to an increase from 7042
to 9026 constraints in the solver. Similar yet less extreme observations
can be made in all remaining settings.

To get an idea on runtime, we conducted the same experiment on
the larger instance with 71 floors (λ=107), since the ones obtained
for 5 to 11 floors are negligible. Finding the first model without the
dynamic constraint takes 19.4 sec, including 17.8 sec of solving, while
adding the dynamic constraint yields a runtime of only 2.2 sec with
0.01 sec of solving. As with filtering traces, it seems that the dynamic
constraint greatly contributes to guiding the solver.

Clearly, our empirical analysis is rather limited and can only in-
dicate the potential impact of dynamic formulas on reducing search
efforts for finite traces. Nonetheless, we observe that adding the dy-
namic formula in (13) not only (sometimes drastically) reduces the
number of feasible traces but also significantly cuts down the number
of choices despite its non-negligible increase of the resulting problem.

5 Discussion

We have elaborated upon the computational foundations of the Dy-
namic logic of Here-and-There and its equilibrium traces, viz. DHTf
and DELf [6], in order to design and implement an expressive ASP
system for modeling and solving dynamic domains. Our approach
was motivated by the methodology of separating action and control
theories, similar to what is done in Situation Calculus and Golog [20].

To this end, we carved out a normal form for dynamic formulas in
DELf that consists of its fragment corresponding to temporal logic
programs. The translation of dynamic formulas into normal form
heavily relies on the introduction of auxiliary variables. This allows
us to keep the size of the resulting temporal program polynomial in
that of the original formula. And moreover it allows us to overcome
the common intranslatability of dynamic into temporal formulas when
keeping the same language. Our proof of the normal form result relies
on a novel characterization of DELf in terms of a three-valued logic.

The reduction of dynamic formulas to temporal logic programs
enabled us to implement dynamic expression on top of the temporal



λ (horizon) b3n + 1c/2 ·+ 1 ·+ 2 ·+ 3 ·+ 4 indicators
n (floors)

5
2/2 34/2 340/2 2618/2 17204/2 models

141/2 295/7 660/7 3183/8 19209/11 choices
1119/1929 1402/2306 1717/2715 2064/3156 2443/3629 constraints

7
2/2 46/2 598/2 5796/2 46690/2 models

453/2 842/5 1758/6 7917/7 49982/8 choices
2016/3092 2391/3561 2798/4062 3237/4595 3708/5160 constraints

9
2/2 58/2 928/2 10846/2 103530/2 models

1560/2 2206/7 3437/7 15171/7 112964/9 choices
3181/4523 3648/5084 4147/5677 4678/6302 5241/6959 constraints

11
2/2 70/2 1330/2 18200/2 200900/2 models

5057/2 7896/6 7043/7 26276/8 219391/9 choices
4614/6222 5173/6875 5764/7560 6387/8277 7042/9026 constraints

Table 3. Summary of experimental results in the elevator domain

ASP solver telingo. Since it constitutes a true extension of the ASP
system clingo, we obtain a full-fledged modeling language extended
by temporal and dynamic constructs. We provided a limited empir-
ical analysis demonstrating the potential impact of using dynamic
formulas to select traces among the ones induced by an associated
temporal logic program. This is how we see the interaction of control
and action theories in our framework.

To the best of our knowledge, telingo provides the first ASP system
augmented with constructs from dynamic and temporal logics. Encod-
ings for bounded model checking in LTL over infinite traces were
given in [18]. This was extended to certain action theories expressed
with dynamic operators in [15]. A key feature of these encodings is to
capture loops inducing infinite traces. This is avoided in [5], where
infinite traces in TEL are captured by Büchi automata via model
checking. Encodings of Golog in ASP were proposed in [24, 23].
This amounts to directly implementing a filter on traces, as done in
Listing 1, without any logical underpinnings. In [6], we provided a
different translation from converse-free dynamic formulas in DELf
to propositional formulas in HT, which themselves can be translated
into an equivalent disjunctive logic program (cf. [10]). More precisely,
a dynamic formula γ is translated in [6] into a logic program (γ)i.
This translation differs from the current one, σ(γ), in several aspects.
First, the target language is different: while σ(γ) produces a temporal
logic program, (γ)i directly obtains a propositional logic program
corresponding to some fixed time point i. This is because σ(γ) is
thought for using telingo as a backend, along with its incremental
solving mode, whereas (γ)i was thought for the direct use of a spe-
cific trace length. Thus, the advantage of (γ)i is that it does not pass
through temporal expressions from telingo as an intermediate step.
On the other hand, its disadvantages are that γ cannot contain the
converse operator and that (γ)i can be exponential, since it makes use
of distributivity for normalization both of path expressions and of for-
mulas into logic programs. Note that σ is applicable to any arbitrary
dynamic formula γ and takes polynomial time and space. Its main
disadvantage is that, in the general case, the resulting temporal logic
program may not be amenable for incremental ASP computation. To
do so, an extra condition is required: (non-constraint) temporal rules
must additionally be present-centered, that is, conditions may refer
to the past or present of head expressions, but not to their future. In
the general case, σ(γ) may not satisfy this requirement: for instance,
one of the directions of (10) yields the rule ◦̂�(•`α ← `β), so the

head •`α depends on a condition `β in its future. Fortunately, in the
case of negated formulas σ(¬ γ) = σ(⊥ ← γ), as the ones currently
implemented in telingo, this limitation does not apply, since we can
exclusively use constraints for the translation. Our future work aims
at a full integration of dynamic formulas into ASP and thus telingo.
In particular, we will study the more general case in which dynamic
expressions can be used in non-constraint rules. As we did for tem-
poral theories and the so-called past-future form (see [6]), we plan to
identify a similar syntactic condition for a dynamic formula γ so the
resulting temporal program σ(γ) is guaranteed to be present-centered.
It will be interesting to experiment with encodings deriving dynamic
formulas rather than merely testing them.
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A Proofs
Proposition 5 The valuations of derived formulas and path expres-
sions correspond to:

m(k, ϕ ∧ ψ)
def
= min{m(k, ϕ),m(k, ψ)}

m(k, ϕ ∨ ψ)
def
= max}m(k, ϕ),m(k, ψ)}

m(k, ϕ→ ψ)
def
=

{
2 if m(k, ϕ) ≤m(k, ψ)

m(k, ψ) otherwise

m(k,¬ϕ)
def
=

{
2 if m(k, ϕ) = 0

0 otherwise

m(k, I) def
=

{
2 if k = 0

0 if k > 0

m(k, •ϕ)
def
=

{
0 if k = 0

m(k − 1, ϕ) if k > 0

m(k, •̂ϕ)
def
=

{
2 if k = 0

m(k − 1, ϕ) if k > 0

m(k, ϕ S ψ)
def
= max

{
min{m(j, ψ),m(i, ϕ) | i ∈ [j + 1..k]}
| j ∈ [0..k]

}
m(k, ϕ T ψ)

def
= min

{
max{m(j, ψ),m(i, ϕ) | i ∈ [j + 1..k]}
| j ∈ [0..k]

}
m(k,�ϕ)

def
= min{m(i, ϕ) | i ∈ [0..k]}

m(k,�ϕ)
def
= max{m(i, ϕ) | i ∈ [0..k]}

m(k,F)
def
=

{
2 if k + 1 = λ

0 if k + 1 < λ

m(k, ◦ϕ)
def
=

{
0 if k + 1 = λ

m(k + 1, ϕ) if k + 1 < λ

m(k, ◦̂ϕ)
def
=

{
2 if k + 1 = λ

m(k + 1, ϕ) if k + 1 < λ

m(k, ϕU ψ)
def
= max

{
min{m(j, ψ),m(i, ϕ) | i ∈ [k..j)}
| j ∈ [k..λ)

}
m(k, ϕ R ψ)

def
= min

{
max{m(j, ψ),m(i, ϕ) | i ∈ [k..j)}
| j ∈ [k..λ)

}
m(k,�ϕ)

def
= min{m(i, ϕ) | i ∈ [k..λ)}

m(k,3ϕ)
def
= max{m(i, ϕ) | i ∈ [k..λ)}

m(k, j, ρ0)
def
=

{
2 if j = k

0 otherwise

m(k, j, ρn+1)
def
= max {min(m(k, i, ρ),m(i, j, ρn)) | i ∈ [k..j]}

Proof of Proposition 1. By induction on the complexity of the for-
mula. For the cases of > and ⊥, note that

• 〈H,T〉, k |= >, 〈T,T〉, k |= > and m(k,>) = 2 6= 0.
• 〈H,T〉, k 6|= ⊥, 〈T,T〉, k 6|= ⊥ and m(k,⊥) = 0.

For the case of a propositional variable p, it is easy to check that

• 〈H,T〉, k |= p iff p ∈ Hk iff m(k, p) = 2;
• 〈T,T〉, k |= p iff p ∈ Tk iff m(k, p) 6= 0.

For the modal operators, we need to proceed by double induction.



• Case ϕ = 〈ρ〉ψ:

– Item 1: From left to right, if 〈H,T〉, k |= 〈ρ〉ψ,
so (k, j) ∈ ‖ρ‖〈H,T〉 and 〈H,T〉, j |= ψ. By in-
duction we get m(j, ψ) = 2 and m(k, j, ρ) =
2. Therefore, min{m(k, j, ρ),m(j, ψ)} = 2. Hence,
max{min{m(k, j, ρ),m(j, ψ)} | 0 ≤ j < λ} = 2. By the
satisfaction relation we get m(k, 〈ρ〉ψ) = 2.
Conversely, if m(k, 〈ρ〉ψ) = 2 then, by definition, there exists
0 ≤ j < λ such that min{m(k, j, ρ),m(j, ψ)} = 2. There-
fore, both m(k, j, ρ) = 2 and m(j, ψ) = 2. By induction,
〈H,T〉, j |= ψ and (k, j) ∈ ‖ρ‖〈H,T〉. By the satisfaction
relation, Therefore, 〈H,T〉, k |= 〈ρ〉ψ.

– Item 2: From left to right, if 〈T,T〉, k |= 〈ρ〉ψ, then
there exists (k, j) ∈ ‖ρ‖〈T,T〉 and 〈T,T〉, j |= ψ.
By induction we get m(j, ψ) 6= 0 and m(k, j, ρ) 6=
0 Therefore, min{m(k, j, ρ),m(j, ψ)} 6= 0. Hence,
max{min{m(k, j, ρ),m(j, ψ)} | 0 ≤ j < λ} 6= 0. By the
(three-valued) satisfaction relation we get m(k, 〈ρ〉ψ) 6= 0.
From right to left, if m(k, 〈ρ〉ψ) 6= 0 then there exists 0 ≤
j < λ such that min{m(k, j, ρ),m(j, ψ)} 6= 0. From this we
conclude that m(j, ψ) 6= 0 and m(k, j, ρ) 6= 0. By induction
〈T,T〉, j |= ψ and (k, j) ∈ ‖ρ‖〈T,T〉. By the satisfaction
relation we get 〈T,T〉, k |= 〈ρ〉ψ.

• Case ϕ = [ρ]ψ:

– Item 1: From left to right, assume by contra-
diction that m(k, [ρ]ψ) 6= 2. This means that
min{imp(m(k, j, ρ),m(j, ψ)) | 0 ≤ j < λ} 6= 2. Therefore
there exists 0 ≤ j < λ such that imp(m(k, j, ρ),m(j, ψ)) 6=
2. By definition, m(k, j, ρ) > m(j, ψ) 6= 2. We consider all
cases:

∗ If m(j, ψ) = 1 6= 0 then m(k, j, ρ) = 2. By induction on
ψ and ρ we get that 〈H,T〉, j 6|= ψ and (k, j) ∈ ‖ρ‖〈H,T〉.
From the satisfaction relation we get 〈H,T〉, k 6|= [ρ]ψ: a
contradiction.

∗ m(j, ψ) = 0 then m(k, j, ρ) ∈ {1, 2} (so m(k, j, ρ) 6= 0).
By induction hypothesis (k, j) ∈ ‖ρ‖〈T,T〉 and 〈T,T〉, j 6|=
ψ. Therefore, 〈T,T〉, k 6|= [ρ]ψ.’

From right to left, let us assume by contradiction that
〈H,T〉, k 6|= [ρ]ψ and let us consider the following cases:

∗ There exists (k, j) ∈ ‖ρ‖〈H,T〉 and 〈H,T〉, j 6|= ψ. By
induction m(k, j, ρ) = 2 and m(j, ψ) 6= 2. Therefore,
imp(m(k, j, ρ),m(j, ψ)) = m(j, ψ) 6= 2. By definition,
min{imp(m(k, j, ρ),m(j, ψ)) | 0 ≤ j < λ} 6= 2. There-
fore m(k, [ρ]ψ) 6= 2: a contradiction.

∗ There exists (k, j) ∈ ‖ρ‖〈T,T〉 and 〈T,T〉, j 6|= ψ. By
induction m(k, j, ρ) 6= 0 and m(j, ψ) = 0. Therefore,
imp(m(k, j, ρ),m(j, ψ)) = m(j, ψ) = 0. From this it fol-
lows that min{imp(m(k, j, ρ),m(j, ψ)) | 0 ≤ j < λ} = 0.
By the satisfaction relation we get m(k, [ρ]ψ) = 0 6= 2: a
contradiction.

In any case we get a contradiction.

– Item 2: From left to right, assume by contradiction that
m(k, [ρ]ψ) = 0. Therefore min{imp(m(k, j, ρ),m(j, ψ)) |
0 ≤ j < λ} = 0. This means that there exists 0 ≤ j < λ
such that imp(m(k, j, ρ),m(j, ψ)) = m(j, ψ) = 0. Hence,
m(k, j, ρ) 6= 0 and m(j, ψ) = 0. By induction on ρ and ψ we

conclude that 〈T,T〉, j 6|= ψ and (k, j) ∈ ‖ρ‖〈T,T〉. By the
satisfaction relation it follows 〈T,T〉, k 6|= [ρ]ψ: a contradic-
tion.
From right to left, assume by contradiction that 〈T,T〉, k 6|=
[ρ]ψ. Therefore, there exists (k, j) ∈ ‖ρ‖〈T,T〉 and
〈T,T〉, j 6|= ψ. By induction, m(k, j, ρ) 6= 0 and m(j, ψ) =
0. This means that imp(m(k, j, ρ),m(j, ψ)) = m(j, ψ) = 0.
As a consequence, min{imp(m(k, j, ρ),m(j, ψ)) | 0 ≤ j <
λ} = 0, so m(k, [ρ]ψ) = 0: a contradiction.

In order to prove items 3 and 4 we proceed by induction on ρ.

• ρ = τ:

– Item 3: from left to right, if (k, j) ∈ ‖τ‖〈H,T〉 then j = k+ 1.
Therefore, m(k, j, τ) = 2. Conversely, if m(k, j, τ) = 2 then
j = k + 1. By definition, (k, j) ∈ ‖τ‖〈H,T〉.

– Item 4: from left to right, if (k, j) ∈ ‖τ‖〈T,T〉 then j = k+ 1.
Therefore, m(k, j, τ) = 2 6= 0. Conversely, if m(k, j, τ) 6= 0

then j = k + 1. By definition (k, j) ∈ ‖τ‖〈T,T〉.
• ρ = ϕ?:

– Item 3: from left to right, if (k, j) ∈ ‖ϕ?‖〈H,T〉 then
j = k and 〈H,T〉, k |= ϕ. By induction on ϕ it fol-
lows that m(k, ϕ) = 2 so m(k, j, ϕ?) = 2. Conversely, if
m(k, j, ϕ?) = 2 then j = k and m(k, ϕ) = 2. By induction
on ϕ we get 〈H,T〉, k |= ϕ so (k, j) ∈ ‖ϕ?‖〈H,T〉.

– Item 4: from left to right, if (k, j) ∈ ‖ϕ?‖〈T,T〉 then j =
k and 〈T,T〉, k |= ϕ. By induction on ϕ, m(k, ϕ) 6= 0 so
m(k, j, ϕ?) 6= 0. Conversely, if m(k, j, ϕ?) 6= 0 then j = k
and m(k, ϕ) 6= 0. By induction on ϕ we get 〈T,T〉, k |= ϕ so
(k, j) ∈ ‖ϕ?‖〈T,T〉.

• ρ = ρ1 + ρ2:

– Item 3: from left to right, if (k, j) ∈ ‖ρ1 + ρ2‖〈H,T〉

then either (k, j) ∈ ‖ρ1‖〈H,T〉 or (k, j) ∈ ‖ρ2‖〈H,T〉.
By induction on ρ1 and ρ2 we get that either
m(k, j, ρ1) = 2 or m(k, j, ρ2) = 2. There-
fore max{m(k, j, ρ1),m(k, j, ρ2)} = 2, so
m(k, j, ρ1 + ρ2) = 2. Conversely, if m(k, j, ρ1 + ρ2) = 2
then max{m(k, j, ρ1),m(k, j, ρ2)} = 2, so either
m(k, j, ρ1) = 2 or m(k, j, ρ2) = 2. By induction hypothesis
we get that either (k, j) ∈ ‖ρ1‖〈H,T〉 or (k, j) ∈ ‖ρ2‖〈H,T〉,
so (k, j) ∈ ‖ρ1 + ρ2‖〈H,T〉.

– Item 4: from left to right, if (k, j) ∈ ‖ρ1 + ρ2‖〈T,T〉

then either (k, j) ∈ ‖ρ1‖〈T,T〉 or (k, j) ∈ ‖ρ2‖〈T,T〉.
By induction on ρ1 and ρ2 we get that either
m(k, j, ρ1) 6= 0 or m(k, j, ρ2) 6= 0. There-
fore max{m(k, j, ρ1),m(k, j, ρ2)} 6= 0, so
m(k, j, ρ1 + ρ2) 6= 0. Conversely, if m(k, j, ρ1 + ρ2) 6= 0
then max{m(k, j, ρ1),m(k, j, ρ2)} 6= 0, so either
m(k, j, ρ1) 6= 0 or m(k, j, ρ2) 6= 0. By induction on
ρ1 and ρ2 we get that either (k, j) ∈ ‖ρ1‖〈T,T〉 or
(k, j) ∈ ‖ρ2‖〈T,T〉, so (k, j) ∈ ‖ρ1 + ρ2‖〈T,T〉.

• ρ = ρ1; ρ2:

– Item 3: from left to right, if (k, j) ∈ ‖ρ1; ρ2‖〈H,T〉 then there
exists i ∈ [0..λ) such that (k, i) ∈ ‖ρ1‖〈H,T〉 and (i, j) ∈
‖ρ2‖〈H,T〉. By induction we get that m(k, i, ρ1) = 2 and
m(i, j, ρ2) = 2. Therefore min{m(k, i, ρ1),m(i, j, ρ2)} =



2. By definition m(k, j, ρ1; ρ2) = 2. Conversely, if
m(k, j, ρ1; ρ2) = 2 then there exists i ∈ [0..λ) such
that min{m(k, i, ρ1),m(i, j, ρ2)} = 2. This means that
m(k, i, ρ1) = 2 and m(i, j, ρ2) = 2. By induction hypoth-
esis (k, i) ∈ ‖ρ1‖〈H,T〉 and (i, j) ∈ ‖ρ2‖〈H,T〉. By definition
(k, j) ∈ ‖ρ1; ρ2‖〈H,T〉.

– Item 4: from left to right, if (k, j) ∈ ‖ρ1; ρ2‖〈T,T〉 then there
exists i ∈ [0..λ) such that (k, i) ∈ ‖ρ1‖〈T,T〉 and (i, j) ∈
‖ρ2‖〈T,T〉. By induction we get that m(k, i, ρ1) 6= 0 and
m(i, j, ρ2) 6= 0. Therefore min{m(k, i, ρ1),m(i, j, ρ2)} 6=
0. By definition m(k, j, ρ1; ρ2) 6= 0. Conversely, if
m(k, j, ρ1; ρ2) 6= 0 then there exists i ∈ [0..λ) such
that min{m(k, i, ρ1),m(i, j, ρ2)} 6= 0. This means that
m(k, i, ρ1) 6= 0 and m(i, j, ρ2) 6= 0. By induction hypoth-
esis (k, i) ∈ ‖ρ1‖〈T,T〉 and (i, j) ∈ ‖ρ2‖〈T,T〉. By definition
(k, j) ∈ ‖ρ1; ρ2‖〈T,T〉.

• ρ = ρn: We proceed by induction on n in its turn. For n = 0 we
have that (k, j) ∈ ‖ρ0‖〈H,T〉 iff k = j iff m(k, j, ρ0) = 2.
Suppose proved it up to n ≥ 0. Then, (k, j) ∈ ‖ρn+1‖〈H,T〉 is
equivalent to:

∃i s.t. i ∈ [0..λ) : (k, i) ∈ ‖ρ‖〈H,T〉 and (i, j) ∈ ‖ρn‖〈H,T〉

by structural induction for ρ and induction on n this is equivalent
to:

∃i s.t. i ∈ [0..λ) : m(k, i, ρ) = 2 and m(i, j, ρn) = 2
iff ∃i s.t. i ∈ [0..λ) : min(m(k, i, ρ),m(i, j, ρn)) = 2
iff max{min{m(k, i, ρ),m(i, j, ρn)} | i = k..j} = 2
iff m(k, i, ρn+1) = 2

The case for (k, j) ∈ ‖ρn‖〈T,T〉 iff m(k, j, ρn) 6= 0 is analogous.
• ρ = ρ∗:

(k, j) ∈ ‖ρ∗‖〈H,T〉

iff ∃n ≥ 0 s.t. (k, j) ∈ ‖ρn‖〈H,T〉
iff ∃n ≥ 0 s.t. m(k, j, ρn) = 2 (IH)
iff max{m(k, j, ρn) | n ≥ 0} = 2
iff m(k, j, ρ∗) = 2

The case for (k, j) ∈ ‖ρ∗‖〈T,T〉 iff m(k, j, ρ∗) 6= 0 is analogous.

Proposition 6 The following expressions are DHTf -valid

[ρ1 + ρ2]ϕ ↔ [ρ1]ϕ ∧ [ρ2]ϕ (14)

〈ρ1 + ρ2〉ϕ ↔ 〈ρ1〉ϕ ∨ 〈ρ2〉ϕ (15)

[ρ1; ρ2]ϕ ↔ [ρ1] [ρ2]ϕ (16)

〈ρ1; ρ2〉ϕ ↔ 〈ρ1〉 〈ρ2〉ϕ (17)

[ρ∗]ϕ ↔ ϕ ∧ [ρ] [ρ∗]ϕ (18)

F → ([ρ∗]ϕ↔ ϕ) (19)

〈ρ∗〉ϕ ↔ ϕ ∨ 〈ρ〉 〈ρ∗〉ϕ (20)

F → (〈ρ∗〉ϕ↔ ϕ) (21)

〈ψ?〉ϕ ↔ ψ ∧ ϕ (22)

[ψ?]ϕ ↔ (ψ → ϕ) (23)

◦̂ϕ ↔ [τ]ϕ (24)

◦ϕ ↔ 〈τ〉ϕ (25)

•̂ϕ ↔ [τ−]ϕ (26)

•ϕ ↔ 〈τ−〉ϕ (27)

Proof of Lemma 3. Take the DHTf -trace 〈H′,T′〉 whose three val-
ued interpretation m′ satisfies:

m′(k, `ϕ) = m(k, ϕ)

for any formula ϕ over A and for all i ∈ [k..λ). When ϕ is an atom
a ∈ A then m′(k, a) = m′(k, `a) = m(k, a), which implies that
both valuations coincide for atoms, and so, 〈H′,T′〉|A = 〈H,T〉. It
remains to be shown that 〈H′,T′〉 |= σ(Γ), which is equivalent to

〈H′,T′〉 |= {`γ | γ ∈ Γ} ∪ {η(µ) | µ ∈ FL(Γ)}
⇔ 〈H′,T′〉 |= {`γ | γ ∈ Γ} and 〈H′,T′〉 |= {η(µ) | µ ∈ FL(Γ)}

The first satisfaction relation follows directly from the definition
of 〈H′,T′〉 since m′(0, `γ) = 2 iff m(0, γ) = 2 and we had that
〈H,T〉 is a model of Γ. For the second part, we consider the following
cases depending on the structure of the subformula µ:

1. For µ = 〈τ〉ϕ we have two formulas in η(µ)

• For the formula ◦̂�(•`µ ↔ `ϕ), the equivalence must be satis-
fied for any k ∈ [1..λ) ( λ = 1 being trivial). Then,

m′(k, •`µ) = m′(k − 1, `µ) = m(k − 1, µ)

= m(k − 1, 〈τ〉ϕ) = m(k, ϕ) = m′(k, `ϕ)

• For the second formula, �(F→ ¬`µ) we get the following

2 = m′(0,�(F→ ¬`µ)) = m′(λ− 1,F→ ¬`µ)

= m′(λ− 1,¬`µ).

Note on the other side that, 0 = m(λ − 1, 〈τ〉ϕ) = m(λ −
1, µ) = m′(λ− 1, `µ). Therefore, m′(λ− 1,¬`µ) = 2.

2. For µ = [τ]ϕ we have two formulas in η(µ). For the formula
◦̂�(•`µ ↔ `ϕ) we refer the reader to the case of 〈τ〉ϕ. For the
second formula, �(F→ `µ), we present the proof below:

m′(0,�(F→ `µ)) = m′(λ− 1,F→ `µ) = m′(λ− 1, `µ)

= m(λ− 1, µ) = m(λ− 1, [τ]ϕ).

3. For µ = 〈τ−〉ϕ: we have two formulas in η(µ):

- For the formula ◦̂�(`µ ↔ •`ϕ) note that the prefix ◦̂� means
that the double implication must be satisfied for any k ∈ [1..λ)
and, moreover, that this is trivially true when λ = 1. So, we
have to prove m′(k, `µ) = m′(k, •`ϕ) for all k = 1..n and
may assume n > 0. The proof can be obtained as follows:

m′(k, `µ) = m(k, µ) = m(k, 〈τ−〉ϕ)
(27)
= m(k, •ϕ)

= m(k − 1, ϕ) = m(k − 1, `ϕ) = m(k, •`ϕ).

- For satisfying the formula ¬`µ, this is the same than requiring
m′(0, `µ) = 0 and this follows from

m′(0, `µ) = m(0, µ) = m(0, 〈τ−〉ϕ) = 0

4. For µ = [τ−]ϕ we have two formulas in η(µ). For the formula
◦̂�(`µ ↔ •`ϕ) we refer the reader to the case of 〈τ−〉ϕ. For
the second formula, `µ, note that m′(0, `µ) = m(0, µ) = 2 by
definition.



5. For µ = 〈ψ?〉ϕ we have η(µ) = �(`µ ↔ `ϕ ∧ `ψ) and so,
〈H′,T′〉 |= η(µ) amounts to proving m′(k, `µ) = m′(k, `ϕ ∧
`ψ) for all k ∈ [0..λ). In this case we have that

m′(k, `µ) = m(k, µ) = m(k, 〈ψ?〉ϕ)
(22)
= m(k, ψ ∧ ϕ)

= min{m(k, ψ),m(k, ϕ)}
= min{m′(k, `ψ),m′(k, `ϕ)}
= m′(k, `ψ ∧ `ϕ).

6. For µ = [ψ?]ϕwe have that η(µ) = �(`µ ↔ (`ψ → `ϕ)) and so,
〈H′,T′〉 |= η(µ) amounts to proving m′(k, `µ) = m′(k, `ψ →
`ϕ) for all k ∈ [0..λ). In this case we have

m′(k, `µ) = m(k, µ) = m(k, [ψ?]ϕ)
(23)
= m(k, ψ → ϕ)

=

{
2 if m(k, ψ) ≤m(k, ϕ)

m(k, ϕ) otherwise

=

{
2 if m′(k, `ψ) ≤m′(k, `ϕ)

m′(k, `ϕ) otherwise

= m′(k, `ψ → `ϕ).

7. For µ = 〈ρ1 + ρ2〉ϕ we have η(µ) = �(`µ ↔ `α ∨ `β) (with
α = 〈ρ1〉ϕ and β = 〈ρ2〉ϕ) and so, 〈H′,T′〉 |= η(µ) amounts
to proving m′(k, `µ) = m′(k, `α ∨ `β) for all k ∈ [0..λ). In this
case we have

m′(k, `µ) = m(k, µ) = m(k, 〈ρ1 + ρ2〉ϕ)

(15)
= m(k, 〈ρ1〉ϕ ∨ 〈ρ2〉ϕ)

= max{m(k, 〈ρ1〉ϕ),m(k, 〈ρ2〉ϕ)}
= max{m(k, α),m(k, β)}
α,β∈FL(µ)

= max{m′(k, `α),m′(k, `β)}
= m′(k, `α ∨ `β)

8. For µ = [ρ1 + ρ2]ϕ we have η(µ) = �(`µ ↔ `α ∧ `β) (with
α = [ρ1]ϕ and β = [ρ2]ϕ) and so, 〈H′,T′〉 |= η(µ) amounts to
proving m′(k, `µ) = m′(k, `α ∧ `β) for all k ∈ [0..λ). In this
case we have

m′(k, `µ) = m(k, µ) = m(k, [ρ1 + ρ2]ϕ)

(14)
= m(k, [ρ1]ϕ ∧ [ρ2]ϕ)

= min{m(k, [ρ1]ϕ),m(k, [ρ2]ϕ)}
= min{m(k, α),m(k, β)}
α,β∈FL(µ)

= min{m′(k, `α),m′(k, `β)}
= m′(k, `α ∧ `β)

9. For µ = 〈ρ1; ρ2〉ϕ, 〈H′,T′〉 |= η(µ) amounts to proving
m′(k, `µ) = m′(k, `α), for k ∈ [0..λ), with α = 〈ρ1〉 〈ρ2〉ϕ:

m′(k, `µ) = m(k, µ) = m(k, 〈ρ1; ρ2〉ϕ)
(17)
= m(k, 〈ρ1〉 〈ρ2〉ϕ)

= m(k, α)
α∈FL(µ)

= m′(k, `α)

10. For µ = [ρ1; ρ2]ϕ, 〈H′,T′〉 |= η(µ) amounts to proving
m′(k, `µ) = m′(k, `α), for k ∈ [0..λ), with α = [ρ1] [ρ2]ϕ:

m′(k, `µ) = m(k, µ) = m(k, [ρ1; ρ2]ϕ)
(16)
= m(k, [ρ1] [ρ2]ϕ)

= m(k, α)
α∈FL(µ)

= m′(k, `α)

11. For µ = 〈ρ∗〉ϕ we have two formulas in η(µ).

• For the formula �(`µ ↔ `ϕ ∨ `α, where α = 〈ρ〉 〈ρ∗〉µ, it
amounts to show that m′(k, `µ) = m′(k, `ϕ ∨ `α) for all
k ∈ [0..λ):

m′(k, `µ) = m(k, µ) = m(k, 〈ρ∗〉ϕ)
(20)
= m(k, ϕ ∨ 〈ρ〉 〈ρ∗〉ϕ)

= max{m(k, ϕ),m(k, α)}
α∈FL(µ)

= max{m′(k, `ϕ),m′(k, `α)}
= m′(k, `ϕ ∨ `α).

• For the formula �(F→ (`µ ↔ `ϕ)) the proof amounts to prove
that m′(λ− 1, `µ) = m′(λ− 1, `ϕ). We show this below.

m′(λ− 1, `µ) = m(λ− 1, µ) = m(λ− 1, 〈ρ∗〉ϕ)

(21)
= m(λ− 1, ϕ) = m′(λ− 1, `ϕ).

12. For µ = [ρ∗]ϕ we have two formulas in η(µ).

• For the formula �(`µ ↔ `α ∧ `β , where α = [ρ] [ρ∗]µ, it
amounts to show that m′(k, `µ) = m′(k, `ϕ ∧ `α) for all
k ∈ [0..λ):

m′(k, `µ) = m(k, µ) = m(k, [ρ∗]ϕ)
(19)
= m(k, ϕ ∧ [ρ] [ρ∗]ϕ)

= min{m(k, ϕ),m(k, α)}
α∈FL(µ)

= min{m′(k, `ϕ),m′(k, `α)}
= m′(k, `ϕ ∧ `α).

• For the formula �(F→ (`µ ↔ `ϕ)), we refer the reader to the
previous case (but using (19) instead).

Proof of Lemma 1. We proceed by structural induction on µ.

1. If µ is a propositional variable p,⊥ or>, the proof is trivial because
`µ = µ by definition.

2. If µ = 〈τ〉ϕ, we divide the proof in two cases:

- If k = λ− 1 we use the second formula in η(µ). It follows that

2 = m(λ− 1,F→ ¬`µ) = m(λ− 1,¬`µ)

iff m(λ− 1, `µ) = 0 = m(λ− 1, 〈τ〉ϕ).

- If 0 ≤ k < λ − 1 we can apply the first formula in η(µ) that
guarantees m(j, •`µ) = m(j, `ϕ) for all j = 1..λ − 1. In
particular, we can take j = k and so:

m(k, `µ) = m(k + 1, •`µ)
η(µ)
= m(k + 1, `ϕ)

IH
= m(k + 1, ϕ) = m(k, ◦ϕ)

(25)
= m(k, 〈>〉ϕ).

3. If µ = [τ]ϕ, we consider two cases



• k = λ − 1: on one side we take the second formula of η(µ)
to conclude that m(λ− 1, `µ) = 2 and, by definition, m(λ−
1, µ) = 2.

• if 0 ≤ k < λ− 1 we refer the reader to the previous case.

4. If µ = 〈τ−〉ϕ we divide into two cases:

- If k = 0 we directly use the second formula in η(µ) to conclude

2 = m(0,¬`µ) iff m(0, `µ) = 0 = m(0, •ϕ).

- If k > 0 we can apply the first formula in η(µ) as follows:

m(k, `µ) = m(k, •`ϕ)
k>0
= m(k − 1, `ϕ)

IH
= m(k − 1, ϕ) = m(k, •ϕ)

(27)
= m(k, 〈τ−〉ϕ)

5. µ = [τ−]ϕ we distinguish two cases

- k = 0 we use the second formula in η(µ) to conclude that
2 = m′(0, `µ) = m(0, µ)

- k > 0 we use the first formula in η(µ) as follows

m(k, `µ) = m(k, •`ϕ) = m(k − 1, `ϕ)

IH
= m(k − 1, ϕ) = m(k, •ϕ)

6. If µ = 〈ψ?〉ϕ. Note that, by definition, ϕ,ψ ∈ FL(µ). Moreover,
it follows that

m(k, `µ)
η(µ)
= m(k, `ψ ∧ `ϕ) = min{m(k, `ψ),m(k, `ϕ)}
IH= min{m(k, ψ),m(k, ϕ)} = m(k, ψ ∧ ϕ)

(22)
= m(k, 〈ψ?〉ϕ).

7. If µ = [ψ?]ϕ. Note that, by definition, ϕ,ψ ∈ FL(µ). Moreover,
it follows that

m(k, `µ)
η(µ)
= m(k, `ψ → `ϕ)

=

{
2 if m(k, `ψ) ≤m(k, `ϕ)

m(k, `ϕ) otherwise

IH
=

{
2 if m(k, ψ) ≤m(k, ϕ)

m(k, ϕ) otherwise

= m(k, ψ → ϕ)
(23)
= m(k, [ψ?]ϕ)

8. If µ = 〈ρ1 + ρ2〉ϕ, let us take α = 〈ρ1〉ϕ and β = 〈ρ2〉ϕ

m(k, `µ)
η(µ)
= m(k, `α ∨ `β)

= max{m(k, `α),m(k, `β)}.

We can apply the induction hypothesis on α and β since α, β ∈
FL(µ). Therefore we obtain

max{m(k, `α),m(k, `β)} IH
= max{m(k, α),m(k, β)}
= m(k, {α ∨ β)

(15)
= m(k, µ).

9. If µ = [ρ1 + ρ2]ϕ, let us take α = [ρ1]ϕ and β = [ρ2]ϕ.

m(k, `µ)
η(µ)
= m(k, `α ∧ `β)

= min{m(k, `α),m(k, `β)}.

We can apply the induction hypothesis on α and β since α, β ∈
FL(µ). Therefore we obtain

min{m(k, `α),m(k, `β)} IH
= min{m(k, α),m(k, β)}
= m(k, {α ∧ β)

(14)
= m(k, µ).

10. If µ = 〈ρ1; ρ2〉ϕ, let us consider α = 〈ρ1〉 〈ρ2〉ϕ. Note that
α ∈ FL(µ). For this proof we will assume that η(µ) = {2(`µ ↔
`α)}, which is equivalent to the assumption η(µ) = η(α) (that is,
the translation to µ can be directly replaced by the one of α).

m(k, `µ)
η(µ)
= m(k, `α)

IH
= m(k, 〈ρ1〉 〈ρ2〉ϕ)

(17)
= m(k, 〈ρ1; ρ2〉ϕ)

11. If µ = [ρ1; ρ2]ϕ, let us consider α = [ρ1] [ρ2]ϕ. Note that α ∈
FL(µ). For this proof we will assume that η(µ) = {2(`µ ↔
`α)}, which is equivalent to the assumption η(µ) = η(α) (that is,
the translation to µ can be directly replaced by the one of α).

m(k, `µ)
η(µ)
= m(k, `α)

IH
= m(k, [ρ1] [ρ2]ϕ)

(16)
= m(k, [ρ1; ρ2]ϕ)

12. For µ = 〈ρ∗〉ϕ, we distinguish two different cases depending on
k

• if k = λ− 1 we use the second formula in η(µ) to conclude

m(λ− 1, `µ)
η(µ)
= m(λ− 1, `ϕ)

IH
= m(λ− 1, ϕ)

(21)
= m(λ− 1, 〈ρ∗〉ϕ).

• if 0 ≤ k < λ − 1, let us take α = 〈ρ〉 〈ρ∗〉ϕ. By defini-
tion α,ϕ ∈ FL(µ). Therefore, m(k, `ϕ) = m(k, ϕ) and
m(k, `α) = m(k, α). With this we can use the first formula in
η(µ) as follows:

m(k, `µ)
η(µ)
= m(k, `ϕ ∨ `α)

= max{m(k, `ϕ),m(k, `α)}
IH
= max{m(k, ϕ),m(k, α)}
= m(k, ϕ ∨ 〈ρ〉 〈ρ∗〉ϕ)

(20)
= m(k, µ)

13. For µ = [ρ∗]ϕ, we distinguish two different cases depending on k



• if k = λ− 1 we use the second formula in η(µ) to conclude

m(λ− 1, `µ)
η(µ)
= m(λ− 1, `ϕ)

IH
= m(λ− 1, ϕ)

(19)
= m(λ− 1, 〈ρ∗〉ϕ).

• if 0 ≤ k < λ − 1, let us take α = [ρ] [ρ∗]ϕ. By defini-
tion α,ϕ ∈ FL(µ). Therefore, m(k, `ϕ) = m(k, ϕ) and
m(k, `α) = m(k, α). With this we can use the first formula in
η(µ) as follows:

m(k, `µ)
η(µ)
= m(k, `ϕ ∧ `α)

= min{m(k, `ϕ),m(k, `α)}
IH
= min{m(k, ϕ),m(k, α)}
= m(k, ϕ ∧ [ρ] [ρ∗]ϕ)

(18)
= m(k, µ)


