
Towards Dynamic Answer Set Programming
over finite traces

Pedro Cabalar2[0000−0001−7440−0953], Martı́n Diéguez1[0000−0003−3440−4348], and
Torsten Schaub3?[0000−0002−7456−041X]

1 ENIB, Brest, France
2 University of Corunna, Spain

3 University of Potsdam, Germany

Abstract. Our ultimate goal is to conceive an extension of Answer Set Program-
ming with language constructs from dynamic (and temporal) logic to provide
an expressive computational framework for modeling dynamic applications. To
address this in a semantically well founded way, we generalize the definition of
Dynamic Equilibrium Logic to accommodate finite linear time and extend it with
a converse operator in order to capture past temporal operators. This results in a
general logical framework integrating existing dynamic and temporal logics of
Here-and-There over both finite and infinite time. In the context of finite time, we
then develop a translation of dynamic formulas into propositional ones that can in
turn be translated into logic programs.

1 Introduction

Answer Set Programming (ASP [13]) has become a popular approach to solving
knowledge-intense combinatorial search problems due to its performant solving en-
gines and expressive modeling language. However, both are mainly geared towards static
domains and lack native support for handling dynamic applications. We have addressed
this shortcoming over the last decade by creating a temporal extension of ASP [1]
based on Linear Temporal Logic (LTL [15]) that has recently led to the temporal ASP
system telingo [5]. The approach of LTL has however its limitations when it comes to
expressing control over temporal trajectories. Such control can be better addressed with
Dynamic Logic (DL [16]), offering a more fine-grained approach to temporal reasoning
thanks to the possibility to form complex actions from primitive ones.4 To this end, DL
relies on modal propositions, like [ρ]ϕ, to express that all executions of (complex) action
ρ terminate in a state satisfying ϕ. As an example, consider a “Russian roulette” variation
of the Yale-shooting-scenario, so the turkey is dead after we pull the trigger as many times
as needed until we reach the loaded chamber. This can be expressed in DL via the propo-
sition: [while ¬loaded do trigger ; trigger] dead . The term within brackets delineates
trajectories matching the regular expression ‘(¬loaded?; trigger)∗; loaded?; trigger ’,
where ϕ? tests whether ϕ holds at the state at hand, and ‘;’ and ‘∗’ are the sequential

? Affiliated with Simon Fraser University, Canada, and Griffith University, Australia.
4 The same consideration led to GOLOG [12] in the context of the situation calculus.

2 Pedro Cabalar, Martı́n Diéguez, and Torsten Schaub

composition and iteration operators, respectively. With this, the above proposition is
satisfied whenever the state following a matching trajectory entails dead .

This expressive power motivated us to introduce the basic foundations of an extension
of ASP with dynamic operators from DL in [4]. In what follows, we build upon these
foundations (i) to introduce a general logical framework comprising previous dynamic
and temporal extensions and (ii) to elaborate upon a translation to propositional theories
that can in turn be compiled into logic programs. To this end, we follow the good
practice of first introducing an extension to ASP’s base logic, the Logic of Here-and-
There (HT [11]), and then to devise an appropriate reduction. An HT interpretation
〈H,T 〉 is a pair of interpretations that can be seen as being three-valued, where atoms
in H are “certainly true,” atoms not in T are “false” and atoms in T are “potentially
true.” This explains the usual condition H ⊆ T , meaning that anything certainly true
is also potentially true. An HT interpretation 〈H,T 〉 is said to be total if H = T ,
that is, the mapping becomes two-valued. Total interpretations satisfying a certain
minimality condition are known to correspond to stable models; they are also referred
to as equilibrium models, and the resulting logic is called Equilibrium Logic (EL). For
capturing (linear) time, sequences of such HT interpretations are considered, similar to
LTL. In accord with [7], we argue that such linear traces provide an appropriate semantic
account of time in our context, and thus base also our dynamic extension of ASP on the
same kind of semantic structures.

Our ultimate goal is to conceive an extension of ASP with language constructs
from dynamic (and temporal) logic in order to provide an expressive computational
framework for modeling dynamic applications. To address this in a semantically well
founded way, we generalize the definition of Dynamic HT and EL (DHT/DEL [4]) to
accommodate finite traces and augment it with a converse operator (in order to capture
past temporal operators). This not only allows us to embed temporal extensions of ASP,
such as Temporal Equilibrium Logic over finite traces (TELf [5]) along with its past and
future operators, and more standard ones like LTLf [7], but moreover provides us with
blueprints for implementation on top of existing (temporal) ASP solvers like telingo.
Indeed, DELf can be regarded as a non-monotonic counterpart of LTLf [7], being in an
analgous relationship as classical and equilibrium logic, or SAT and ASP, respectively.

More precisely, we start in Section 2 by defining a general logical framework inte-
grating existing dynamic and temporal logics of Here-and-There and their associated
Equilibrium logics over both finite and infinite traces. Section 3 is dedicated to the
computational development of our approach in the context of finite traces. We introduce
a translation from dynamic formulas to propositional ones by relying on a normal form
for complex actions. Finally, Section 4 concludes the paper.

2 Linear Dynamic Equilibrium Logic

Given a set A of propositional variables (called alphabet), dynamic formulas ϕ and path
expressions ρ are mutually defined as in [7] by the pair of grammar rules:

ϕ ::= a | ⊥ | > | [ρ]ϕ | 〈ρ〉ϕ , ρ ::= > | ϕ? | ρ+ ρ | ρ ; ρ | ρ∗ | ρ− .

Each ρ is a regular expression formed with the truth constant > plus the test construct
ϕ? typical of Dynamic Logic (DL [9]). An important feature that departs from DL is

Towards Dynamic Answer Set Programming over finite traces 3

that, in the latter, atomic path expressions are formed with a sort of so-called atomic
actions that is separated from propositional atoms in A, used for formulas. We adopt the
approach of [7] and considering that the only atomic path expression is >, keeping the
test construct ϕ? that may refer to propositional atoms in the (single) alphabet A.

As we show further below, the above language allows us to capture several derived
operators, like the Boolean and temporal ones:

ϕ ∧ ψ def
= 〈ϕ?〉ψ ϕ ∨ ψ def

= 〈ϕ? + ψ?〉>
ϕ→ ψ

def
= [ϕ?]ψ ¬ϕ def

= ϕ→ ⊥
F def

= [>]⊥ I def
= [>−]⊥

◦ϕ def
= 〈>〉ϕ •ϕ def

= 〈>−〉ϕ
◦̂ϕ def

= [>]ϕ •̂ϕ def
= [>−]ϕ

♦ϕ def
= 〈>∗〉ϕ �ϕ def

= 〈>∗−〉ϕ
�ϕ def

= [>∗]ϕ �ϕ def
= [>∗−]ϕ

ϕU ψ
def
= 〈(ϕ?;>)∗〉ψ ϕ S ψ def

= 〈(ϕ?;>)∗−〉ψ
ϕ R ψ def

= (ψ U (ϕ ∧ ψ)) ∨�ψ ϕ T ψ
def
= (ψ S (ϕ ∧ ψ)) ∨�ψ

While negation ¬ is expressed as usual in HT via implication, all other connectives
are defined in terms of the dynamic operators 〈·〉 and [·] . This involves the Booleans’
∧, ∨, and →, among which the definition of → is most noteworthy since it hints at
the implicative nature of [·] , as well as the future temporal operators F, ◦, ◦̂, ♦, �, U,
R, standing for final, next, weak next, eventually, always, until, and release, and their
past-oriented counterparts: I, •, •̂, �, �, S, T. The weak one-step operators, ◦̂ and •̂, are
of particular interest when dealing with finite traces, since their behavior differs from
their genuine counterparts only at the ends of a trace. In fact, ◦̂ϕ can also be expressed
as ◦ϕ ∨ F (and •̂ as •ϕ ∨ I). Finally, note that the converse operator ρ− is essential for
expressing all temporal past operators, whose addition in temporal logic is exponentially
more succinct than using only future operators [2]. A formula is propositional, if all its
connectives are Boolean, and temporal, if it includes only Boolean and temporal ones.
A dynamic formula is said to be conditional if it contains some occurrence of an atom
p ∈ A inside a [·] operator; it is called unconditional otherwise. Note that formulas with
atoms in implication antecedents or negated formulas are also conditional, since they are
derived from [·] . For instance, [p?]⊥ is conditional, and is actually the same as p→ ⊥
and ¬p. As usual, a (dynamic) theory is a set of (dynamic) formulas.

Following the definition of linear DL (LDL) in [7], we sometimes use a propositional
formula φ as a path expression actually standing for (φ?;>). Another abbreviation is the
sequence of n repetitions of some expression ρ defined as ρ0 def

= >? and ρn+1 def
= ρ; ρn.

For instance, ρ3 = ρ; ρ; ρ;>? which amounts to ρ; ρ; ρ, as we see below.
Given a ∈ N and b ∈ N ∪ {ω}, we let [a..b] stand for the set {i ∈ N | a ≤ i ≤ b}

and [a..b) for {i ∈ N | a ≤ i < b}. For the semantics, we start by defining a trace of
length λ over alphabet A as a sequence 〈Hi〉i∈[0..λ) of sets Hi ⊆ A. A trace is infinite
if λ = ω and finite otherwise, that is, λ = n for some natural number n ∈ N. Given
traces H = 〈Hi〉i∈[0..λ) and H′ = 〈H ′i〉i∈[0..λ) both of length λ, we write H ≤ H′ if
Hi ⊆ H ′i for each i ∈ [0..λ); accordingly, H < H′ iff both H ≤ H′ and H 6= H′.

4 Pedro Cabalar, Martı́n Diéguez, and Torsten Schaub

A Here-and-There trace (for short HT-trace) of length λ over alphabet A is a
sequence of pairs 〈Hi, Ti〉i∈[0..λ) such that Hi ⊆ Ti ⊆ A for any i ∈ [0..λ). As before,
an HT-trace is infinite if λ = ω and finite otherwise. We often represent an HT-trace
as a pair of traces 〈H,T〉 of length λ where H = 〈Hi〉i∈[0..λ) and T = 〈Ti〉i∈[0..λ) and
H ≤ T. A particular type of HT-traces satisfy H = T and are called total.

We proceed by generalizing the extension of HT with dynamic operators, called
DHT in [4], to HT-traces of fixed length in order to integrate finite as well as infinite
traces, and by adding the converse operator. The overall definition of DHT satisfaction
relies on a double induction. Given any HT-trace M = 〈H,T〉, we define DHT
satisfaction of formulas, M, k |= ϕ, in terms of an accessibility relation for path
expressions ‖ρ‖M ⊆ N2 whose extent depends again on |=.

Definition 1 (DHT satisfaction). An HT-trace M = 〈H,T〉 of length λ over alphabet
A satisfies a dynamic formula ϕ at time point k ∈ [0..λ), written M, k |= ϕ, if the
following conditions hold:

1. M, k |= > and M, k 6|= ⊥
2. M, k |= a if a ∈ Hk for any atom a ∈ A
3. M, k |= 〈ρ〉ϕ if M, i |= ϕ for some i with (k, i) ∈ ‖ρ‖M

4. M, k |= [ρ]ϕ if M′, i |= ϕ for all i with (k, i) ∈ ‖ρ‖M
′

for both M′ = M and M′ = 〈T,T〉

where, for any HT-trace M, ‖ρ‖M ⊆ N2 is a relation on pairs of time points inductively
defined as follows.

5. ‖>‖M def
= {(i, i+ 1) | i, i+ 1 ∈ [0..λ)}

6. ‖ϕ?‖M def
= {(i, i) |M, i |= ϕ}

7. ‖ρ1+ρ2‖M def
= ‖ρ2‖M ∪ ‖ρ2‖M

8. ‖ρ1 ; ρ2‖M def
= {(i, j) | (i, k) ∈ ‖ρ1‖Mand (k, j) ∈ ‖ρ2‖Mfor some k}

9. ‖ρ∗‖M def
=
⋃
n≥0 ‖ρn‖

M

10. ‖ρ−‖M def
= {(i, j) | (j, i) ∈ ‖ρ‖M} ut

The following properties can be easily observed by inspection of the semantics.

Proposition 1. Relation ‖ρ‖M defined above satisfies ‖ρ‖M ⊆ [0..λ)× [0..λ). ut

Proposition 2. If ρ is converse-free and (i, j) ∈ ‖ρ‖M then i ≤ j. ut

As we can see, 〈ρ〉ϕ and [ρ]ϕ quantify over time points i that are reachable under
path expression ρ at the current point k, that is, (k, i) ∈ ‖ρ‖M. The main difference
with respect to [4] is that ‖ρ‖M ⊆ [0..λ) × [0..λ) so that all pairs in that relation are
now confined to the set of defined time points [0..λ). This additional restriction is due to
two reasons. First, it is now possible to access time points in the past i < k using the
converse operator ρ−, something impossible with the converse-free path expressions
in [4]. As a result, we must restrict i ≥ 0 to avoid going backwards, further than the
initial situation. Second, for a similar reason, when we have a finite length λ = n, we

Towards Dynamic Answer Set Programming over finite traces 5

must also impose i < n, something not needed for infinite traces λ = ω since any natural
number obviously satisfies i < ω.

An HT-trace M is a model of a dynamic theory Γ if M, 0 |= ϕ for all ϕ ∈ Γ .
We write DHT(Γ, λ) to stand for the set of DHT models of length λ of a theory Γ ,
and define DHT(Γ)

def
=
⋃ω
λ=0 DHT(Γ, λ), that is, the whole set of models of Γ of any

length. When Γ = {ϕ} we just write DHT(ϕ, λ) and DHT(ϕ).
A formula ϕ is a tautology (or is valid), written |= ϕ, iff M, k |= ϕ for any

HT-trace and any k ∈ [0..λ). We call the logic induced by the set of all tautologies
(Linear) Dynamic logic of Here-and-There (DHT for short). Two formulas ϕ,ψ are
said to be equivalent, written ϕ ≡ ψ, whenever M, k |= ϕ iff M, k |= ψ for any
HT-trace M and any k ∈ [0..λ). This allows us to replace ϕ by ψ and vice versa in
any context, and is the same as requiring that ϕ ↔ ψ is a tautology. Note that this
relation, ϕ ≡ ψ, is stronger than coincidence of models DHT(ϕ) = DHT(ψ). For
instance, DHT(•>) = DHT(〈>−〉>) = ∅ because models are checked at the initial
situation k = 0 and there is no previous situation at that point, so DHT(•>) = DHT(⊥).
However, in general, •> 6≡ ⊥ since •> is satisfied for any k > 0 (for instance ◦•> 6≡ ◦⊥
but ◦•> ≡ > instead).

As with formulas, we say that path expressions ρ1, ρ2 are equivalent, written ρ1 = ρ2,
when ‖ρ1‖M = ‖ρ2‖M for any HT-trace M. For instance, it is easy to see that:

(ρ1; ρ2); ρ3 = ρ1; (ρ2; ρ3) ρ∗ = >? + (ρ; ρ∗)
>?; ρ = ρ;>? = ρ ρ; ρ∗ = ρ∗; ρ

The following equivalences of path expressions allow us to push the converse operator
inside, until it is only applied to >.

Proposition 3. For all path expressions ρ1, ρ2 and ρ and for all formulas ϕ, the follow-
ing equivalences hold:

(ρ−)− = ρ (ϕ?)− = ϕ? (ρ∗)− = (ρ−)∗

(ρ1 + ρ2)
− = ρ−1 + ρ−2 (ρ1; ρ2)

− = ρ−2 ; ρ
−
1

We prove next that a pair of basic properties from HT already satisfied in [4] are
maintained in the current extension of DHT.

Proposition 4 (Persistence). For any HT-trace 〈H,T〉 of length λ, any dynamic for-
mula ϕ and any path expression ρ, we have:

1. 〈H,T〉, k |= ϕ implies 〈T,T〉, k |= ϕ, for all k ∈ [0..λ)

2. ‖ρ‖〈H,T〉 ⊆ ‖ρ‖〈T,T〉. ut
Persistence is a property known from intuitionistic logic; it expresses that accessible
worlds satisfy the same or more formulas than the current world, where T is “accessible”
from H in HT. This also explains the semantics of [ρ]ϕ, which behaves as a kind of
intuitionistic implication (used to define ‘→’ as a derived operator) and so, it must hold
for all accessible worlds, viz. 〈H,T〉 and 〈T,T〉.

For simplicity, we refrain from introducing the semantics of LDL [7], since it just
corresponds to DHT on total traces 〈T,T〉, as stated below. Let us simply use T, k |= ϕ

to denote the satisfaction of ϕ by a trace T at point k in LDL and ‖ρ‖T the LDL
accessibility relation for ρ and T.

6 Pedro Cabalar, Martı́n Diéguez, and Torsten Schaub

Proposition 5. For any total HT-trace 〈T,T〉 of length λ, any dynamic formula ϕ and
any path expression ρ, we have: (1) 〈T,T〉, k |= ϕ iff T, k |= ϕ, for all k ∈ [0..λ); and
(2) ‖ρ‖〈T,T〉 = ‖ρ‖T. ut

Accordingly, any total HT-trace 〈T,T〉 can be seen as the LDL-trace T. In fact, under
total models, the satisfaction of dynamic operators 〈ρ〉 and [ρ] in DHT collapses to
that in LDL. Moreover, the first item implies that any DHT tautology is also an LDL
tautology, so the former constitutes a weaker logic. To show that, in fact, DHT is strictly
weaker, note that it does not satisfy some classical tautologies like the excluded middle
ϕ ∨ ¬ϕ, while LDL is a proper extension of classical logic. In fact, the addition of the
axiom schema

�(a ∨ ¬a) for each atom a ∈ A in the alphabet (EM)

forces total models and so, makes DHT collapse to LDL. Propositions 4 and 5 imply that
ϕ is DHTf satisfiable iff it is LDLf satisfiable. Since the latter is a PSPACE-complete
problem [7], the same applies to DHTf satisfiability.

The next theorem shows that derived operators follow the expected definitions from
HT and THT (and LTL).

Theorem 1. Let M = 〈H,T〉 be an HT-trace of length λ over alphabet A. Given the
respective definitions of derived operators, we get the following satisfaction conditions:

1. M, k |= ϕ ∧ ψ iff M, k |= ϕ and M, k |= ψ
2. M, k |= ϕ ∨ ψ iff M, k |= ϕ or M, k |= ψ
3. M, k |= ϕ→ ψ iff M′, k 6|= ϕ or M′, k |= ψ, for both M′ = M and M′ = 〈T,T〉
4. M, k |= ¬ϕ iff 〈T,T〉, k 6|= ϕ

5. M, k |= F iff k + 1 = λ
6. M, k |= ◦ϕ iff k + 1 < λ and M, k+1 |= ϕ
7. M, k |= ◦̂ϕ iff k + 1 = λ or M, k+1 |= ϕ
8. M, k |= ♦ϕ iff M, i |= ϕ for some i ∈ [k..λ)
9. M, k |= �ϕ iff M, i |= ϕ for all i ∈ [k..λ)

10. M, k |= ϕ U ψ iff for some j ∈ [k..λ), we have M, j |= ψ and M, i |= ϕ for all
i ∈ [k..j)

11. M, k |= ϕ R ψ iff for all j ∈ [k..λ), we have M, j |= ψ or M, i |= ϕ for some
i ∈ [k..j)

12. M, k |= I iff k = 0
13. M, k |= •ϕ iff k > 0 and M, k−1 |= ϕ
14. M, k |= •̂ϕ iff k = 0 or M, k−1 |= ϕ
15. M, k |= �ϕ iff M, i |= ϕ for all i ∈ [0..k]
16. M, k |= �ϕ iff M, i |= ϕ for some i ∈ [0..k]
17. M, k |= ϕ S ψ iff for some j ∈ [0..k], we have M, j |= ψ and M, i |= ϕ for all

i ∈ [j + 1..k]
18. M, k |= ϕ T ψ iff for all j ∈ [0..k], we have M, j |= ψ or M, i |= ϕ for some

i ∈ [j + 1..k]

as well as the relation:

Towards Dynamic Answer Set Programming over finite traces 7

19. ‖φ‖M = {(i, i+ 1) |M, i |= φ} for any propositional formula φ. ut

An important observation above is that the satisfaction conditions for the Boolean
operators amounts to standard HT while the interpretation of LTL operators (temporal
formulas) subsume all the different previous versions of the Temporal logic of Here and
There (THT), including the original definition for infinite traces [1], its extension to past
operators [2], and its variant on finite traces [5].

Corollary 1. Let ϕ be a temporal formula, M an HT-trace and k ≥ 0. Then, M, k |= ϕ
under THT satisfaction iff M, k |= ϕ under DHT satisfaction. ut

Since our new definition also subsumes DHT for infinite traces [4] (when λ = ω), we
may classify all these previous approaches as follows. In analogy to [5], we consider
several logics that are stronger than DHT and that can be obtained by the addition of
axioms (or the corresponding restriction on sets of traces). For instance, we denote [4]
as DHTω and define it as DHT+ {¬♦F}, that is, DHT where we exclusively consider
infinite HT-traces. The finite-trace version, we call DHTf , corresponds to DHT+{♦F}
instead. Linear Dynamic Logic for possibly infinite traces, LDL, can be obtained as
DHT+ {(EM)}, that is, DHT with total HT-traces. Accordingly, we can define LDLω
as DHTω + {(EM)}, i.e. infinite and total HT-traces, and obtain LDLf as DHTf +
{(EM)}, that is, LDL on finite traces [7]. Then, the variants THTω, THTf , LTLω,
LTLf respectively refer to DHTω, DHTf , LDLω, LDLf on the restricted syntax of
temporal formulas.

We now introduce non-monotonicity by selecting a particular set of traces that we
call temporal equilibrium models. First, given an arbitrary set S of HT-traces, we define
the ones in equilibrium as follows.

Definition 2 (Temporal Equilibrium/Stable models). Let S be some set of HT-traces.
A total HT-trace 〈T,T〉 ∈ S is an equilibrium trace of S iff there is no other 〈H,T〉 ∈
S such that H < T. If this is the case, we also say that trace T is a stable trace of S. We
further talk about temporal equilibrium or temporal stable models of a theory Γ when
S = DHT(Γ), respectively. ut

We write DEL(Γ, λ) and DEL(Γ) to stand for the temporal equilibrium models of
DHT(Γ, λ) and DHT(Γ) respectively. Note that, due to Proposition 5, stable traces in
DEL(Γ) are also LDL-models of Γ and, thus, DEL is stronger than LDL. Besides, as
the ordering relation among traces is only defined for a fixed λ, it is easy to see:

Proposition 6. The set of temporal equilibrium models of Γ can be partitioned by the
trace length λ, that is,

⋃ω
λ=0 DEL(Γ, λ) = DEL(Γ). ut

(Linear) Dynamic Equilibrium Logic (DEL) is the non-monotonic logic induced by
temporal equilibrium models of dynamic theories. We obtain the variants DELω and
DELf by applying the corresponding restriction to infinite or finite traces, respectively.

To illustrate non-monotonicity, take the formula:

[(¬h)∗] (¬h→ s) (1)

whose reading is “keep sending an sos (s) while no help (h) is perceived.” Intuitively,
[(¬h)∗] behaves as a conditional referring to any future state after n ≥ 0 repetitions of

8 Pedro Cabalar, Martı́n Diéguez, and Torsten Schaub

(¬h?;>). Then, ¬h→ s checks whether h fails one more time at k = n: if so, it makes
s true again. Without additional information, this formula has a unique temporal stable
model per each length λ satisfying �(¬h ∧ s), that is, h is never concluded, and so, we
repeat s all over the trace. Suppose we add now the formula 〈>5〉h, that is, h becomes
true after five transitions. Then, there is a unique temporal stable model for each λ > 5
satisfying:

〈(¬h ∧ s)5;h ∧ ¬s; (¬h ∧ ¬s)∗〉>

Clearly, �(¬h∧s) is not entailed any more (under temporal equilibrium models) showing
that DEL is non-monotonic.

One important logical feature that emerges when dealing with a non-monotonic logic
is the concept of strong equivalence [14]. Under a non-monotonic inference relation, the
fact that two theories Γ1 and Γ2 yield the same consequences is too weak to consider
that one can be “safely” replaced by the other, since the addition of new information
Γ may make them behave in a different way. Instead, we normally define a stronger
notion of equivalence, requiring that Γ1 ∪ Γ and Γ2 ∪ Γ have the same behavior, for any
additional theory Γ (providing a context). An important property proved in [14] is that
strong equivalence of propositional logic programs (and in fact, of arbitrary propositional
theories) corresponds to regular equivalence in the monotonic logic of HT. This result
reinforces the adequacy of the logic of HT as a monotonic basis for equilibrium logic
and Answer Set Programming. Now, considering our setting, we can still prove that
DHT plays a similar role with respect to DEL. Formally, we say that two dynamic
theories Γ1, Γ2 are strongly equivalent if Γ1 ∪ Γ and Γ2 ∪ Γ have the same temporal
equilibrium models, for any additional LDL theory Γ . Then, we get the following result,
by a direct application of the proof obtained for (converse-free) DHTω (Theorem 2
in [4]) to the general case with converse operator and arbitrary length λ ∈ N ∪ {ω}:

Theorem 2. Dynamic theories Γ1 and Γ2 are strongly equivalent iff Γ1 ≡ Γ2 in DHT.

This result shows that DHT-equivalence precisely captures the property of strong
equivalence of dynamic theories. Thus, it is worth commenting some possible ways of
deriving DHT equivalences. We already know that any DHT equivalence must also
hold in LDL while, in general, the opposite does not hold, as with [ρ] q ≡ ¬〈ρ〉 ¬q. Still,
some LDL equivalences are preserved in DHT, like the following unfolding properties.

Proposition 7. The following equivalences hold in DHT.

〈ρ+ ρ′〉ϕ ≡ 〈ρ〉ϕ ∨ 〈ρ′〉ϕ
〈ρ ; ρ′〉ϕ ≡ 〈ρ〉 〈ρ′〉ϕ
〈ρ∗〉ϕ ≡ ϕ ∨ 〈ρ〉 〈ρ∗〉ϕ

[ρ+ ρ′]ϕ ≡ [ρ]ϕ ∧ [ρ′]ϕ
[ρ ; ρ′]ϕ ≡ [ρ] [ρ′]ϕ

[ρ∗]ϕ ≡ ϕ ∧ [ρ] [ρ∗]ϕ

In Proposition 2 in [4], we proved that (converse-free) LDLω equivalences for
unconditional formulas can also be guaranteed in DHTω. We extend below the same
result for DHT and LDL with converse operator and traces of arbitrary length.

Proposition 8. For unconditional formulas ϕ and ψ, ϕ ≡ ψ in LDL iff ϕ ≡ ψ in DHT.

This result suffices to prove the three leftmost equivalences above by resorting to LDL,
but cannot be applied for proving the right ones, as they are conditional — they contain

Towards Dynamic Answer Set Programming over finite traces 9

arbitrary path expressions inside [·] . An interesting fragment are temporal formulas
without→ or ¬. They are unconditional, since the definition of temporal operators only
use [·] for �ϕ = [>∗]ϕ and its dual �ϕ = [>∗−]ϕ, and these formulas do not use
atoms in the path expressions. As a consequence of Proposition 8, the DHT equivalence
for temporal formulas without implications or negations can be directly checked in LTL.

Given any dynamic formula ϕ, we define ϕ− as the result of replacing in ϕ each
(maximal) path expression ρ by ρ−. For instance, given ϕ = [p; q] 〈r−〉 s we get ϕ =
[(p; q)−] 〈r−−〉 s. Notice that the effect of this transformation on temporal operators is
just switching their future/past versions. As an example:

(♦•̂p)− = (〈>∗〉 [>−] p)− = 〈>∗−〉 [>−−] p = �◦̂p

Lemma 1. There exists a mapping % on finite HT-traces of a fixed length λ = n ∈ N
such that, M, k |= ϕ iff %(M), n− k |= ϕ−, for any k ∈ [0..λ), any dynamic formula ϕ
and any HT-trace M of length λ = n.

Theorem 3 (Temporal duality theorem). A dynamic formula ϕ is a DHTf tautology
iff ϕ− is a DHTf tautology.

This property does not hold for infinite traces, where ¬♦F is valid but its dual, ¬�I, is
false in all traces (we can always reach the initial situation at some point in the past).

3 Reducing converse-free DELf to propositional ASP

In this section, we show that converse-free DELf can be reduced to propositional theories
(under stable models semantics) by using indexed atoms. Given a set A of atoms and
λ ∈ N, we define Aλ def

= {ai | i ∈ [0..λ) and a ∈ A}. We define the translation of a
converse-free dynamic formula ϕ at i ∈ [0..λ), in symbols

(
ϕ
)
i
, as follows:(

⊥
)
i

def
= ⊥

(
>
)
i

def
= >

(
p
)
i

def
= pi for each p ∈ A(

〈ϕ?〉ψ
)
i

def
=
(
ϕ
)
i
∧
(
ψ
)
i

(
[ϕ?]ψ

)
i

def
=
(
ϕ
)
i
→
(
ψ
)
i(

〈>〉ϕ
)
i

def
=

{(
ϕ
)
i+1

if i+ 1 < λ

⊥ if i+ 1 = λ

(
[>]ϕ

)
i

def
=

{(
ϕ
)
i+1

if i+ 1 < λ

> if i+ 1 = λ

and, for any other formula α starting with 〈·〉 or [·] , we apply the equivalences α ≡ β
in Proposition 7 to unfold

(
α
)
i

into
(
β
)
i
, further assuming

(
ϕ⊗ ψ

)
i
=
(
ϕ
)
i
⊗
(
ψ
)
i

for
⊗ ∈ {∧,∨}. As an example, consider the formula [p∗] q and assume that λ = 3:(
[p∗] q

)
0
=
(
q
)
0
∧
(
[p] [p∗] q

)
0

= q0 ∧
(
[p?] [>] [p∗] q

)
0

= q0 ∧ (p0 →
(
[p∗] q

)
1
) then, repeating the pattern

= q0 ∧ (p0 → (q1 ∧ (p1 →
(
[p∗] q

)
2
))) that is HT-equivalent to

= q0 ∧ (p0 → q1) ∧ (p0 ∧ p1 →
(
[p∗] q

)
2
)

= q0 ∧ (p0 → q1) ∧ (p0 ∧ p1 → (p2 ∧
(
[p] [p∗] q

)
2︸ ︷︷ ︸

>

))

= q0 ∧ (p0 → q1) ∧ (p0 ∧ p1 → p2)

10 Pedro Cabalar, Martı́n Diéguez, and Torsten Schaub

It is easy to see that, applying the same pattern for
(
(1)
)
0

and λ = 3, we get:

(¬h0 → s0) ∧ (¬h0 → (¬h1 → s1)) ∧ (¬h0 ∧ ¬h1 → (¬h2 → s2))

= (¬h0 → s0) ∧ (¬h0 ∧ ¬h1 → s1) ∧ (¬h0 ∧ ¬h1 ∧ ¬h2 → s2)

Theorem 4 (Partial correctness). Let
(
α
)
i

terminate for formula α and i ∈ [0..λ)
with λ ∈ N. For any finite HT-trace M = 〈H,T〉 of length λ, and its (one-to-one)
corresponding HT-interpretation M = 〈{ai | a ∈ Hi}, {ai | a ∈ Ti}〉 on Aλ, we have
M, i |= α in DHT iff M |=

(
α
)
i

in HT.

As stated above, the previous result only guarantees a partial correctness for the recursive
translation

(
ϕ
)
i

— to get total correctness we further need to guarantee termination,
and this does not hold in the general case. To see why, just consider the formula [>?∗] q
(being equivalent to q) whose translation at i yields(

[>?∗] q
)
i
= qi ∧

(
[>?] [>?∗] q

)
i
= qi ∧ (> →

(
[>?∗] q

)
i
) = qi ∧

(
[>?∗] q

)
i

and generates an infinite sequence of calls to
(
[>?∗] q

)
i
. This problem arises because the

starred expression, >?, leaves situation i unaltered, something that does not happen with
p∗ = (p?;>)∗ used before, as it generated incremental jumps i+ 1 > i and a sequence
of calls

(
[p∗] q

)
0
,
(
[p∗] q

)
1
,
(
[p∗] q

)
2

progressing towards i = λ− 1. We show next that
any converse-free path expression ρ∗ can be equivalently reformulated in such a way
that its translation proceeds in a strictly incremental way, guaranteeing termination. We
begin by defining the following types of path expressions: a (sequential) component θ, a
sequence σ and a normalized disjunction δ are defined by the grammar rules:

θ ::= > | ϕ? | δ∗ σ ::= θ | σ1;σ2 δ ::= θ | δ1 + δ2

Given that addition satisfies distributivity with respect to sequence, viz.

(ρ1 + ρ2); ρ3 ≡ (ρ1; ρ2) + (ρ2; ρ3) ρ1; (ρ2 + ρ3) ≡ (ρ1; ρ2) + (ρ1; ρ3),

it is easy to obtain the following result.

Proposition 9 (Disjunctive Normal Form). Any arbitrary path expression ρ can be
equivalently reformulated as a normalized disjunction δ.

As an example, to normalize the expression (a∗ + b); (c?; d+ e?)∗ we can proceed, for
instance, by reducing the inner expression (c?; d+ e?) to (c?; d) + (c?; e?) and then go
on applying distributivity outside:

(a∗ + b); (c?; d+ e?)∗ = (a∗ + b); ((c?; d) + (c?; e?))∗

= (a∗; ((c?; d) + (c?; e?))∗) + (b; ((c?; d) + (c?; e?))∗)

The last expression is already in normal form. We say that a sequence σ = θ1; . . . ; θn is
incremental if θi = > for some i = 1, . . . , n. A normalized disjunction δ = σ1+· · ·+σm
is incremental if σi is incremental for every i = 1, . . . ,m.

Proposition 10. Let δ be an incremental, normalized disjunction and M an HT-trace.
Then, (i, j) ∈ ‖δ‖M implies j > i.

Towards Dynamic Answer Set Programming over finite traces 11

In other words, incremental disjunctions always shift the time point strictly forward.
Obviously, not any normalized disjunction δ is incremental, but this is not a problem as
long as it is not combined with the star operator. We say that a normalized disjunction
δ is star-incremental if all the sub-expressions (δ′)∗ of δ satisfy that δ′ is incremental.
The key point for guaranteeing termination is that we can transform any arbitrary path
expression into a star-incremental, normalized disjunction.

Proposition 11. For any expression ρ and formulas ϕ1, . . . , ϕn, we have that (ρ +
(ϕ1?; . . . ;ϕn?))

∗ = (ρ)∗ and (ϕ1?; . . . ;ϕn?)
∗ = >?.

In other words, we can remove test-only sequences from any iterated disjunction. As
an example ((c?; d) + (c?; e?))∗ amounts to (c?; d)∗. Similarly, if we only have tests
(a?; b?)∗ the whole expression can be just replaced by >?.

Now, to transform any normalized disjunction to become star-incremental, we can
proceed in a bottom-up manner, as described in the proof of the following proposition,
included below to illustrate the process.

Proposition 12. Any converse-free path expression can be transformed into an equiva-
lent star-incremental, normalized disjunction.

Proof. By Proposition 9, we can assume that we start from a normalized disjunction.
Then, we begin with all the sub-expressions δ∗ where δ is star-free, and so, trivially
star-incremental. To make δ∗ star-incremental too, it suffices with removing its test-only
sequences, applying Proposition 11. Then, we proceed with δ∗ where δ is not star-free,
but is already star-incremental by application of previous steps. Any non-incremental
sequence in δ is a combination of tests and starred expressions. Suppose we take some
non-incremental sequence of δ of the form σ; ρ∗;σ′. Note that, if σ1 or σ2 are not present,
we can assume they correspond to >?. Then, we can apply the unfolding:

σ; ρ∗;σ′ = σ; (>? + ρ; ρ∗);σ′

= (σ;>?;σ′) + (σ; ρ; ρ∗;σ′)

= (σ;σ′) + (σ; ρ; ρ∗;σ′)

where ρ∗ does not occur in the first sequence, whereas in the second, we can apply
distributivity on all sequences from the first occurrence of ρ. Since δ is star-incremental,
ρ is incremental and so, all the sequences obtained in that way are incremental too.
We would then proceed in the same way with the next starred-expression in (σ;σ′).
The final result, δ′, is equivalent to δ but contains incremental sequences or test-only
expressions. But in (δ′)∗ we can further remove the test-only expressions (Property 11)
and we eventually get a star-incremental expression. ut

As an example, given (a?; (b+ c)∗; d?; e∗)∗, we can unfold (b+ c)∗ into

(a?; (b+ c)∗; d?; e∗)∗ = ((a?; d?; e∗) + (a?; (b+ c); (b+ c)∗; d?; e∗))∗

and unfold again the first sequence into:

= ((a?; d?) + (a?; d?; e; e∗) + (a?; (b+ c); (b+ c)∗; d?; e∗))∗

12 Pedro Cabalar, Martı́n Diéguez, and Torsten Schaub

By Proposition 11, the test-only sequence (a?; d?) can be removed

= ((a?; d?; e; e∗) + (a?; (b+ c); (b+ c)∗; d?; e∗))∗

and, now, applying distributivity on (b+ c), we get

= ((a?; d?; e; e∗) + (a?; b; (b+ c)∗; d?; e∗) + (a?; c; (b+ c)∗; d?; e∗))∗

= ((a?; d?; e?;>; e∗) + (a?; b?;>; (b+ c)∗; d?; e∗) + (a?; c?;>; (b+ c)∗; d?; e∗))∗

and all remaining sequences are incremental.

Theorem 5. Let ϕ be a formula where all its path expressions are star-incremental,
normalized disjunctions, and let i ∈ [0..λ) with λ ∈ N, λ > 0. Then,

(
ϕ
)
i

terminates.

Corollary 2. Given a fixed length λ ∈ N, any converse-free dynamic theory can be
reduced to a propositional theory with a one-to-one correspondence among the respective
HT-traces (of length λ) and HT-models.

Given that any propositional theory can be translated into an HT-equivalent disjunc-
tive logic program (cf. [6]), we get the following result.

Corollary 3. Given a fixed length λ ∈ N, any converse-free dynamic theory can be
reduced to a disjunctive logic program with a one-to-one correspondence among the
respective HT-traces (of length λ) and HT-models.

4 Discussion and conclusions

As we have seen, our current definition of Dynamic Equilibrium Logic (DEL), covers
the previous modal variants of Equilibrium Logic for dealing with time, including the
original Temporal Equilibrium Logic (TEL) [1], its extension to past operators [2] and
its variant on finite traces [5], but also generalizes the first definition of DEL in [4]
by possibly allowing for finite traces and a converse operator. The recent introduction
of Dynamic Logic operators in modal Equilibrium Logic and the use of finite traces
have been obviously motivated by [7], that previously presented LTL and LDL on finite
traces. DEL can be seen as a non-monotonic extension that allows for capturing temporal
stable models of LDL theories. As happens in the non-temporal case, when we add the
excluded middle axiom, DEL and TEL respectively collapse to the monotonic versions
LDL and LTL. A different approach for extending ASP with linear-time and dynamic
operators was studied in [8], for a rule-based syntax, and later generalized in [3] for
arbitrary dynamic logic theories. The main difference with respect to DEL is that [8]
starts from the linear version of DL in [10] and keeps separate alphabets for atomic
actions and propositions. Still, as shown in [4], both [8] and [3] can be encoded in DELω .
The approaches in [18, 17] give encodings of GOLOG-like control in ASP planning by
enforcing that traces are compatible with a given path expression without any logical
underpinnings.

Apart from the general definition of DEL and its relation to other formalisms, a
second contribution of the paper is the translation of any converse-free arbitrary DELf

Towards Dynamic Answer Set Programming over finite traces 13

theory into a propositional logic program. This translation has proved to be non-trivial: it
is based on unfolding path expressions, something potentially equivalent to the execution
of a sequential program. Termination was guaranteed by a previous preprocessing of
path expressions. Future work includes the implementation of this translation for the
converse-free fragment of the language together with the extension to other fragments
involving the converse operator.

Acknowledgments. This work was partially supported by MINECO, Spain, (grant
TIC2017-84453-P), Xunta de Galicia, Spain, (grant 2016-2019 ED431G/01, CITIC),
ANR, France, (grant ANR-16-ASMA-0002) and DFG, Germany, (grant SCHA 550/9).

References
1. Aguado, F., Cabalar, P., Diéguez, M., Pérez, G., Vidal, C.: Temporal equilibrium logic: a

survey. Journal of Applied Non-Classical Logics 23(1-2), 2–24 (2013)
2. Aguado, F., Cabalar, P., Diéguez, M., Pérez, G., Vidal, C.: Temporal equilibrium logic with

past operators. Journal of Applied Non-Classical Logics 27(3-4), 161–277 (2017)
3. Aguado, F., Pérez, G., Vidal, C.: Integrating temporal extensions of answer set programming.

In: Proceedings of the International Conference on Logic Programming and Nonmonotonic
Reasoning. pp. 23–35. Springer (2013)

4. Bosser, A., Cabalar, P., Diéguez, M., Schaub, T.: Introducing temporal stable models for linear
dynamic logic. In: Proceedings of the International Conference on Principles of Knowledge
Representation and Reasoning. pp. 12–21. AAAI Press (2018)

5. Cabalar, P., Kaminski, R., Schaub, T., Schuhmann, A.: Temporal answer set programming on
finite traces. Theory and Practice of Logic Programming 18(3-4), 406–420 (2018)

6. Cabalar, P., Pearce, D., Valverde, A.: Reducing propositional theories in equilibrium logic to
logic programs. In: Proc. of the Portuguese Conference on AI. pp. 4–17. Springer (2005)

7. De Giacomo, G., Vardi, M.: Linear temporal logic and linear dynamic logic on finite traces.
In: Proc. of the International Joint Conference on AI. pp. 854–860. IJCAI/AAAI Press (2013)

8. Giordano, L., Martelli, A., Theseider Dupré, D.: Reasoning about actions with temporal
answer sets. Theory and Practice of Logic Programming 13(2), 201–225 (2013)

9. Harel, D., Tiuryn, J., Kozen, D.: Dynamic Logic. MIT Press (2000)
10. Henriksen, J., Thiagarajan, P.: Dynamic linear time temporal logic. Annals Pure and Applied

Logic 96(1-3), 187–207 (1999)
11. Heyting, A.: Die formalen Regeln der intuitionistischen Logik. In: Sitzungsberichte der

Preussischen Akademie der Wissenschaften, p. 42–56. (1930)
12. Levesque, H., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.: GOLOG: A logic programming

language for dynamic domains. Journal of Logic Programming 31(1-3), 59–83 (1997)
13. Lifschitz, V.: Answer set planning. In: Proceedings of the International Conference on Logic

Programming. pp. 23–37. MIT Press (1999)
14. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Transactions

on Computational Logic 2(4), 526–541 (2001)
15. Pnueli, A.: The temporal logic of programs. In: Proceedings of the Symposium on Foundations

of Computer Science. pp. 46–57. IEEE Computer Society Press (1977)
16. Pratt, V.: Semantical consideration on floyd-hoare logic. In: Proceedings of the Symposium

on Foundations of Computer Science. pp. 109–121. IEEE Computer Society Press (1976)
17. Ryan, M.: Efficiently implementing GOLOG with answer set programming. In: Proceedings

of the AAAI Conference on Artificial Intelligence. pp. 2352–2357. AAAI Press (2014)
18. Son, T., Baral, C., Nam, T., McIlraith, S.: Domain-dependent knowledge in answer set

planning. ACM Transactions on Computational Logic 7(4), 613–657 (2006)

