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Abstract

We propose a new temporal extension of the logic of Here-
and-There (HT) and its equilibria obtained by combining it
with dynamic logic over (linear) traces. Unlike previous tem-
poral extensions of HT based on linear temporal logic, the
dynamic logic features allow us to reason about the compo-
sition of actions. For instance, this can be used to exercise
fine grained control when planning in robotics, as exemplified
by GOLOG. In this paper, we lay the foundations of our ap-
proach, and refer to it as Linear Dynamic Equilibrium Logic,
or simply DEL. We start by developing the formal framework
of DEL and provide relevant characteristic results. Among
them, we elaborate upon the relationships to traditional linear
dynamic logic and previous temporal extensions of HT.

Introduction
Representing and reasoning about dynamic domains is a
central problem in AI, in particular, when it comes to cap-
turing actions and change. Two traditional approaches ad-
dressing this are Dynamic Logic (DL; Pratt 1976) and Lin-
ear Temporal Logic (LTL; Pnueli 1977). Their core differ-
ence lies in the explicit representation of actions. While LTL
accounts for actions implicitly by identifying them with log-
ical atoms, they are first-class objects in DL. For example,
the unloading (l to ¬l) of a gun when shooting (s) could be
expressed in DL or LTL as

l → [s]¬l and l ∧ s → ¬l , respectively.

While action s is simply an atom in LTL, it becomes part
of a modality in DL (similar to logical necessity �), say-
ing that l is false at the end of any state transition associated
with s (if l is true at its start). Moreover, in DL, complex
programs can be built from primitive actions via a few op-
erators. For instance, “while b do a” is expressed in DL as
‘(b?; a)∗ + ¬b?’. Such programs can then be part of modal
operators just as action s above. Hence, DL provides us
with a logical framework featuring procedural entities such
as serial composition as well as conditional and loop con-
structions. For instance, in planning, this has already demon-
strated its usefulness for execution monitoring and express-
ing control strategies, and has inspired corresponding lan-
guages like GOLOG (Levesque et al. 1997).
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In fact, in planning and similar settings, the full gener-
ality of DL is not even needed, and we may confine our-
selves to linear models resembling plans, or traces — just
like in LTL. This observation also motivated De Giacomo
and Vardi to propose a linear version of DL (2013), called
LDL, for capturing actions and change.1 Interestingly, LDL
is more expressive than LTL while sharing the same com-
plexity. In particular, LDL allows for encoding all temporal
connectives of LTL but, unlike the latter, has the same ex-
pressiveness as Monadic Second Order Logic plus a linear
order relation.

We draw upon LDL in what follows for defining an ex-
tension of the logic of Here-and-There (HT; Heyting 1930).
We refer to the resulting logic as (Linear) Dynamic logic
of Here-and-There (DHT for short). As usual, the equilib-
rium models of DHT are used to define temporal stable
models and induce the non-monotonic counterpart of DHT,
referred to as (Linear) Dynamic Equilibrium Logic (DEL2).
Given that HT is the host logic of Answer Set Programming
(ASP; Lifschitz 1999), our work thus lays the logical foun-
dations of future extensions of ASP with dynamic logic fea-
tures. In doing so, we actually parallel earlier work extend-
ing HT with linear temporal logic, called THT, that was
originally proposed by Cabalar and Vega in (2007) and just
recently led to the temporal ASP system telingo (Cabalar
et al. 2018). In fact, we show that THT (and its equilib-
rium counterpart TEL) can be embedded into our new logic
DHT (and DEL, respectively) — just as LTL can be put
in LDL. Moreover, we prove that the satisfiability problem
in DEL is EXPSPACE-complete; it thus coincides with that
of TEL but goes beyond that of LDL and LTL, both being
PSPACE-complete. In fact, the membership part of this re-
sult is obtained by means of an automata-based method for
computing DEL models. Finally, we show that the mono-
tonic base logic of DEL, namely DHT, allows us to decide
strong equivalence in DEL; this reinforces the adequacy of
the relation between both logics.

The rest of the paper is organized as follows. We start with

1In fact, De Giacomo and Vardi consider LDL over finite traces
in (2013); we will elaborate upon this setting in future work.

2We hope the reader does not get confused with Dynamic Epis-
temic Logic, which shares the same acronym. We prefer to keep
DEL as a derivation of TEL, similar to LDL from LTL and DHT
from THT.



the definition of the syntax of LDL under the semantics of
DHT, a weaker logic than LDL that acts as monotonic ba-
sis for DEL — in fact, the latter is defined by a selection
criterion on DHT models. We explain some basic proper-
ties of these formalisms, including the result showing that
DHT equivalence is a necessary and sufficient condition for
strong equivalence (i.e., equivalence of DEL theories un-
der any arbitrary context). In the next section, we present
a method for computing DEL models based on automata
construction. Then, we illustrate the behavior of DEL on
some variations of a well-known example from action theo-
ries. The next section discusses related work and, finally, we
conclude the paper and include some open topics for future
work.

Linear Dynamic Equilibrium Logic
Given a set P of propositional variables (called signature),
formulas ϕ are built in LDL as follows:

ϕ ::= p | ⊥ | > | [ρ]ϕ1 | 〈ρ〉ϕ1.

where p ∈ P is an atom; ϕ1 and ϕ2 are LDL formulas in
their turn; and [ρ] , 〈ρ〉 are modal operators built on path
expressions ρ such that

ρ ::= > | ϕ? | ρ1 + ρ2 | ρ1; ρ2 | ρ∗1
where ρ1, ρ2 are path expressions in their turn. As we can
see, each ρ is a regular expression formed with the truth con-
stant > plus the test construct ϕ? typical for Propositional
Dynamic Logic (Harel, Tiuryn, and Kozen 2000).

As usual, a theory is a set of formulas.
For the semantics, we start by defining a trace H over

signature P as a mapping H : N → 2P that assigns a set
of atoms to each natural number. Given traces H and H ′ we
write H ≤ H ′ if H(i) ⊆ H ′(i) for each i ≥ 0; accordingly,
H < H iff both H ≤ H ′ and H 6= H ′. A Here-and-There
trace (or HT trace) is a pair of traces 〈H,T 〉 where H ≤ T .
An HT trace can be seen as a kind of three-valued mapping
where, for each time point i, atoms in H(i) are “certainly
true,” atoms not in T (i) are “false” and atoms in T (i) are
“potentially true.” This explains the condition H(i) ⊆ T (i),
meaning that anything certainly true is also potentially true.
An HT trace 〈H,T 〉 is said to be total if H = T , that is, the
mapping becomes two-valued.

We proceed next to introduce the HT extension of LDL,
we call DHT. The definition of satisfaction of formulas in
DHT relies on a double induction. Given any HT trace M ,
we define the DHT satisfaction relation |= in terms of an ac-
cessibility relation for path expressions ‖ρ‖M whose extent
depends back on |=.

Definition 1 (DHT satisfaction). An HT trace 〈H,T 〉 sat-
isfies an LDL formula ϕ at time point k ∈ N, written
〈H,T 〉, k |= ϕ, if the following conditions hold:

1. 〈H,T 〉, k |= > and 〈H,T 〉, k 6|= ⊥
2. 〈H,T 〉, k |= p if p ∈ H(k) for any atom p ∈ P
3. 〈H,T 〉, k |= 〈ρ〉ϕ if 〈H,T 〉, i |= ϕ

for some i with (k, i) ∈‖ρ‖〈H,T 〉

4. 〈H,T 〉, k |= [ρ]ϕ if 〈H ′, T 〉, i |= ϕ

for all i with (k, i) ∈‖ρ‖〈H′,T 〉 and all H ′ ∈ {H,T}
where, for any HT trace M , ‖ ρ ‖M⊆ N2 is a relation on
pairs of time points inductively defined as follows.

5. ‖>‖M def
= { (i, i+ 1) | i ∈ N }

6. ‖ϕ?‖M def
= { (i, i) |M, i |= ϕ }

7. ‖ρ1+ρ2 ‖M def
= ‖ρ2 ‖M ∪ ‖ρ2 ‖M

8. ‖ρ1 ; ρ2 ‖M def
= { (i, j) | (i, k) ∈‖ρ1 ‖M and

(k, j) ∈‖ρ2 ‖M for some k }

9. ‖ρ∗ ‖M def
=

⋃
n≥0 ‖ρ∗ ‖Mn where

‖ρ∗ ‖M0
def
= { (i, i) | i ∈ N }

‖ρ∗ ‖Mn+1
def
= ‖ρ∗ ‖Mn ∪
{ (i, j) | (i, k) ∈‖ρ‖M and

(k, j) ∈‖ρ∗ ‖Mn for some k} �

A formula ϕ is a tautology (or is valid), written |= ϕ, iff
M,k |= ϕ for any HT trace and any k ∈ N. We call the
logic induced by the set of all tautologies (Linear) Dynamic
logic of Here-and-There (DHT for short). An HT trace M
is a model of an LDL theory Γ if M, 0 |= ϕ for all ϕ ∈ Γ.
Two LDL formulas ϕ,ψ are said to be equivalent, written
ϕ ≡ ψ whenever M,k |= ϕ iff M,k |= ψ for any HT trace
M and any k ≥ 0. This is the same as requiring that ϕ↔ ψ
is a tautology. Similarly, we say that two path expressions
ρ1, ρ2 are equivalent, also written ρ1 ≡ ρ2, when they sat-
isfy ‖ρ1 ‖M=‖ρ2 ‖M for any HT trace M . For instance, it
is not difficult to see that ρ∗ ≡ (>?) + (ρ; ρ∗).

For simplicity, we will not introduce here the semantics
of LDL although, as stated by the following proposition, it
just corresponds to DHT for total traces 〈T, T 〉.
Proposition 1. Let 〈H,T 〉 be an HT trace, k ∈ N a time
point, ϕ be an LDL formula, and ρ a path expression.

1. 〈T, T 〉, k |= ϕ in DHT iff T, k |= ϕ as in LDL

2. 〈H,T 〉, k |= ϕ implies 〈T, T 〉, k |= ϕ (or just T, k |= ϕ)
3. ‖ ρ ‖〈H,T 〉 ⊆ ‖ ρ ‖〈T,T 〉 = ‖ ρ ‖T where the latter repre-

sents the LDL accessibility relation for ρ and T . �

Item 1 means that any total HT trace, i.e., of the form
〈T, T 〉 can be seen as the LDL trace T . Moreover, it also
implies that any DHT tautology is also an LDL tautology,
so the former constitutes a weaker logic. In fact, it is strictly
weaker, as happens with HT versus classical logic: for in-
stance, p∨¬p is LDL valid but not DHT valid. Items 2 and 3
represent the so-called persistence property from intuition-
istic logic. Intuitively, this means that accessible worlds sat-
isfy the same or more formulas than the current world, where
T is “accessible” from H in HT. The intuitionistic reading
also explains the semantics of [ρ]ϕ which, being a kind of
implication (see definition of→ in next paragraph), it must
be satisfied in all accessible worldsH ′ ∈ {H,T}. One more
observation is that Items 1 and 2 together imply that ϕ is
DHT satisfiable iff it is LDL satisfiable. Since the latter is a
PSPACE-complete problem (De Giacomo and Vardi 2013),
the same applies to DHT satisfiability.



Boolean and LTL connectives can be defined as derived
operators in the following way:

ϕ ∧ ψ def
= 〈ϕ?〉ψ ϕ→ ψ

def
= [ϕ?]ψ

ϕ ∨ ψ def
= 〈ϕ? + ψ?〉> ¬ϕ def

= ϕ→ ⊥

♦ϕ def
= 〈>∗〉ϕ �ϕ def

= [>∗]ϕ

ϕ U ψ
def
= 〈(ϕ?;>)∗〉ψ ◦ϕ def

= 〈>〉ϕ

ϕ R ψ
def
= (ψ U (ϕ ∧ ψ)) ∨�ψ

A propositional formula φ is any combination of Boolean
connectives {⊥,>,∧,∨,→} with atoms. We allow a propo-
sitional formula φ as a path expression actually standing for
(φ?;>). An LTL formula is a combination of Boolean con-
nectives with atoms and {◦,�,♦,U,R}.

If we apply Definition 1 of DHT satisfaction to these de-
rived connectives, we obtain the following result.
Theorem 1. Let M = 〈H,T 〉 be an HT trace and k a time
point k ∈ N. Given the respective definitions of derived op-
erators, we get the following satisfaction conditions:

1. M,k |= ϕ ∧ ψ iff M,k |= ϕ and M,k |= ψ

2. M,k |= ϕ ∨ ψ iff M,k |= ϕ or M,k |= ψ

3. M,k |= ϕ → ψ iff 〈H ′, T 〉, k 6|= ϕ or 〈H ′, T 〉, k |= ψ,
for all H ′ ∈ {H,T}

4. M,k |= ¬ϕ iff 〈T, T 〉, k 6|= ϕ

5. M,k |= ◦ϕ iff M,k+1 |= ϕ

6. M,k |= ♦ϕ iff for some j ≥ k, we have M, j |= ϕ

7. M,k |= �ϕ iff for all j ≥ k, we have M, j |= ϕ

8. M,k |= ϕUψ iff for some j ≥ k, we have M, j |= ψ and
M, i |= ϕ for all i ∈ {k, . . . , j−1}

9. M,k |= ϕ R ψ iff for all j ≥ k, we have M, j |= ψ or
M, i |= ϕ for some i ∈ {k, . . . , j−1}

as well as the relation:
10. ‖φ‖M = { (i, i+ 1) |M, i |= φ } �

An important observation is that the satisfaction condi-
tions that we obtained in the previous result coincide with
the satisfaction relation of THT defined in (Aguado et al.
2013). This immediately implies the following result.
Corollary 1. Let ϕ be an LTL formula, M an HT trace
and k ≥ 0. Then, M,k |= ϕ under THT satisfaction iff
M,k |= ϕ under DHT satisfaction. �

Given that both monotonic logics share the same semantic
structures (HT traces) and coincide for the common syn-
tactic fragment (LTL theories), it seems natural to main-
tain the same definition of temporal equilibrium models as
in (Aguado et al. 2013), simply by using LDL formulas un-
der the DHT satisfaction relation instead.
Definition 2 (Temporal Equilibrium/Stable model). An HT
trace of the form 〈T, T 〉 is a temporal equilibrium model of
an LDL theory Γ iff it is a model of Γ and there is no other
model 〈H,T 〉 of Γ with H < T . �

If this is the case, we also say that T is a temporal stable
model of Γ.

(Linear) Dynamic Equilibrium Logic (DEL) is the non-
monotonic logic induced by temporal equilibrium models
of LDL theories. To illustrate non-monotonicity, consider
the formula [(¬p)∗] q has a unique temporal stable model
where p is false and q true in all the states, i.e., we conclude
�(¬p ∧ q) in the temporal stable model. Intuitively, ¬p acts
as default negation and [(¬p)∗] behaves as a conditional,
checking the consecutive states in which p cannot be proved.
Then, in all those states, q is derived. Since there is no evi-
dence for p at all, q is proved true in all states. Now, if we
include a second formula ♦p in the theory, we get infinite
temporal stable models following the pattern {q}∗ {p} ∅∗.
This is because ♦p adds one occurrence of p in an arbitrary
state k ≥ 0 (p is left false by default in all the rest) and,
for all previous states, since they satisfy ¬p, the formula
[(¬p)∗] q allows deriving q. As a result, the previous con-
clusion �(¬p ∧ q) is not derivable any more once we added
formula ♦p.

Since Definition 2 in DEL applied to LTL theories col-
lapses to Temporal Equilibrium Logic, TEL (Aguado et al.
2013), and since (Bozzelli and Pearce 2015) proved that
TEL satisfiability is EXPSPACE-complete, we immediately
obtain a lower bound on computational complexity:
Corollary 2. DEL satisfiability is EXPSPACE-hard. �

As explained before, any DHT tautology is also an LDL
tautology, but not vice versa. In some cases, however, we
can guarantee the other direction, as stated below.
Proposition 2. Let ϕ and ψ be LDL formulas without [·]
other than those of the form [>∗] (that is, derived operator
�). Remember that this rules out operators → and ¬, as
they are derived from [·] . Then, ϕ ≡ ψ in LDL iff ϕ ≡ ψ in
DHT. �

Notice that this covers the whole LTL language but with-
out implications or negation (the release operator R is de-
fined in terms of 〈·〉 and �). As an example dealing with
LDL formulas, the following equivalences:

〈ρ+ ρ′〉ϕ ≡ 〈ρ〉ϕ ∨ 〈ρ′〉ϕ
〈ρ; ρ′〉ϕ ≡ 〈ρ〉 〈ρ′〉ϕ
〈ρ∗〉ψ ≡ ψ ∨ 〈ρ〉 〈ρ∗〉ψ

hold in LDL, and so, in DHT too. For the analogous prop-
erties, however, we have that:

[ρ+ ρ′]ϕ ≡ [ρ]ϕ ∧ [ρ′]ϕ

[ρ; ρ′]ϕ ≡ [ρ] [ρ′]ϕ

[ρ∗]ψ ≡ ψ ∧ [ρ] [ρ∗]ψ

also hold in DHT, but we cannot use Proposition 2 to prove
them, since they contain [·] operators. As a counterexample
showing that, indeed, these operators behave differently in
LDL and DHT, note that p ∨ [p?]⊥ ≡ > in LDL, since the
left formula is another way of writing p∨¬p, while in DHT,
as we said before, this equivalence does not hold.

One important logical feature that emerges when dealing
with a non-monotonic logic is the concept of strong equiva-
lence (Lifschitz, Pearce, and Valverde 2001). Under a non-
monotonic inference relation, the fact that two theories Γ1



and Γ2 yield the same consequences is too weak to consider
that one can be “safely” replaced by the other, since the ad-
dition of new information Γ may make them behave in a
different way. Instead, we normally define a stronger notion
of equivalence, requiring that Γ1 ∪ Γ and Γ2 ∪ Γ have the
same behavior, for any additional theory Γ (providing a con-
text). An important property proved in (Lifschitz, Pearce,
and Valverde 2001) is that strong equivalence of proposi-
tional logic programs (and in fact, of arbitrary propositional
theories) corresponds to regular equivalence in the mono-
tonic logic of HT. This result reinforces the adequacy of the
logic of HT as a monotonic basis for equilibrium logic and
Answer Set Programming. Now, considering our setting, we
can still prove that DHT plays a similar role with respect
to DEL. Formally, we say that two LDL theories Γ1,Γ2 are
strongly equivalent if Γ1 ∪Γ and Γ2 ∪Γ have the same tem-
poral equilibrium models, for any additional LDL theory Γ.
Then, we get the following result.

Theorem 2. Two LDL theories Γ1 and Γ2 are strongly
equivalent iff Γ1 ≡ Γ2 in DHT.

Proof. Suppose Γ1 and Γ2 are DHT-equivalent and let Γ
be an arbitrary theory. Then Γ1 ∪ Γ and Γ2 ∪ Γ are DHT-
equivalent, too. Therefore Γ1 ∪ Γ and Γ2 ∪ Γ have the same
DHT models, and so, the same temporal equilibrium mod-
els, too.

Reciprocally, suppose that Γ1 and Γ2 are not DHT-
equivalent.

• First case: Γ1 and Γ2 are not LDL-equivalent. With-
out loss of generality, there exists a total HT-trace M =
〈T, T 〉 such that M, 0 |= Γ1 but M, 0 6|= Γ2. Let
Γ0

def
= {[>∗] (p ∨ ¬p) | p ∈ P}. It can be checked that

M is a temporal equilibrium model of Γ1 ∪ Γ0 but not of
Γ2 ∪ Γ0.

• Second case: Γ1 and Γ2 are LDL-equivalent. Without
loss of generality, there exists a DHT-modelM = 〈H,T 〉
such that M, 0 |= Γ1 but M, 0 6|= Γ2. The latter means
that there exists ϕ ∈ Γ2 such that M, 0 6|= ϕ. Let
Γ

def
= {ϕ → [>∗] (p ∨ ¬p) | p ∈ P}. It follows that

M, 0 |= Γ1 ∪ Γ because M, 0 6|= ϕ and 〈T, T 〉, 0 |=
[>∗] (p ∨ ¬p) for all p ∈ P . As a consequence, 〈T, T 〉
is not an equilibrium model of Γ1 ∪ Γ. Since Γ1 and Γ2

are strongly equivalent 〈T, T 〉 is not a temporal equilib-
rium model of Γ2 ∪ Γ. On the other hand, as Γ1 and Γ2

are LDL-equivalent, we get that 〈T, T 〉, 0 |= Γ2 ∪ Γ.
Since 〈T, T 〉 is not a temporal equilibrium model, there
exists an HT-traceM ′ = 〈H ′, T 〉, withH ′ < T such that
M ′, 0 |= Γ2 ∪ Γ. Therefore, M ′, 0 |= Γ2 and M ′, 0 |= Γ.
From this, we conclude that M ′, 0 |= Γ0 which amounts
to requiring H = T and we reach a contradiction. �

Automata-based computation of
Temporal Stable Models

Connections between temporal logic and automata theory
have been widely studied in the literature (Demri, Goranko,
and Lange 2016). More specifically, connections between
LTL and Büchi automata (Büchi 1962) have been used
in (Cabalar and Demri 2011) to compute the temporal stable

models of LTL formulas. This connection led to several re-
sults in complexity too. In this section, we extend the same
method to the setting of DEL. We begin by extending the
translation defined in (Aguado et al. 2008) to the case of
LDL. Given a set of propositional variables P we define the
extended signature as the set P ′ def= P ∪ {p′ | p ∈ P}. The
idea behind this extension is that while p ∈ P encodes the
satisfiability of a in the “there” part (p is potentially true), p′
would encode the satisfiability of p in the “here” component
(p is certainly true). Both DHT formulas ϕ and path expres-
sions ρ built on P can be encoded in ordinary LDL on P ′ by
applying a rewriting transformation (·)• defined as follows:
– ⊥• def

= ⊥ and >• def
= >

– p•
def
= p′, for any atom p ∈ P

– ([ρ]ψ)•
def
= [ρ]ψ ∧ [ρ•]ψ• and, as a consequence,

(ϕ→ ψ)•
def
= (ϕ→ ψ) ∧ (ϕ• → ψ•)

– Finally, (·)• is homomorphic for the rest of connectives in
formulas and in path expressions.

Lemma 1. Let 〈H,T 〉 be an HT trace and T ′ be the LDL
trace T ′(i) = T (i) ∪ {p′ | p ∈ H(i)} for all i ≥ 0. Then,
for any k ∈ N, any LDL formula ϕ and any path expression
ρ, the following properties hold:

1. 〈H,T 〉, k |= ϕ iff T ′, k |= ϕ•,
2. 〈T, T 〉, k |= ϕ iff T ′, k |= ϕ,
3. ‖ρ‖〈H,T 〉=‖ρ• ‖T ′ ,
4. ‖ρ‖〈T,T 〉=‖ρ‖T ′ . �

Note that, although Lemma 1 starts from an HT trace and
defines an LDL trace T ′, we can also get the other direc-
tion, that is, we can obtain arbitrary DHT models of ϕ by
considering LDL models T ′ of the formula:

ϕ′
def
= ϕ• ∧

∧
p∈P

[>∗] (p′ → p) (1)

and making the converse mapping H(i) = {p | p′ ∈ T ′(i)}
and T (i) = T ′(i) ∩ P . This one-to-one correspondence al-
lows us to use several results from the literature, like the
connection with Büchi automata. A Büchi automaton A is a
tuple A = (Q,Σ, Q0, δ, F ) where

1. Q is a finite set of states;
2. Σ is the language alphabet;
3. Q0 ⊆ Q is the set of initial states;
4. δ ⊆ Q× Σ×Q is the transition relation; and
5. F ⊆ Q denotes the set of accepting states.
A run on an infinite word w = s1s2 . . . (where si ∈ Σ) is
a sequence (q0, s0), (q1, s1), . . . such that (qi, si, qi+1) ∈ δ
for every i ≥ 0. We say that a run w is accepting if it starts
with some initial state q0 ∈ Q0 and there exists at least q ∈
F which is visited infinitely often during the run sequence.
The language accepted by a Büchi automaton A, denoted by
L(A), consists of the set of infinite words,w, for which there
exists an accepting run of A on w.

A related type of construction is the so-called Alternat-
ing Büchi automata, having the form A = (Q,Σ, Q0, δ, F )



whereQ, Σ,Q0 and F are as before, but δ is now a transition
function:

δ : Q× Σ 7→ B+(Q)

that maps a state and an input symbol to some element in
B+(Q), which denotes the set of all positive Boolean for-
mulas formed with states of Q as atoms (that is, we can
combine them with connectives ∧, ∨, > and ⊥). A run of
A on w = s0s1 . . . has the form of a tree, a directed graph
(V,E) with V ⊆ Q×N satisfying the following conditions:

1. it has an initial state q0 ∈ Q0 with (q0, 0) ∈ V as root
2. for all ((q, n), (q′, n′)) ∈ E we have n′ = n+ 1

3. for all (q, n) ∈ V , the set of successor states

{q′ | ((q, n), (q′, n+ 1)) ∈ E}

satisfies the formula δ(q, sn) specified by the transition
function.

A run (V,E) is accepting if all infinite paths (projected to
Q) through (V,E) includes infinitely many states in F . The
language L(A) consists of all words that have an accepting
run of A.

Extending the work of De Giacomo and Vardi (2013),
Faymonville and Zimmermann (2017) presented a transla-
tion from LDL into (non-deterministic) Büchi Automata, we
recall next:
Lemma 2 (De Giacomo and Vardi 2013, Faymonville and
Zimmermann 2017). Given an LDL formula ϕ, there is an
Alternating Büchi automaton Aϕ with linearly many states
in |ϕ|, whose accepting language corresponds to the set of
models of ϕ. �

This result is important because it allows us to adapt the
automata-based computation of temporal stable models for
LTL theories (Cabalar and Demri 2011) to the case of LDL
theories as described next. We begin strengthening the ϕ′
formula defined in (1) so we precisely capture non-total
DHT models of ϕ in LDL (under the extended signature
P ′). To this aim, we define the formula:

ϕ<
def
= ϕ• ∧

∨
p∈P
〈>∗〉 (¬p′ ∧ p).

Then, the following lemmas can be easily proved.
Lemma 3. The set of LDL models of any LDL formula ϕ
corresponds to the set of total DHT models of ϕ. �

Lemma 4. Let ϕ be an LDL formula. The set of LDL mod-
els of ϕ< corresponds to the set of non-total DHT models
of ϕ. �

Now, we can use the automata construction from (Fay-
monville and Zimmermann 2017) together with Lemmas 3
and 4 to define the following two Büchi automata:
• Aϕ is built on the alphabet Σ

def
= 2P (i.e. propositional

interpretations for signatureP) and accepts the DHT total
models of ϕ;

• Aϕ<
is built on the alphabet Σ′

def
= 2P

′
(i.e. propositional

interpretations for the extended signature P ′) and accepts
the non-total DHT models models of ϕ.

In order to combine both automata, we project the lan-
guage of Aϕ<

to P using the following mapping:
Lemma 5 (Cabalar and Demri 2011). Let h : Σ′ 7→ Σ be
a mapping between two finite alphabets such that h(s) =
s ∩ P for any input symbol (propositional interpretation)
s ∈ Σ′. Let us denote by h(Aϕ<) the result of applying h to
Aϕ< . Mapping h(Aϕ<) captures the DHT total models of ϕ
having an strictly smaller DHT model. �

Then, we obtain the following result adapted from (Ca-
balar and Demri 2011):
Theorem 3. The set of temporal stable models of an LDL
formula ϕ corresponds to the accepting language of the
Büchi automata resulting from the expression:

Aϕ ⊗ h(Aϕ<
),

where h(Aϕ<
) stands for the complement of the automaton

h(Aϕ<
) and ⊗ represents the product of automata. �

This automata-based method can be used to determine the
complexity of the DEL satisfiability problem.
Proposition 3 (Upper bound). Checking whether an LDL
formula has a temporal stable model can be done in EXP-
SPACE. �

With this proposition and Corollary 2, we can fix the com-
plexity of DEL satisfiability to EXPSPACE.

Yale Shooting Problem
Now that we have established the formal foundations of
our approach, let us illustrate it by means of a well-known
example, namely, a variation of the Yale Shooting Prob-
lem (Hanks and McDermott 1987).

A shooter can kill a turkey by loading and then shooting
a gun. Action load makes the gun to become loaded while
action shoot unloads the gun and may kill the turkey or, in
this version of the problem, may fail instead. A possible rep-
resentation of this problem in DEL could be:

�[load]loaded (2)
�(loaded → [shoot]unloaded) (3)
�(loaded → [shoot](dead ∨ ¬dead)) (4)

�(load ∨ ¬load) (5)
�(shoot ∨ ¬shoot) (6)

�(shoot ∧ load → ⊥) (7)
�(loaded ∧ ¬ ◦ unloaded → ◦loaded) (8)
�(unloaded ∧ ¬ ◦ loaded → ◦unloaded) (9)

�(alive ∧ ¬ ◦ dead → ◦alive) (10)
�(dead ∧ ¬ ◦ alive → ◦dead) (11)

�(loaded ∧ unloaded → ⊥) (12)
�(alive ∧ dead → ⊥) (13)

alive ∧ unloaded (14)

Notice that formulas of the form p ∨ ¬p are not tautologies,
but behave as a non-deterministic choice that allow for in-
cluding p or not in the temporal stable model. The formulas



(5)-(7) describe the generation of actions: we can perform
load , shoot or perhaps none of them, whereas concurrent ac-
tions are not allowed. If we apply the automata-construction
method on the previous theory, we get that its temporal sta-
ble models are captured by the automaton in Figure 1.

alive,
unloaded

start
alive,
loaded

dead ,
unloaded

dead ,
loaded

shoot

load

load

shoot

shoot

shoot

load

shoot

load

Figure 1: Büchi automaton capturing the temporal stable
models of Yale Shooting example.

As an example showing the expressive capabilities of
LDL expressions under DEL semantics, suppose that we
replace the actions generation (5)-(7) by a program that in-
structs the shooter to consecutively load and shoot the gun
while the turkey is alive . We can achieve this behavior by
replacing (5)-(7) by the formula:

[alive∗] [unloaded?] 〈load; shoot〉> (15)

and the temporal stable models are displayed in Figure 2.

alive,
unloaded

start
alive,
loaded

dead ,
unloaded

load

shoot
shoot

Figure 2: Büchi automaton capturing the temporal stable
models of our Yale Shooting example replacing actions gen-
eration by (15).

In order to show that DEL is more expressive than TEL,
suppose now that we want the shooter to shoot in (at least)
every even time instant. To this aim, we keep the original
theory (2)-(14) (including actions generation) but add this
time the formula [(>;>)∗] shoot. The resulting automaton
is displayed in Figure 3. To obtain a similar behavior in
TEL, we would need to introduce auxiliary atoms.

alive,
unloaded

start
alive,

unloaded

alive,
loaded

dead ,
unloaded

dead ,
unloaded

dead ,
loaded

shoot

shoot

loadshoot

shoot

shoot

shoot

loadshoot

Figure 3: Büchi automaton capturing the temporal stable
models of our Yale Shooting example plus the formula
[(>;>)∗] shoot.

Related Work
Extending logic programming (LP) with modal temporal op-
erators is not new. This research area dates back to the late
1980s with several approaches (Gabbay 1987; Abadi and
Manna 1989; Orgun and Wadge 1992; Baudinet 1992) en-
riching Prolog with temporal modalities from LTL – see the
survey in (Orgun and Ma 1994). However, most of them im-
pose some syntactic restrictions and disregard the use of de-
fault negation. The already mentioned TEL (Cabalar and
Vega 2007) constituted the first non-monotonic semantics
applicable to arbitrary LTL theories with a strong connec-
tion to LP and, in particular, to Answer Set Programming
(ASP). As proved in (Cabalar, Diéguez, and Vidal 2015),
propositional TEL can be seen as a (monadic) fragment of
Quantified Equilibrium Logic (Pearce and Valverde 2006),
the logical foundation of ASP for first order theories and
can also be encoded into propositional Infinitary Equilib-
rium Logic (Harrison et al. 2017), also used for describing
the semantics of the ASP input language (Harrison, Lifs-
chitz, and Yang 2014). Moreover, (Cabalar, Diéguez, and Vi-
dal 2015) also proved that TEL coincides with the temporal
Prolog extension TEMPLOG (Baudinet 1992) for the com-
mon language fragment in which the latter is defined. Since
we have shown that TEL is simply a fragment of DEL, all
these results are still applicable to our current proposal.

Apart from approaches relying on LTL modalities, the
combination of Dynamic Logic operators with ASP was al-
ready proposed in (Giordano, Martelli, and Theseider Dupré
2013). In this work, however, the underlying temporal logic
was Dynamic Linear Time Temporal Logic (Henriksen and
Thiagarajan 1999) (dLTL3) which, although it shares with
LDL the linear structure of time points, differs from the lat-
ter in keeping the separation between actions/programs in-

3Since acronyms are very similar, we use initial lowercase ‘d’
for all formalisms related to (Henriksen and Thiagarajan 1999).



side modalities versus atoms/formulas outside them, as in
the original formulation of Dynamic Logic. Additionally,
dLTL does not allow the test ‘?’ construct but allows ex-
tending the until U operator for dealing with programs. Al-
though the approach of Giordano, Martelli, and Theseider
Dupré (2013) was not defined for arbitrary dLTL theories
(its semantics relied on a syntactic reduct and a fixpoint
computation), Aguado, Pérez, and Vidal (2013) introduced
an extension based on equilibrium logic, called Dynamic
Linear Time Equilibrium Logic (dTEL), that covered any
dLTL theory. Due to the close relation between dTEL and
DEL, both in their syntax using Dynamic Logic operators
and in their equilibrium-based semantics, an obvious ques-
tion is whether a formal relation can be established. In the
rest of the section, we show that, in fact, dTEL can also be
encoded into DEL, as happened with TEL, proving in this
way the high expressive power of our current proposal.

The definition of dTEL follows similar steps to the other
modal extensions of equilibrium logic. It starts from a modal
extension of HT, called in this case dTHT, and then defines
a model selection criterion to obtain the corresponding equi-
librium models. The language of dLTL is defined with re-
spect to two disjoint sets of atoms P and A, corresponding
to (truth) propositions and actions. The former are used to
build temporal formulas respecting the grammar:

ϕ ::= ⊥ | p |ϕ ∨ ψ |ϕ ∧ ψ |ϕ→ ψ |ϕUπ ψ |ϕRπ ψ,

where p ∈ P , ϕ,ψ are dLTL formulas and π is a test-free
program as in Dynamic Logic, that is, π is built from the
grammar:

π :: = a |π1 + π2 |π1;π2 |π∗1 .

where a ∈ A and π1, π2 are programs in their turn. We write
prg(A) to denote the set of possible programs that can be
built from A. When excluding the use of binary modal op-
erators such as ϕUπψ and ϕRπψ, we denote the resulting
sublanguage4 as dLTL−.

Rather than relying on traces, the semantics of dTHT is
interpreted on words built overA. We denote byA∗ its finite
words, by Aω its infinite words, and let A∞ = A∗ ∪ Aω .
Given an infinite word σ ∈ Aω of the form σ = a0a1 . . . ,
we denote its i-th symbol as σ(i)

def
= ai and its finite prefix

of length i as pref i(σ)
def
= a0a1 . . . ai−1. The 0-length prefix

pref 0(σ) corresponds to the empty word ε. The set of all
finite prefixes of σ is defined as:

prefs(σ)
def
=

⋃
i∈N

pref i(σ).

The mapping ||·|| associates to each program π a set of finite
words, viz. || · || : prg(A)→ 2A

∗
, and is defined as follows:

• ||a|| = {a}
• ||π0+π1|| = ||π0|| ∪ ||π1||
• ||π0 ;π1|| = {τ0τ1 | τ0 ∈ ||π0|| and τ1 ∈ ||π1||}

4In (Henriksen and Thiagarajan 1999) it is proved that, in the
non-HT case, ϕUπψ can be omitted from the language without
losing expressiveness. However, no translation is provided.

• ||π∗|| =
⋃
i∈N ||πi|| where

||π0|| = {ε} and for every i ∈ N
||πi+1|| = {τ0τ1 | τ0 ∈ ||π|| and τ1 ∈ ||πi||}.

A dTHT interpretation is a structure 〈σ, Vh, Vt〉 where
σ denotes an infinite word and, in this setting, Vh, Vt :
prefs(σ) 7→ 2P are two valuation functions satisfying
Vh(τ) ⊆ Vt(τ) for all τ ∈ prefs(σ). Let M = 〈σ, Vh, Vt〉
be a dTHT interpretation, τ ∈ prefs(σ) a prefix of σ and
let ϕ be a dLTL formula. Then, the satisfaction relation
M, τ |= ϕ is defined as follows (Henriksen and Thiagara-
jan 1999):
• M, τ |= p if p ∈ Vh(τ) for any p ∈ P;
• M, τ |= ϕ ∧ ψ if M, τ |= ϕ and M, τ |= ψ;
• M, τ |= ϕ ∨ ψ if M, τ |= ϕ or M, τ |= ψ;
• 〈σ, Vh, Vt〉, τ |= ϕ → ψ if for all w ∈ {h, t}, if
〈σ, Vw, Vt〉, τ |= ϕ then 〈σ, Vw, Vt〉, τ |= ψ;

• M, τ |= ϕUπ ψ if there exists τ ′ ∈ ||π|| such that ττ ′ ∈
prefs(σ) and M, ττ ′ |= ψ. Moreover, M, ττ ′′ |= ϕ for
every τ ′′ such that ε ≤ τ ′′ < τ ′.

• M, τ |= ϕRπ ψ if for every τ ′ ∈ ||π|| such that ττ ′ ∈
prefs(σ), either M, ττ ′ |= ψ or there exists τ ′′ such that
ε ≤ τ ′′ < τ ′ and M, ττ ′′ |= ϕ.
The following formulas are dTHT valid.

¬ϕ ↔ ϕ→ ⊥ (16)
〈ρ〉ψ ↔ >Uρψ (17)
[ρ]ψ ↔ ⊥Rρψ (18)

◦ψ ↔
∨
a∈A
〈a〉ψ (19)

ϕ U ψ ↔ ϕUA
∗
ψ (20)

ϕ R ψ ↔ ϕRA
∗
ψ (21)

�ψ ↔ [A∗]ψ ↔ ⊥ RA
∗
ψ (22)

♦ψ ↔ 〈A∗〉ψ ↔ > UA
∗
ψ (23)

where, in (19), we are assuming a finite number of actions
in A.

As done before with traces, the following relations are de-
fined between Vh and Vt:
1. M is said to be total if Vh = Vt;
2. Vh ≤ Vt if Vh(τ) ⊆ Vt(τ) for all τ ∈ prefs(σ);
3. Vh < Vt if Vh ≤ Vt and Vh(τ) 6= Vt(τ) for some τ ∈

prefs(σ).
Definition 3 (Aguado, Pérez, and Vidal 2013). A total tem-
poral interpretation M = (σ, Vt, Vt) is a Dynamic Linear
Time Equilibrium Model of a formula ϕ if M |= ϕ and
there is no Vh < Vt such that 〈σ, Vh, Vt〉 |= ϕ. �

Although this temporal extension of ASP has been less stud-
ied than TEL, most of the properties already considered
in this paper such as the theorem of strong equivalence,
complexity or automata-based computation methods can be
adapted from TEL. Moreover, the following result can be
easily obtained.



Lemma 6. Star-free dTEL is equivalent to TEL. �

We define next a translation g(ϕ) that transforms a dLTL
formula ϕ into an LDL formula and that allows us to encode
dTEL in DEL. This translation is defined in combination
with a second one, g′ that takes a dLTL program π on A
and an dLTL formula ϕ as arguments and returns an LDL
path expression g′(π, ϕ).

Definition 4 (g- and g′-translation). We define the transla-
tions g and g′ as follows.

g(p)
def
= p for any p ∈ P

g(ϕ ∧ ψ)
def
= g(ϕ) ∧ g(ψ)

g(ϕ ∨ ψ)
def
= g(ϕ) ∨ g(ψ)

g(ϕ→ ψ)
def
= g(ϕ)→ g(ψ)

g(ϕ Uπ ψ)
def
= 〈 g′(π, ϕ) 〉 g(ψ)

g(ϕ Rπ ψ)
def
= 〈 g′(π, ψ) 〉 g(ψ ∧ ϕ)

∨ [ g′(π,>) ] g(ψ)

g′(a, ϕ)
def
= g(ϕ)?; a where a ∈ A

g′(π1 + π2, ϕ)
def
= g′(π1, ϕ) + g′(π2, ϕ)

g′(π1;π2, ϕ)
def
= g′(π1, ϕ); g′(π2, ϕ)

g′(π∗, ϕ)
def
= g′(π, ϕ)∗

Let us define now the model correspondence. Given a
dTHT interpretation M = (σ, Vh, Vt) on A and P , being
σ the infinite word a0a1 . . . , we associate the DHT inter-
pretation M ′ = 〈H ′, T ′〉 on signature A ∪ P defined as:

H ′(i)
def
= { σ(i) } ∪ Vh( pref i(σ) )

T ′(i)
def
= { σ(i) } ∪ Vt( pref i(σ) ).

for all i ∈ N. Note that any action a ∈ A at any situation
i ∈ N will either be true both in H ′(i) and T ′(i), because
it happens to be σ(i) = a, or it will be false in H ′(i) and
T ′(i). As a result, the excluded middle axiom is satisfied for
all actions, that is, M ′, i |= a ∨ ¬a for any i ∈ N and for all
a ∈ A.

This model correspondence is one to one: given any DHT
interpretation M ′ = 〈H ′, T ′〉 we can obtain back its corre-
sponding dTHT interpretation M = (σ, Vh, Vt):

σ(i)
def
= H(i) ∩ A;

Vh(pref i(σ))
def
= H(i) ∩ P;

Vt(pref i(σ))
def
= T (i) ∩ P.

Based on this model correspondence, we prove the fol-
lowing lemmas:

Lemma 7. Given a dTHT interpretation M = (σ, Vh, Vt)
and the corresponding DHT interpretation M ′ = 〈H ′, T ′〉
as defined above, and given τ = (a0; · · · ; ai) ∈ prefs(σ),
then, for all test-free path expressions ρ, the following con-
ditions are equivalent:

1. (ai+1; · · · ; aj) ∈ ‖ρ‖ and
(a0; · · · ; ai; ai+1; · · · ; aj) ∈ prefs(σ)

2. (i, j) ∈‖ρ‖M ′ . �

Lemma 8. Let M = 〈H,T 〉 be a DHT interpretation and
let ψ be an LDL formula. For all test-free path expressions ρ
and for all i, j satisfying 0 ≤ i ≤ j, the following conditions
are equivalent:

1. (i, j) ∈‖ρ‖M and for all i ≤ k < j, M,k |= ψ,
2. (i, j) ∈‖g′(ρ, ψ)‖M . �

Theorem 4. Given a dTHT interpretationM = (σ, Vh, Vt)
and the corresponding DHT interpretation M ′ = 〈H ′, T ′〉,
and given τi = pref i(σ), we have:
M, τi |= ϕ in dTHT iff M ′, i |= g(ϕ) in DHT. �

This result shows that we can embed dTHT into DHT
thanks to the combined g/g′ translation. In other words,
given a dTHT formula ϕ we can obtain its dTHT models
by looking at the DHT models of g(ϕ) using the correspon-
dence we have established between both types of models.
It is not difficult to see that if we further select the DEL-
equilibrium models of g(ϕ) we obtain precisely the original
dTEL equilibrium models of ϕ. The only particularity in the
models selection performed in DHT and g(ϕ) is that actions
a ∈ A may occur as regular atoms in H or T but, as we said
before, they satisfy the excluded middle action (an action a
is both in H(i) and T (i) or in none of them) so they do not
interfere in the model minimization. As a result, we get:

Corollary 3. The set of dTEL equilibrium models of a
dTHT formula ϕ coincides with the set of (the correspond-
ing) DEL equilibrium models of g(ϕ). �

Conclusions
We have introduced an extension of the Logic of Here-and-
There with a linear version of Dynamic Logic (LDL) due to
De Giacomo and Vardi (2013). The resulting Dynamic logic
of Here-and-There (DHT for short) serves us as the (mono-
tonic) basis of its non-monotonic extension, called Dynamic
Equilibrium Logic (DEL). Our formal elaboration of DHT
and DEL greatly benefits from our result showing that for-
mer temporal extensions of the Logic of Here-and-There
and Equilibrium Logic, viz. THT and TEL, constitute frag-
ments of our new logics. Along this paper, we thus devel-
oped an automata-based computation method for DEL and
also obtained key results on strong equivalence and compu-
tational complexity. As a consequence, it turns out that DEL
is more expressive than TEL while sharing the same com-
plexity.

The obvious practical interest of our work stems from
its relation to Answer Set Programming (ASP). Today’s
ASP solvers can be seen as implementations of Equilibrium
Logic. Any propositional formula can be translated into a
(disjunctive) logic program, whose answer sets correspond
to the equilibrium models of the original formula. The anal-
ogous approach led recently to the temporal ASP solver
telingo (Cabalar et al. 2018) that computes finite traces in
TEL. In view of the presented results, our next steps thus
foresee the definition of a normal form like in (Cabalar



2010), which is very close to logic programming, and also
extend the recent result in (Cabalar et al. 2018) on TEL
on finite traces to the DEL setting. This will result in a
powerful system for representing and reasoning about dy-
namic domains, not only providing an effective implemen-
tation of DEL but, furthermore, a platform for action and
control languages, likeA,B, C (Gelfond and Lifschitz 1998;
Giunchiglia et al. 2004) or GOLOG (Levesque et al. 1997).
An encoding of GOLOG in ASP was proposed in (Son et al.
2006).

Moreover, our approach paves the way for further exten-
sions stemming from the area of (propositional) Dynamic
Logic such as Propositional Assignments (Balbiani, Herzig,
and Troquard 2013), Dynamic Logic with repeating and
looping (Harel and Sherman 1982), or the use of timed reg-
ular expressions (Asarin, Caspi, and Maler 2002) that could
potentially be incorporated into our approach together with
other variants of LDL (Weinert and Zimmermann 2016;
Faymonville and Zimmermann 2017). In fact, LDL is the
core of ForSpec (Armoni et al. 2002), a specification lan-
guage widely used for model checking in industrial domains.
By a simple replacement of LDL by DEL, it should be pos-
sible to extend ForSpecwith default negation in a very nat-
ural way. This would provide, in principle, a simple method
for introducing non-monotonicity in the specifications.

Following a more theoretical line of research, we also see
a more extensive study of the Here-and-There basis support-
ing DEL as an interesting avenue of future research. Note
that DHT lacks the symmetry inherent in THT because the
model is involved in the DHT accessibility relation. A sound
and complete axiomatic system would help us to have an al-
ternative view of the properties inherent to DHT.
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