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Abstract

This paper presents some preliminary work on causal reason-
ing about actions studying the causes of derived formulas in a
given transition, in terms of subsets of the performed actions.
We present a general top-level semantics that allows deciding
which actions have resulted relevant for establishing the truth
value of a given formula. After that, we propose a practi-
cal implementation that deals with a basic causal rule syntax,
translated afterwards into logic programming under answer
sets semantics.

Introduction
The appeal to causality has sporadically appeared through-
out the evolution of research in actions and change in a
more or less explicit way. For instance, McCarthy’s semi-
nal paper (McCarthy 1959) already included a definition of
causal assertions, which consisted in delays of an unspeci-
fied number of situations between the condition (or cause)
and its resulting effect. Another example is the applica-
tion of the so-called causal minimizations (Lifschitz 1987;
Haugh 1987) which were proposed among the first solutions
to the well known Yale Shooting Problem (Hanks & Mc-
Dermott 1987). However, the real interest about causality
was raised by the study of the ramification problem, i.e.,
the need to provide a compact description of the indirect
effects of actions. The first attempt of encoding indirect ef-
fects was representing state constraints as material implica-
tions. This led to undesired results due to the interference
between the inertia default and the contrapositive nature of
classical implication. As a result, several researchers pro-
posed replacing material implications by different kinds of
causal conditionals which avoided the contrapositive behav-
ior. This idea, in fact, motivated a prolific trend of causal for-
malisms, just to cite some of them (McCain & Turner 1995;
Lin 1995; Thielscher 1997; Otero 1997; Denecker, Thesei-
der, & van Belleghem 1998; Schwind 1999; Shanahan 1999;
Giunchiglia et al. 2002), that has continued to the present.

Although all these solutions have successfully solved the
interaction between the frame and the ramification prob-
lems, there exists, however, a surprising common lack in all
of them. Causality is only used as a technical tool, but no
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real interest about causal information is shown. To put an
example, we may use causal rules to deduce, for instance,
that after shooting a gun, the turkey results dead, but in most
cases we cannot even represent that the shot was the cause
for that effect. This apparently subtle difference in the kind
of information we want to infer may easily become a prob-
lem of elaboration tolerance. For instance, if we only per-
formed a shot, it is clear that this must be the cause for the
turkey’s death. However, what if several shots where simul-
taneously performed, but only one on a loaded gun? Fur-
thermore, what would happen if the turkey’s death is not a
direct effect of the shots, but of an arbitrary chaining of in-
direct effects? Clearly, it should be possible to extract the
information of which actions caused which derived effects
from the causal rules we use for representing the domain.

In this paper, we propose a top-level semantics for de-
ciding the causes or reasons of each derived fluent formula
in terms of subsets of the performed actions. Using a sim-
ilar device to (Otero 1997), this semantics deals with two
components: the standard truth valuation, plus a causal re-
lation used for fixing the causes of each formula. We show
how this definition of cause(s) of a formula is essential for
a compact representation of causal rules, since it allows de-
scribing effects that result from the causation of a complex
expression, and not just of an action occurrence or a fluent
literal. To illustrate the use of this semantics, we propose an
implementation using logic programming under answer sets
semantics as an underlying nonmonotonic formalism.

The rest of the paper is organized as follows. In the next
section, we explain in detail our main goals presenting some
motivating examples. After that, we proceed to describe the
syntax and semantics for the top-level monotonic formalism.
Using some transformations from this formalism, the next
section shows how a basic causal action language similar to
language � (Giunchiglia et al. 2002) can be translated into
a suitable logic program that allows deducing the causes of
each fluent effect. Finally, we include a brief discussion and
some references to related work.

Some motivating examples
In order to make our goals more precise let us see a simple
example.
Example 1 (The lamp circuit)
Consider the circuit in Figure 1, introduced in (Thielscher



1997), where a lamp light bulb is on if and only if two
switches are closed. �

¬sw(1) sw(2)

¬light

Figure 1: A simple circuit.

Assume that in some successor state we get the configu-
ration represented in the picture. Our purpose is to represent
not only the information described by this state (that is, the
fluent values), but also how this information has been ob-
tained. That is, which facts have been caused by which per-
formed actions, or are just due to inertia. To stress the utility
of this, assume that a different person is in charge of toggling
each switch, and that a jury must decide who has turned off
the light, being legally responsible of some kind of damage.
Things can be very different depending on the actions we
have performed to achieve this situation. For instance, if we
have toggled �������	� while ������
�� was open, it seems that the
light has simply persisted false, and we cannot blame the
toggling for this. However, if we moved ������
�� while �������	�
persisted closed, we should obtain that this action is respon-
sible of turning off the light. An interesting case is the one
in which both switches were toggled: the light was off and
also results off, but disconnecting �����
�� becomes a cause
for that, provided that the other person had closed ��������� .
This case has an additional interest: it illustrates the fact that
we sometimes differentiate a repetition of value due to cau-
sation from a real physical persistence.

Let us further consider a pair of new situations. For in-
stance, having both switches connected, if we perform a si-
multaneous toggling, then any of the two actions seems to
be a valid reason for the light being off. This means that
we may have several different actions for the same effect.
However, if we toggle both switches again, the two toggling
actions together act as a cause for the light being on. This
illustrates that we will need representing each cause a a set
of simultaneously performed actions. Therefore, for each
effect, we will deal with a set of causes, being each cause a
set of performed actions.

In order to obtain all this information, we should avoid
as much as possible the explicit representation of the direct
causal influences inside the rule descriptions. For instance,
in example 1, we know that the cause for ��������� true will be
any cause we can infer for the expression ������
������������	� .
So, we expect handling something like:

������
������������	� causes ������� �

rather than a multiple set of rules like:

������
�� causes �!����� � if �������	�
�������	� causes �!����� � if ������
��
������
��#"$��������� causes ���������

which are closer to the description of possible transitions.

Syntax and semantics
The syntax is described starting from a finite set % of atoms
called the signature and organized in two disjoint sorts, %'&(*)�+

, where
(

and
+

respectively contain all the action and
the fluent names. Although, we will sometimes use variable
arguments for atom names later, we assume that they are
actually replaced by all their possible ground instances.

An useful concept for dealing with concurrent actions is
the notion of compound action, formally defined as any ele-
ment of ��, , that is, any subset of

(
. For instance, the com-

pound action -���.��/�0��1/��
��2"���.��/�0��1/�����#3 would point out the si-
multaneous toggling of both switches. As a remark on no-
tation, in the rest of the paper we assume that capital letters4 "657"$89"�::: will denote compound actions, whereas letters; "=<�"6>?"::�: will be used to denote elements of

(
, called ele-

mentary actions as opposed to “compound”. Letters �@"$��":�::
will stand for fluents whereas AB"6C0"6DE"::�: will indistinctly de-
note any atom in the signature. It will also be convenient
to represent sets of compound actions, being greek lettersF "6GH":�:: reserved for that purpose.

A formula is recursively defined as follows. Given any
atom AJIK% , any

4 IJ��, , and two arbitrary formulas L andM
, then the following expressions are also formulas:

A�"ON�"QPRLB"OLS� M " 4 L
As we can see, the only non-classical construction is

4 L
which can be read as “

4
caused L ” and intuitively points out

that
4

is “responsible” of L being true. The rest of classical
operators like TU"VW"#X or Y are defined in terms of �U"=P andN in the usual way. Additionally, we will also consider the
following (non-classical) derived constructions:

Z L [\^]& _`ba�c$d
4 L (1)

e L [\^]& L��QP Z L (2)

The expression
Z L (read “caused L ”) just points out that L

has been caused true, regardless the action(s) involved in that
process. Analogously,

e L (read “non-caused L ”) is used to
represent that formula L is true without any causal interven-
tion. In fact, when we incorporate later the inertia assump-
tion,

e L will also mean that L has persisted true.
The language f represents the set of all the syntactically

valid formulas (given an implicit signature % ). A formula
will be called classical if it does not contain causal operators
like

4 L�" Z L or
e L .

The semantics relies on the basic concept of interpreta-
tion, defined as a pair g h�"�i�j . Component h is a standard truth
valuation function hlkm%onqpr- t " f 3 . We write hs (resp.h , ) to stand for the submapping of h exclusively applied on
fluents (resp. actions). Clearly, h s corresponds to the usual
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(where F��&�� , G �&�� )� ��� �L
	 M

f � f F t F t �
f � f � f � f � f �
f G f � f � F ) GB� f G f G
t G f � f F t � F�� GB� t G
t � f � f F t F t �

�� ��N � & f �
�� � 4 L@� &

�
t - 4 3 if  � ��Lq� & t F and

4 I F
f -��03 otherwise

Figure 2: valuation of formulas.

idea of a fluent state, whereas h , can be handled as a partic-
ular compound action, - ; I (�� h � ; �W& t 3 , which contains
the currently performed actions.

The other component of an interpretation, i , is called the
causal relevance relation and defined as i��l�	,�� % . That
is, any element in i has the shape � 4 "�Aq� with the intended
meaning: “

4
has caused the truth value that h assigns to A .”

A useful alternative way of understanding relation i is as a
set of boolean mappings i ` k % nqp - t " f 3 , one for each
compound action

4
, so that i ` � Aq�H& t iff � 4 "!A@� I i .

Once the idea of interpretation g h�"�i�j is defined, the next
usual step is introducing the concept of valuation of any ar-
bitrary formula L . For the truth value, we can just defineh ��L@� for propositional connectives in the usual way. How-
ever, in order to define h � 4 L@� we will also need to provide
a valuation of causal relevance. To this aim, we can extend
each function i ` in a similar way as we did for h , that is,
applying i ` ��L@� for arbitrary formulas. For a more compact
representation, another possibility is representing the causal
relevance for L , i@��L@� , as a set of compound actions, so that4 IQiq��L@� iff i ` ��Lq� & t.

Definition 1 (valuation function) Given an interpretation� & g h�"6i j we define its corresponding valuation function
as the mapping �� k@f n p - t " f 3�� � c d which assigns to
each formula L the pair of values h ��L@� i@��L@� following the
tables in Figure 2. �

The set operation F�� G appearing in the table for con-
junction is defined as follows:

F�� G [\^]& - 4 ) 5 � 4 I F "65 I�GR3
As we can see, truth valuation of classical connectives is

the standard one. Note also that negation just changes the
truth value without affecting the causal information. Given
this feature, it is easy to see that the table for L�T M

, derived
from its definition as P ��PRLJ� P M � , would have the same

structure than the table of conjunction changing all1 the oc-
currences of t by f and vice versa.

Apart from the tables, we also include a restriction in the
valuation of any action atom ; :

i@� ; � &
� -	- ; 3�3 if h � ; � & t

-��03 otherwise

We say that an interpretation
� & g h�"6i�j satisfies a formulaL , written

� � & L , iff h ��L@�Q& t and that
�

is model of a
theory � iff it satisfies all the formulas in � . A tautology is
a formula L such that

� � &lL for any interpretation
�
.

The table of conjunction is the most important and com-
plex part of the valuation function. For instance, we distin-
guished between empty and non-empty ( F "6G ) sets of com-
pound actions. Besides, the reader has probably observed
the particular arrangement of values in the L column and theM

row: we have located non-empty sets F and G in the mid-
dle. This arrangement is interesting because allows showing
a diagonal symmetry in the table values, from the left-top
corner to the right-bottom one. For a better understanding
of the table, we will exhaustively study its content using the
light bulb scenario as an example.

Consider the formula ������
��b�O�������	� and, as a first case,
assume that one of the switches, e.g. �������	� , is off but not
caused by any action:  � ����������6� & f � (think about the ab-
sence of action as a physical persistence). Clearly, the con-
junction ������
����Q�������	� must be false regardless any move-
ment in ������
�� . Furthermore, we do not need any particular
cause to justify that ������
��	���������� is false, i.e., its valuation
must be f � . This observation is important because the possi-
ble causes of ������
��?� �������	� will become later the causes for������� � . So, if we disconnect ������
�� , for instance, we would
not want to infer that the �!����� � is caused to be off, knowing
that �������	� was already disconnected! This “short circuit”
behavior in persistence can be easily observed on the table:
the first row and the first column are fixed to f � .

Assume now that one switch, e.g. �������	� , persists con-
nected,  � ����������6� & t � (the leftmost column in the ta-
ble). In such a case, it seems clear that the valuation of�����
��$�H��������� is exclusively established by ������
�� (just think
about the circuit as if we would have never had a switch, but
a continuous wire instead). This is reflected in the leftmost
table column, where we just find a copy of the values for the
first conjunct ������
�� .

Let us consider now those situations in which no switch
has persisted (the four positions in the center square of the
table values). These cases result from considering the con-
current execution of both toggling actions. Let us begin
with the case  � ���������	���7& f F while �����
�� is connected.
Of course, we must get that ������
�� � �������	� is false (the������� � will be off), but the reason for this is exclusively due
to �������	� , i.e., to any cause in F . After all, ������
�� is not
“responsible” for the light being off, since it is connected
and this would be required for turning the light on. If, in-
stead of being connected, ������
�� had also been caused to be
off, but due to another set of causes G , then the falsity of

1Including the � column and the � row.



������
����Q�������	� could be indistinctly attributed to any of the
switches. In other words, any cause in F or in G is a cause
of the conjunction – the valuation must be f � F ) GB� .

Ruling out symmetric situations, the only remaining case
is the one in which both switches result connected by some
causal intervention: �� �������
��6� & t G and �� ����������6��& t F .
For simplicity sake, assume we have only one reason in each
case: F & - 4 3 and G'& -�5 3 are singletons. The conjunc-
tion �����
��@� ��������� will become true, but the reason for this
is the simultaneous execution of actions in

4
and 5 , i.e., the

compound action
4 ) 5 . So the resulting valuation would

be - 4 ) 5 3 . When F and G contain multiple reasons, we
just consider all the combinations

4 ) 5 for any
4 I F and

any 5 I G .
As for the valuation of the 0-ary connective N , we sim-

ply fix its truth value as false and consider that it is never
caused. The reason for this is that N is understood as a
constant, and so, its value does not depend on any causal
process. Similarly, constant Y , defined as PHN , is always
valuated as t � . An important consequence of this is that
the treatment of tautologies and inconsistences differs now
from classical logic. For instance, formula A9T PqA cannot be
simply replaced by Y , as we could do in propositional cal-
culus. The reason for this is that, although both expressions
are always true, their causal valuation may easily differ: it is
enough with having any cause for A .

Finally, let us focus on the valuation of causal expressions
like

4 L , considering first its truth value. The intended mean-
ing for this formula is that it will be true iff both L is true and4

is a cause for L , that is,
4 I iq��L@� . However, in order to

give an uniform treatment for this expression with respect
to the rest of formulas, we must also provide its causal rele-
vance. To this aim, we propose adopting the criterion of con-
sidering it caused by

4
when true, or caused by the empty

compound action � otherwise2. This criterion is also applied
to the valuation of action atoms, so that, the only possible
causal reason for action ; to be true is the compound action- ; 3 , whereas the reason for being false is the empty com-
pound action.

Another interesting topic about the use of actions is that
when we assert a formula like

4 L to express “
4

has causedL ” we will probably expect that action
4

has actually been
performed, i.e.,

4 � h , . To achieve this behavior, we in-
clude the axiom: 4 LKV ; (3)

for any ; I 4
.

Some useful properties that can be easily checked and that
will become very useful later are presented next. For istance,
the following equivalences are tautologies:

2This criterion has been found technically convenient for the
practical representation of causal rules under logic programming.
However, we have not found any sound philosophical justification
and in fact, we leave open the study of other possibilities. Notice
that the decision of causal relevance for causal formulas affects to
the interpretation of nested operators ��� � or to the use of the
absence-of-cause as a cause itself, topics that are not covered in
this paper.

4 ��LST M � X � 4 LS�QP e M �HT � 4 M �QP e L � (4)4 ��LS� M � X � 4 LS� e M ��T � 4 M � e Lq�
T _`����0`��
	 ` �

4�� L�� 4 c M � (5)

e ��L�T M � X e LQT e M
(6)e ��L�� M � X e LQ� e M
(7)

Note that X only guarantees that both parts of the equiv-
alence have the same truth valuation, though perhaps their
causes may differ. However, these truth-equivalences will be
paticularly useful when we deal with models of non-nested
causal formulas, that is, something like

4 L , with L a classi-
cal formula. In such a case, the equivalences can be used for
decomposing

4 L until causal operators are only applied to
literals.

Translating a causal action language into a
logic program

The previous framework helps us in deciding the propaga-
tion of causes throughout logical formulas. However, it is
easy to see that, for its application to action domains, it will
not suffice. On the one hand, we will need to cope with
formulas at different situations in order to represent the state
transitions. This will force us to introduce some kind of non-
monotonic reasoning for dealing with the inertia default and
avoiding the frame problem. But, on the other hand, non-
monotonic reasoning will also be necessary for causes infer-
ence itself: for each effect we expect to derive the less causes
as possible. Notice that the previous monotonic framework
only allows relating the sets of causes with respect to com-
plex formulas, but nothing prevents us to obtain models in
which these sets are arbitrarily bigger than expected.

Besides the need of non-monotonic behavior, we must
also take into account the ramification problem, trying to
obtain a compact rule-based description of indirect effects.
As explained in (Lin 1995) or (McCain & Turner 1995), the
encoding of rules as material implications may easily lead
to a problem of interference between inertia and contrapo-
sition. A simple way of avoiding this problem is the use of
some kind of non-contrapositive conditional, like the infer-
ence rules used in Default Logic 3 or (what can be seen as a
simpler version) the conditional operator of Logic Program-
ming.

These requirements has led us to consider Logic Program-
ming as a candidate for the (low-level) non-monotonic for-
malization. Although, probably, other options are equally
possible, Logic Programming provides both rule direction-
ality and non-monotonic reasoning (thanks to default nega-
tion) in a simple and direct way. Thus, we propose here to
follow the methodology established in (Gelfond & Lifschitz
1993) in which, as a first step, a “high level” action language
is defined (possibly involving causal expressions) and, after-
wards, its semantics can be described in terms of a logic pro-

3An example of work illustrating this use of Default Logic
is (Turner 1997).



gram (in that case, interpreted under the answer sets seman-
tics). As examples of approaches following this method-
ology we could cite (Baral, Gelfond, & Provetti 1997;
Turner 1997; Lifschitz 1999) or the reference paper (Gel-
fond & Lifschitz 1998).

The causal rule syntax will be described starting from the
signature % & ( )Q+

and its derived language f . A fluent
formula is any classical formula that does not contain action
names, and it is further called fluent literal if it just consists
of a fluent name � or its negation PB� . We define an action
description as a set of causal rules of shape:

L causes � if
M

after � (8)

where L is a classical formula we will call the causal condi-
tion, � is a fluent literal called the effect and

M
and � are flu-

ent formulas respectively called condition and precondition.
This syntax has been actually extracted from causal rules of
language � (Giunchiglia et al. 2002) with the exception that,
in that case, action names may occur in � instead of L .

A pair of abbreviations will be allowed. For instance,
omitting � if

M � or � after � � points out that
M

or � , re-
spectively, are the formula Y . Besides, the expression:

�7k &lL if
M

after �
stands for the pair of rules:

L causes � if
M

after �
PRL causes PB� if

M
after �

Intuitively, the expected behavior of a rule like (8) is that
once the rule is applicable (we can prove that its condition
and precondition are true) we would check whether

4 L is
true. If so, the rule should allow deriving

4 � , that is, the
effect is caused by the same reason than the causal conditionL . Otherwise, the rule is not applied, even when L happens
to be true, but not caused.

For practical purposes, we will directly provide the se-
mantics of rules as a translation into a logic program. This
is done following several steps. First, we must represent
the predecessor and successor fluent states involved in each
transition. To do this, for each fluent � , we write ��� to rep-
resent its value in the predecessor state, leaving the use of� for the successor state. Besides, for any fluent formula � ,
we write ��� to stand for the substitution of any fluent name� by ��� , i.e., the formula � valuated at the predecessor state.
Second, given a rule D like (8), we define its primitive bodyAq<?��D?� as:

A@<E��D?� [\^]& 4 LS� M ��� �
where

4
actually represents any possible compound action.

Clearly, we can rearrange A@<E��D?� using equivalences (4)-
(7) until causal operators are exclusively applied to literals
and, in a further step, until we obtain a disjunctive normal
form � � T	�
���$T��� taking also into account

M
and � � . Each

clause ��� will consist of a conjunction of expressions of any
of the shapes � ,

e � , P e � ,
4 � , where � is any atom A or

its negation PqA . For simplicity sake, we just assume that all
these expressions can be directly represented as logic pro-
gram literals. Then, for each clause ��� , we simply define
the logic program rule: 4 � � � �

where
4

is the union of compound actions
4��

, for literals4�� � in � � .
Together with the translation of rules, some additional ax-

ioms need to be incorporated. For instance, in order to pro-
vide the right meaning for program literals, we include the
rules: Z � � 4 �

� � Z �e � � ��" not
Z �

for any fluent literal � . Inertia can be simply encoded4 as:

� � � � " not
Z PB�

PB� � PB� � " not
Z �

To see how these definitions work, consider the repre-
sentation of the circuit in example 1. We define

( &-��2��
��#"6�2�����#3 and
+ & -E������
��#"$���������#3 . The action descrip-

tion consists of the rules:

�2��� � causes �������J� after PR�������J� (9)

�2��� � causes PR�������J� after ������J� (10)

�!����� �Hk & ������
�� �Q�������	� (11)

where � I -/
�"=�03 . First, we replace (11) by the pair of
rules:

������
�� �Q��������� causes ������� � (12)

P �������
��B�Q��������6� causes Pm�!����� � (13)

As an example of transformation, Aq<?��
��	� would be the ex-
pression

4 ��������
��0���������	��� which, using (5), is transformed
into:

� 4 ������
�� � e �������	���BT � 4 �������	� � e ������
��6��T
_` � �0` � 	 ` �

4 � L�� 4 c M � (14)

This expression is already in disjunctive normal form. From
the disjunct , we must construct the set of program rules:4 �!����� ��� 4 ������
��2" e �������	�
varying

4
in any subset of

(
:

�H������� ��� �H������
��2" e ��S���	� (15)

-��2��
��=3b������� ��� -��2��
��#3b������
��#" e �����^��� (16)

-��2�����=3b������� ��� -��2�����#3b������
��#" e �����^��� (17)
-��2��
��2"��2�����=3b������� ��� -��2��
��2"��2�����=3m�����
��2" e �������	� (18)

Of course, only rule (16) will be really effective, since
the rest of causes for ������
�� are impossible in the current
domain5. The rules for the second disjunct would be sym-
metrical, whereas the third disjunct leads to the set of rules:4 ������� ��� 4 � ������
��#" 4 c ��������

4This representation of inertia has been extracted from (Baral
& Lobo 1997) where our ��� is represented there as � ��!�"#��$ .

5Adding a reachability study of the dependence graph could
rule out the other three useless rules, but we have preferred to main-
tain the translation of each causal rule independent of the rest of
causal rules of the domain.



taking all the combinations of compound actions where
4 &4 �H) 4 c . This leads to the rules:

-��2��
��=3��!����� ��� -��2��
��#3�������
��#" ����� �
-��2��
��=3��!����� ��� ��������
��2"2-��2��
��#3���� �
-��2��
��=3��!����� ��� -��2��
��#3�������
��#"-��2��
��=3E��9�
-��2���	�=3��!����� ��� -��2�����#3�������
��#" ����� �
-��2���	�=3��!����� ��� ��������
��2"2-��2�����#3���� �
-��2���	�=3��!����� ��� -��2�����#3�������
��#"-��2���	�=3E��9�

-��2��
��#"6�2���	�=3��!����� ��� -��2��
��#3�������
��#"-��2���	�=3E��9� (19)

-��2��
��#"6�2���	�=3��!����� ��� -��2��
��2"��2���	�=3E�����
��2" �	��9�
...

but, again, only one rule, (19), is actually effective.

Related work
Although to the best of our knowledge, there is no action
approach dealing with the kind of reasoning treated in this
paper, there exist many related works which have provided
transformations for causal expressions that can be compared
to the ones presented here. As examples of these transforma-
tions we can cite the work for Event Calculus in (Shanahan
1999) or the approach of inductive causation in (Denecker,
Theseider, & van Belleghem 1998). Besides, (Thielscher
1997) has also described a way of extracting causal rules
from state constraints when we are provided with an addi-
tional influence relation that asserts which actions may af-
fect which fluents. A deeper formal comparison is left for
future work.

The idea of using an additional influence relation has also
been studied in a line of works (Castilho, Gasquet, & Herzig
1999; Castilho, Herzig, & Varzinczak 2002), which allow
representing which actions have influenced the value of each
fluent. In other words, we can assert whether an atomic ac-
tion could participate or not in the causal process that fixes
the value of a given fluent. This, of course, provides less in-
formation than the approach we present here. To put an ex-
ample, when two toggling actions affect the value of ������� � ,
it would be impossible to distinguish whether the cause is
their simultaneous occurrence or each one would indepen-
dently suffice instead. Besides, another important difference
is that these approaches require providing the causal depen-
dence information a priori (what may easily derive in an
elaboration tolerance problem by simply adding new indi-
rect effects), whereas our interest in this paper has been to
infer it from the causal rules.

But apart from all these more or less related approaches,
the closest one by far is Otero’s Pertinence Logic (Otero
1997), as we said in the introduction. In fact, in some of
the technical aspects, Otero’s logic has been used here as a
starting point. The purpose of Pertinence Logic is deciding,
for each effect, whether it has been caused (regardless the
performed actions) or is due to inertia. To this aim, Otero
has proposed a logical approach, f c , that deals with two
valuation functions: the standard truth-valuation plus an ad-
ditional one for pointing out the caused (or pertinent) formu-
las. These two valuations allow deciding the truth and perti-

nence value for any complex formula, including causal rules,
which are a particular kind of f c conditionals. In Otero’s
proposal, this framework is combined with a particular min-
imization policy (similar to the one used in (Lin 1995)) that
allows dealing with the typical action scenarios, but simul-
taneously allows deciding the sets of caused and non-caused
facts. Although other action formalizations like predicate> ;�� ��1 � from (Lin 1995) or occlusion from (Sandewall 1994)
allow handling information of this nature, Otero’s approach
is characterized by making an exclusive distinction between
a caused fact and a fact due to inertia 6.

Without going into detail, the technical aspects where
the current proposal has been inspired by Otero’s logic can
be easily guessed. For instance, we can see the relevance
relation i as a generalization of Otero’s pertinence valu-
ation where, instead of just pointing out a boolean value
(caused/non-caused), we keep track of a set of sets of ac-
tions (the particular causes of the formula). Thus, both ap-
proaches try to solve the same kind of problem when we
restrict ourselves to non-concurrent actions. In that case, if; is the unique performed action at a given transition, then
all our caused conclusions would have the shape - ; 3EL , and
so, there would not be a real need for distinguishing the set
of actions, which is always fixed to - ; 3 .

Despite of these clear similarities, there also exist some
important and (what we consider) fundamental differences.
The main one, as expected, comes from the lack of Perti-
nence Logic for representing the particular causes of each
effect. Although this lack is common to most of the ac-
tion approaches, it becomes crucial, however, with respect
to the motivation of this paper. The propagation of causes
among complex formulas we present here cannot be triv-
ially guessed from the pertinence valuation. The reason for
this is that the latter acts as a simple flag, limited to a dis-
tinction between caused effects and inertial ones, losing any
possibility of analysis of the relevant causes for each part of
the formula. Furthermore, even in the case where we restrict
the study to non-concurrent actions, results are significantly
different. For instance, the treatment of conjunction (and
disjunction) in Otero’s work is independent of the truth val-
ues of the conjuncts. Under -�f 3 a definitions, in order to
consider a conjunction to be pertinent, it suffices with a con-
junct being pertinent, regardless its truth value. Thus, for
instance, in Example 1, when we close one switch while the
other persists open, the application of pertinence valuation to
conjunction would lead to conclude that the light is caused
to be off while, as we saw before, our proposal here is that
the light should persist off in that situation 7.

6Formal comparisons to (Lin 1995) and (McCain & Turner
1997) were included in (Otero & Cabalar 1999). Some examples
and an extended discussion on the separation between causation
and inertia can be found in (Cabalar 2001).

7It must be observed, however, that this difference can be easily
avoided by a suitable choice of conjunction and disjunction opera-
tors. In fact, truth-sensitive operators for ��� can be found in (Ca-
balar 2001), being defined in terms of � and � .



Discussion
The current work has not tried to introduce a whole new
action formalization but instead, can be seen as a prelimi-
nary proposal for causes deduction which can be probably
adapted to other action approaches. Although much work
remains to be done, this first attempt should help to open the
debate for a new kind of reasoning problems, providing an
intelligent agent with the capability of causal introspection.
In other words, the agent should not only be able to predict
the effects of actions or construct plans depending on its do-
main representation, but also should be aware of which ac-
tions are responsible for each effect. This provides a richer
information that can be used to derive new effects. For in-
stance, we could study a scenario where we can obtain the
effect of putting Peter in jail, whenever an action performed
by him has caused the turkey to be

� 1 ; � :4 � 1 ; � causes � ; �^�6� Aq1���1�D?� if A 1�D��@.�D���1 � � A 1���1�DE" 4 �
The previous rule does not need to be modified with respect
to the possible indirect effects chain between Peter’s actions
and the turkey’s death.

Another interesting result from this study is that the use
of causal information may help to differentiate between sys-
tems which, when just considering fluent state transitions,
are equivalent, but have a different causal nature. For in-
stance, consider the example extracted from (Pearl 2000)
and shown in Figure 3. Looking at the fluent state transi-
tions, there is no way for distinguishing this circuit from one
in which both switches are independently connected in par-
allel. However, in this circuit the effect of ��������� is somehow
subordinated to the position of ������
�� . In our formalism we
would use the rule:

������� ��k &l�����
���T ��������� (20)

for representing the two parallel switches and the rule:

�!����� ��k & ������
�� TQPR������
����Q�������	� (21)

for the circuit in the figure. Note that, although the (truth)
equivalence:

������
�� TQ�������	� X ������
�� TQPR������
�� �Q�������	�
is a tautology in propositional logic, when we move to con-
sider the causes of these two formulas, we obtain differ-
ent results. Thus, closing both switches under formaliza-
tion (20) would cause the light to be on under two indepen-
dent explanations, -���.��	���!10��
��=3 and -���.��/�0��1/�����#3 , whereas
the same operation under (21) would only provide the cause-���.��/���!10��
��=3 (the second disjunct would become false, and������
�� alone suffices for explaining the truth of the whole
disjunction).

Finally, an interesting open topic is the possible mini-
mization among the set of causes for a given effect. In
principle, it could be reasonable to reject causes that are
supersets of another causes. However, in some exam-
ples, the effects of this further minimization may be not
so clear. As an example, consider the circuit presented in
Figure 4, forgetting by now the dotted line. If we toggle
the three switches simultaneously, we should clearly obtain

light

sw(2)

sw(1)

Figure 3: Pearl’s circuit.

two causes for ������� � : one due to ��.��/�0��1/���	� alone and the
other due to -���.��/���!10��
��#"���.��/���!10���	�=3 simultaneously. Con-
sider now that switches 1 and 3 are actually connected (with
the dotted line) and activated by the same toggling (for in-
stance ��.��/�0��10��
�� ). If we performed ��.��/�0��1/��
�� and ��.��/�0��10�����
we would of course obtain that -���.��	���!10��
��=3 alone is a cause
for ��������� , since it closes �������/� now. However, it seems that
we should still expect a second cause due to the wire with
the pair of closed switches. The only difference with respect
to the previous scenario is that, in this case, one of the causes-���.��/�0��1/��
��2"���.��/�0��1/�����#3 happens to be a superset of the other
one -���.��	���!10��
��=3 .

light
sw(1) sw(2)

sw(3)

Figure 4: An example of superfluous causes.

For simplicity sake, we have decided not to reject these
“superfluous” causes, but we understand that they can be
a topic under consideration. For instance, as pointed out
by one referee, there seems to exist an interesting relation
between rejection of superfluous causes and counterfactual
reasoning (Lewis 1973) of the type:

“if switch 2 had not been toggled, the light would still
be on.”

that is worth to be studied in the future.
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