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Abstract

In this work, we present a flexible method for explaining predictions made by
decision trees in human-readable terms and we apply it to obtain explanations
for long-term (five years) survival predictions for liver transplant recipients.
We present a decision tree that has been obtained through machine learning
applied on a data set collected at the liver transplantation unit from the
Coruna University Hospital Center (CHUAC) concerning transplant cases
from 2009 to 2014. We provide an implementation of this method in the form
of a publicly available Python tool we have called Crystal-tree. We also
illustrate the method with some examples of the explanations we get from
Crystal-tree on the obtained decision tree, including multiple adaptations
for different languages and/or different levels of expertise. We show that
the resulting explanations remain simple for dense, deep trees even when
some features are used in a repetitive manner. Finally, we briefly explain the
implementation of the tool which uses a logic programming encoding as a
back-end.

Keywords: FExplainable Artificial Intelligence; Answer Set Programming;
Logic Programming; Machine Learning; Liver Transplantation

1. Introduction

When Artificial Intelligence (AI) techniques are applied in a sensitive
domain such as Healthcare, the generation of accurate predictions or con-
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clusions may become useless if the Sﬁstem is not additionally capable of
providing good explanations for them®. As an example, consider the liver
transplantation domain and take the problem of matching a donor with a
recipient on a basis of some prediction for the recipient’s survival. This
matching decision will obviously have a critical impact on the recipient’s life,
but perhaps on some of the patients in the waiting list too, depending on
their condition. Moreover, the final outcome could eventually carry out legal
implications for the doctor or the hospital. A machine learning algorithm
may show a high accuracy in its predictions but, if it does not provide expla-
nations, it will easily cause distrust on the humans involved, such as raising
the doctor’s suspicion on a possible lack of medical criterion or the patient’s
doubts about lack of fairness due to a blind statistical method.

The generation of explanations for the outcome of ML algorithms is an
active field of research nowadays. The main difficulty here comes from the
fact that most ML methods act as black boxes, so that their predictions
are the result of complex mathematical processes and are difficult to explain
or reproduce by humans. One ML technique that does not suffer from this
black box limitation is decision tree (DT) learning [l]. In DT, the result of
the learning process is a binary tree where each non-leaf node checks some
condition on an input feature, like for instance ‘rec_afp < 9’ (recipient’s
alfafetoprotein lower or equal than 9) and then has two child subtrees to
be followed depending on whether the condition is true or false (see, for
instance, Figure [ll in page [L1). A prediction can then be easily explained in
human terms by just following the corresponding path in the tree. Although
DTs are usually outperformed by other ML algorithms in terms of prediction
accuracy, their simplicity and readability makes them a valuable choice when
explanations are required, as happens in healthcare. In fact, in the recent
survey [2] of articles that apply Al to organ transplantation, more than a
half of the approaches include a DT-based learning algorithm.

In the case of liver transplantation, studies [3] and, more recently, [4] used
Neural Networks for predicting survival of recipients before and after the
surgery (respectively), but they do not make any special emphasis in the in-
terpretability of the obtained models. On the other hand, Bertsimas et al. [5]

'The right to obtain an explanation for an automated decision is, in fact, one of the
main concerns behind the European General Data Protection Regulation (GDPR). See
https://gdpr-info.eu/
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trained two DTs on a large dataset with 1,618,966 observations to predict
3-month removal from the waiting list (including a possible fatal outcome)
for a given patient. The data set was split into patients with and without
hepatocellular carcinoma (HCC) and two respective DTs were obtained by
applying ML techniques. The two DTs were implemented in an interactive
online tool® that provides several graphical display facilities plus a simulator
to make a prediction using 4 input variables from some patient’s data. The
tool does not provide a specific explanation for the simulated prediction but,
instead, it allows graphically browsing the DT by hand, collapsing or expand-
ing some parts of the tree. Building the explanation through this manual
process becomes rather cumbersome, especially in the case of the non-HCC
tree, whose excessive width and detail makes the graphical manipulation of
the tree a difficult task prune to potential errors. This is, in fact, a common
problem in many DTs obtained from large data sets: their accuracy is nor-
mally at odds with their simplicity. Good predictions are obtained at the
cost of the generation of a dense DT which eventually lacks of the simplicity
and ease of use that is expected from an explainable AT tool.

In this work, we present a flexible method for explaining any decision
tree in friendly, human-readable terms, i.e. using natural language text. The
method consists in first representing the DT as a logic program and then
using the logic programming explanation tool xclingo [6]. This tool accepts
natural language annotations in the logic program and uses them to generate
compound explanations for the program results. The explanations provided
remain simple even for large or complex decision trees. We also provide
an open-source, ready to use tool called Crystal-tree that transparently
implements our approach. As a case study, we use a real domain and tackle
the problem of predicting 5-year survival for donor-recipient pairs in liver
transplantation. For this purpose, a liver transplant data set was collected
at the Digestive Service of the Coruna University Hospital Center (CHUAC),
Spain. We learnt a DT from the data set and then applied our method for
providing clear, natural language explanations. Depending on the use of the
language, different kinds of explanations can be easily provided from the same
final DT model: for instance, on the one hand, we implemented technical
explanations for the medical experts and, on the other hand, simplified ones
for non-specialists such as patients, relatives, etc. The explanations are also

2http://www.opom.online/
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provided in different languages (English, Spanish and Galician).

The rest of the paper is organized as follows. Section P describes the
dataset and the ML methodology used for obtaining the decision tree model.
Section P focuses on the Crystal-tree tool and how to use it. The next
section explains and discusses the meaning of our explanations and how they
are meant to be understood. Section fj provides a brief description of the
logic programming implementation. Finally, Section § discusses future work
and concludes the paper.

2. Obtaining the Decision Tree that Predicts Recipient’s Survival

We explain next the complete process we followed to obtain a DT that
predicts the recipient’s survival in a period of 5 years since transplantation.
We start describing the data set, then proceed to explain the feature selection
process to continue with the techniques we used to alleviate the unbalanced
data set (most patients in CHUAC survive after 5 years) and, finally, the
process to train the final DT.

2.1. Data set

The data used for the ML experiments were collected from the physical
archives of the Digestive Service of the CHUAC Hospital in Spain. The fi-
nal data set consisted of 258 transplants dating from 2009 to 2014. Each
sample comprises 64 features both from the recipient and the donor. Ta-
bles [Il and P respectively describe the recipient’s and the donor’s complete
sets of features. The data used for the study were manually collected by
a team of five people, which included a medical expert directly related to
the examined transplantation cases. Part of this information was obtained
from the hospital software data base, but most of the data were retrieved
from paper reports sometimes including unstructured, hand-written notes in
patient clinical records. The data collection was carefully planned and, to
accelerate the process, automated forms designed on purpose were used for
entering the data on-site. Finally, the data was integrated into a structured
relational database and the final data set used for the ML experiments was
obtained from an SQL query.

2.2. Feature Selection

Before training any model, we proceeded to a feature selection based on
statistical significance. To this aim, we applied a chi-square test for each can-

4



Table 1: Recipient features per each transplantation record. Summary column shows mean
and standard deviation for numerical features and value ratios for categorical features.

Feature name Summary

Sex Male/Fem (0.78/0.22)

Age 55.81+9.77

Size 167.5948.78

Weight 77.48+15.71

Medical condition Home/Plant /ICU
(0.86/0.08,/0.05)

Cytomegalovirus 0/1 (0.22/0.78)

Urea 56.26+53.28

ALT 118.74£549.83

Albumin 3.63+4.38

Alpha-fetoprotein 42.01£160.15

International Normalized Ratio (INR) 1.54+1.05

Bilirubin 4.65+7.28

Creatinine 1.36£1.45

Model for End Stage Liver Disease (MELD) 17.37£7.13

Previous abdominal surgery

Life support therapy

Dyalisis

Recurrent encephalopathy

Portal Vein Thrombosis (before transplantation)
Ascites (before transplantation)

Portal Bleed (before transplantation)

Diabetes

Insuline

Coronary Angina

Hypertension

Transjugular Intrahepatic Portosystemic Shunt (TTPS)
Portal Vein Thrombosis (Yerdel Stage 3 or 4)
Hepatitis B virus (HBV)-related liver disease
Hepatitis C virus (HCV)-related liver disease
VIH positive

Acute on chronic Liver Failure

HCC

HCC meeting Milan

Coronary artery disease (CAD)

Past history of extrahepatic cancer

Diagnosis: Alcohol-related liver disease (ARLD)
Diagnosis: NASH

Diagnosis: Early Retransplant

Diagnosis: Acute Liver Failure

Diagnosis: Cholestatic

Diagnosis: Late Retrasplant

Survial Days 5

Death after 5 years

0/1 (0.86/0.14)
0/1 (0.25/0.02)
0/1 (0.95/0.05)
0/1 (0.56/0.44)
0/1 (0.88/0.12)
0/1 (0.43/0.57)
0/1 (0.98/0.02)
0/1 (0.74/0.26)
0/1 (0.21/0.05)
0/1 (0.97/0.03)
0/1 (0.79/0.21)
0/1 (0.96,/0.04)
0/1 (0.03/0.71)
0/1 (0.97/0.03)
0/1 (0.74/0.26)
0/1 (0.97/0.03)
0/1 (0.24/0.03)
0/1 (0.35/0.64)
0/1 (0.32/0.48)
0/1 (0.25/0.02)
0/1 (0.02/0.97)
0/1 (0.58/0.41)
0/1 (0.69/0.03)
0/1 (0.7/0.03

0/1 (0.71/0.02)
0/1 (0.69/0.03)
0/1 (0.69/0.04)
950.83-:858.79
0/1 (0.76/0.24)




Table 2: Donor features per each transplantation record. Summary column shows mean
and standard deviation for numerical features and value ratios for categorical features.

Feature name Summary

Age 58.7£15.04
Sex Male/Fem (0.62/0.38)
Size 167.6748.92
Weight 75.49+12.4
ICU stay 65.66+85.13
Ischaemic time 351.914+109.71
AST 49.36+63.65
ALT 50.85459.0
GGT 86.12+139.47
FA 153.814+98.25
LDH 476.22+£399.81

Total Bilirubin

HBYV positive donor
Cytomegalovirus
Noradrenaline
Creatinine Final

Serum sodium
Macrovesicular steatosis

Microvesicular steatosis

Death Cause: Stroke
HCV antibody-positive grafts

0.82+£1.29

0/1 (0.95/0.05)

0/1 (0.8/0.2)

0.2640.4

1.02£1.04

145.7+20.4
Low(0)/Mod(1)/Sev(2)
(0.95/0.03/0.02)
Low(0)/Mod(1)/Sev(2)
(0.88/0.07/0.05)

0/1 (0.36/0.64)

0/1 (0.72/0.28)




didate feature against the target feature ‘Death after 5 years’,; a Boolean vari-
able that points out whether the recipient survived after 5 years since trans-
plantation or not. The chi-square test was computed using chi2_contingency
function from the scipy 1.5.0 python package. All numerical features were
previously discretized using DTs for finding the best thresholds given the tar-
get, as described in [7]. Categorical features with more than two values were
one-hot-encoded before the test, leading to a different p-value for each cate-
gory. The lowest p-value was taken as representative of the whole categorical
feature. As a result, we obtained a p-value for each feature in the dataset.
The lowest the value, the highest the statistical significance for predicting
the target feature. For the ML experiments, we selected the 7 most signif-
icant features shown in Table B, again, in decreasing order of significance.
Fewer features led to worse prediction results whereas more features led to
excessively complex DTs without a relevant gain in accuracy. Five features
correspond to the recipient (prefixed with ‘rec_’) and only two of them to
the donor (prefixed with ‘don_). As we can see, the most significant vari-
able is rec_hcv, that is, whether the recipient was infected with Hepatitis C
Virus (HCV) or not. The significance of this variable is explained because
most records are previous to the generalized introduction of the successful
HCV cure and so, HCV constituted a much higher potential risk of trans-
plantation failure at that moment. The rest of features are self explanatory,
except perhaps medical condition that tells us where did the patient come
from. This feature can have one of three possible values: the patient’s home,
the hospital digestive ward or the intensive care unit (ICU). Regarding the
donor’s features, it is interesting to note that the liver microsteatosis was
found to be the fourth most significant variable. As it can be observed, the
second donor’s attribute we use checks whether the donor’s death cause was
a stroke or not.

2.3. Balancing the data set

A data set is said to be unbalanced when the frequencies of the classes
of the target feature are not balanced. As we can see in Table [l this is
in fact what happens with our target feature Death after 5 years where we
face 76% samples for the negative class (recipient survived more than 5 years
after the transplantation) versus 24% samples of the positive class. It is well
known that ML algorithms, and especially DT algorithms, perform worse
when trained against unbalanced data sets. In particular, we get the risk that
the learning algorithm tends to predict the class with a higher frequency as
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Table 3: Top 7 significant input features

From Feature name Short name P-value
Recipient | HCV positive rec_ hcv 0.015
Recipient | Alpha-fetoprotein rec_ afp 0.042
Recipient | Previous abdominal Surgery | rec_abdominal surgery | 0.049
Donor Microvesicular steatosis don_ microsteatosis 0.082
Recipient | Hypertension rec_ hypertension 0.111
Recipient | Medical condition rec_medical condition | 0.138
Donor Death cause: stroke don cva 0.146

a straightforward way to increase the accuracy results. For that reason, we
applied a previous step of data set balancing before training any DT model.

When the unbalanced target variable is binary, the class with the higher
(resp. lower) frequency receives the name of majority (resp. minority) class.
Balancing methods try to balance majority and minority class ratios by mod-
ifying their proportions in the data set. This can be done either by remov-
ing samples from the majority class (undersampling) or by adding synthetic
samples to the minority class (oversampling). In the case of undersampling
methods, a common technique is computing clusters over the majority and
then carefully select samples that will be disregarded, trying to keep the ratios
within the original clusters in the resulting data set. Undersampling methods,
therefore, consider a subset of the original data set where the minority class
is untouched and, more importantly, all samples correspond to real instances.
Oversampling methods, on the contrary, try to generate new minority class
samples which are similar to the original ones. One widely used balancing
method is Synthetic Minority Oversampling Technique (SMOTE) [8], which
represents samples as points in a vector space and then generates new syn-
thetic samples by finding points between two real samples. By doing this, it
is more or less guaranteed that the synthetic samples will be realistic. How-
ever, depending on the domain, this may produce “impossible” samples. For
instance, an oversampling method may generate a transplant case in which
the recipient’s hepatocellular carcinoma fits the Milan criteria, and yet the
she does not have any hepatocellular carcinoma at all. This is because sample
generation methods do not take into account any constraint already known
beforehand. Given our current context, in which we are interested not only
in obtaining good predictions but also in providing explanations, we have de-
cided to stick to undersampling methods so that the DT is always generated
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from real samples and not synthetic ones.

We have tested several undersampling methods to search for the best
choice before training the final DT model. With that purpose, a stratified
train-test splitting was performed on the entire data set, preserving the un-
balanced positive-negative ratio in the target class. First, a preliminary DT
model was trained and tested on the unbalanced data. We used the accu-
racy, F1 score and kappa results of this preliminary tree on the test set as a
baseline for evaluating the different balancing methods. Then, each method
was applied on the training data, which was then used for training a DT.
Each trained DT was finally tested against the initial unbalanced test set and
compared to the baseline and the rest of the trained DTs. All the balanc-
ing methods were exclusively applied to the data set using the open-source
python library imbalanaced-learning (version 0.8.0). The best method
overall was Nearmiss (version 1) [9], which improved the accuracy from 0.78
to 0.87, the F1 measure [10] from 0.42 to 0.71 and the kappa score [11], [12]
from 0.31 to 0.62 with respect to the baseline results in the initial unbalanced
test set. Complete results are shown in Table Y.

Table 4: Evaluation balancing techniques

Undersampling Method Accuracy | F1 score | kappa
Unbalanced Data (baseline) 0.78 0.42 0.31
Cluster Centroids 0.84 0.66 0.56
AIIKNN 0.81 0.69 0.57
Random Undersampling 0.81 0.67 0.56
Nearmiss (version 1) 0.87 0.71 0.62
Nearmiss (version 3) 0.81 0.58 0.47
Instance Hardness Threshold 0.74 0.55 0.37
Neighbourhood Cleaning Rule 0.78 0.60 0.45
Onesided Selection 0.81 0.53 0.42
TomekLinks 0.82 0.53 0.42
Condensed Nearest Neighbour 0.71 0.42 0.22
Edited Nearest Neightbour 0.76 0.64 0.48
Repeated Edited Nearest Neigbours | 0.68 0.57 0.37

2.4. Obtaining the Final Decision Tree
Once we selected the 7 most significant features and the best obtained
balancing method, we proceeded to train a final DT. Categorical features
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were previously label-encoded, that is, their possible symbolic values were
transformed into a discrete numerical range. For instance, the different pos-
sible Donor’s Microvesicular steatosis values Low (below 30%), Mod (between
30% and 60%) and Sev (over 60%), were respectively encoded as 0, 1 and
2. This encoding was required because the condition in a DT node checks
whether a feature z is smaller or greater than some threshold numerical value
v. A train-test split was performed over the entire data set, using 80% for
the training set and 20% for the test set. As explained before, we used the
Nearmiss (version 1) method to balance the training data. The best parame-
ters for training the decision tree were estimated by performing a 5-fold cross
validation grid search over the training set. Table f shows the best parame-
ters eventually obtained from this grid search. The previously described ML
pipeline was performed using scikit-learn 0.24.2.

The final result of this learning process is the DT depicted in Figure m
The tree has a quite manageable size: it consists of 25 nodes numbered from
#0 to #24 and divided into 12 condition nodes and 13 leaves, and has a
maximum depth of 5 levels, that is, any prediction is the result of checking
5 conditions at most. In the figure, each node shows number of samples of
each class (alive and not_alive, respectively) that were traversed through
at that point during training. For instance, node #2 shows the text values
= [70, 23] meaning that 93 samples have reached that node, 70 alive and
23 not_alive, respectively. The ratio between these two categories is also
represented by the background color of the cell, in a scale that goes from
dark green for nodes with higher proportion of alive to dark red for higher
proportion of not_alive, using white in the middle of the scale, that is,
when the ratio of the two classes is 50%/50% (as happens in node #16, for
instance). Finally, decision (or leaf) nodes include the predicted class whereas
condition nodes include their corresponding conditions, as expected. When
evaluated against the test set, the tree produced an accuracy of 0.87. Since
the target feature was unbalanced, also F1 measure and, most significantly,
kappa score were obtained, which resulted in 0.71 and 0.62, respectively.
These are reasonable results for a simple DT classifier.

3. A Tool for Explaining Decision Trees

As explained in the introduction, our interest in this work is not only to
obtain a good DT classifier as the one in Figure m, but also to provide ex-
planations associated to its predictions. In this section, we describe our tool
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Table 5: Grid Search parameters

Parameter Possible values
maximum depth 59,11
splitting criterion entropy, gini-importance

maximum features | \/n_ features, logs(n__features)
Best parameters 9, entropy, v/n__features

|___Good forecast: more than 5 years, for recipient 126
| |__The donor's microsteatosis is low (below 30%)

| |__The donor's cause of death was not a CVA
| |__The recipient is hepatitis c-negative

Listing 1: Example of explanation corresponding to the path in Figure B

called Crystal-tree which produces text explanations from a given decision
tree and a set of values for the input features. The explanations include the
outcome of the decision tree together with those conditions satisfied by the
input values that led to the conclusion. These explanations, are provided in
natural language, in a summarized-way as shown, for instance, in Listing

used to explain the path from Figure . The explanations must be read as
a summarized representation of the path followed by the input sample (i.e.
a recipient) until a decision node is reached. The explanations produced by
Crystal-tree are text-based and are organized in a two level-tree structure.
The first level shows the decision of the tree (for Listing m the recipient will
survive more than 5 years) for the given input. The second level summarizes
the conditions met by the input sample (i.e. the recipient) to follow a certain
path and to produce the final decision. The latter includes only one sentence
per each feature used to reach the decision, so that: (1) features not used
in the path of the tree are not included in the explanation; and (2) all the
conditions over a repeatedly used feature within the path are summarized
as the narrowest range of all the thresholds. As an example, note that, the
explanation shown in Listing E] does not mention the medical condition of
the recipient because it does not appear in the path (Figure E) used to de-
cide the outcome. Also, despite the path includes two conditions about the
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node #0
don_microsteatosis <= 1.5
value = [86, 37]

Ter

node #1
rec_hev <= 0.5
value = [86, 34]

node #2

don_microsteatosis <= 0.5
value = [70, 23]

) J
node #10
don_cva <=10.5
value = 3, 2]

node #11

value = [2, 0]
class = alive

Figure 2: A complete path in the decision tree.
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*

|___Good forecast: more than 5 years, for recipient 126

| |__The donor had not fatty liver

| |__The donor's cause of death was not a stroke

| |_The recipient has not an hepatitis C virus infection

Listing 2: A version of the explanation in Listing E] for non-specialists.

*

|___Buen pronéstico: més de 5 afios, para el receptor 126
| |__Organo donante de buena calidad

| |__El receptor no tiene una infeccién por hepatitis C

| |__El donante no tenia higado graso

Listing 3: Spanish version of the explanation in Listing E

donor’s microsteatosis (less than 60% and less than 30%) both of them were
summarized in just one sentence.

By default, the tool generates domain-independent explanations, includ-
ing conditions that just refer to the variable name and its possible values,
like for instance, rec_hcv = 0. However, the user can personalize the text
in the explanations using some sort of templates: note how rec_hcv = 0
is replaced by ‘The recipient is hepatitis-c negative’ in the explana-
tion of Listing [ll. This feature can be used for adapting the explanations to
different kind of situations, or users. With the same decision tree and input
data, the outcome explanation can be adapted to different technical levels,
to give more or less detail (some variables can be hidden, even under certain
conditions) or to be expressed in different languages. As an illustration, List-
ing P provides an alternative explanation intended for a non-specialist user,
such as the recipient herself, whereas Listing a displays the same explanation
but generated using the Spanish text labels.

The behavior of Crystal-tree is controlled through a Python library,
so other kind of adaptations are potentially possible. For instance, consid-
ering again the translation example, the explanations could be dynamically
translated to any language selected by the user. Listing { shows an example
of usage of the Python library. From lines 1 to 9, the code loads the data,
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import sklearn

from Crystal-tree import CrystalTree

# Loads a dataset

X, y = sklearn.datasets.load_iris(return_X_y=True, as_frame=True)

# Trains a decision tree
clf = sklearn.tree.DecisionTreeClassifier()
clf . fit(X,y)

# Translates the classifier into an explainable logic program

crys_tree = CrystalTree(clf)

# Creates the labels used by the tree
# if skipped, default labels will be used

setup_traces(crys_tree)

# Print explanations for input X

crys_tree.explain(X)

Listing 4: Example of usage of the Crystal-tree library.
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and trains a Decision Tree classifier (which is saved in the variable c1f) on
the whole data set. Line 12 creates a CrystalTree object from the trained
decision tree. Line 19 generates an explanation for each input sample in the
vector X. As explained before, by default, Crystal-tree will use generic text
for generating the explanations. To adapt the text to the domain, additional
Python code is needed. The function setup_traces in line 16, adapts the
explanations to get the same result as shown in Listing m Listing p shows
the code within the function. To personalize the explanations, Trace objects
are added into the CrystalTree object. This will introduce new text in the
explanations, which will overwrite the default. These Trace objects can be
associated either to a certain target class, as in the lines 4 and 7, or to a
certain feature, in which case, a set of conditions can be set. If the feature
is used in the corresponding path and the provided conditions are satisfied
by the input sample, then the explanation will include the trace text. The
specified text pattern can also include three special place holders, %_class,
’%_instance or %_t (in lines 5 and 8, and 32 respectively) that will be re-
placed by the names of the class, the identifier of the input sample or the
value of the threshold used, respectively. More detailed instructions on this
topic (including examples) together with the source code and installation
instructions are available in the Crystal-tree public github repositoryE.

4. Understanding Tree Explanations

As explained before, a trained DT is just a binary tree where each non-leaf
node (or condition node) is labelled with some condition of the form z < v
where z is some input feature and v is a value for x_called the threshold.
For instance, the root (node #0) of the DT in Figure m checks whether the
donor’s liver microsteatosis is smaller or equal than 1.5. Each condition node
has two children sub-trees that correspond to following the cases where the
condition is true (in the figures, the left subtree) or false (the right subtree),
respectively. A leaf node, also called decision node, specifies the final pre-
dicted classification (in our example, whether the recipient will survive after
5 years or not).

As we saw in Figure E, a prediction for a given transplantation case is
simply obtained as the result of following the path in the tree, answering

3All files are publicly available in https://github.com/bramucas/Crystal-tree
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from Crystal-tree import Trace, Condition

def setup_labels(crystal_tree_object):
crystal_tree_object.add_trace(
Trace("Good forecast: %_class, for recipient %_instance",
"prediction",class=0))
crystal_tree_object.add_trace(
Trace("Bad forecast: %_class, for recipient %_instance",
"prediction", class=1))
crystal_tree_object.add_trace(
Trace("The donor's microsteatosis is low (below 30%)",
"don_microsteatosis", conditions=[Condition("is",0)]))
crystal_tree_object.add_trace(
Trace("The donor's microsteatosis is low (between 30% and 60%)",
"don_microsteatosis", conditions=[Condition("is",1)]))
crystal_tree_object.add_trace(
Trace("The donor's microsteatosis is low (over 60%)",
"don_microsteatosis", conditions=[Condition("is",2)]))
crystal_tree_object.add_trace(
Trace("The donor's cause of death was not a stroke",
"don_cva", conditions=[Condition("is",False)]))
crystal_tree_object.add_trace(
Trace("The donor's cause of death was stroke",
"don_cva", conditions=[Condition("is",True]))
crystal_tree_object.add_trace(
Trace("The recipient is hepatitis c-negative",
"rec_hcv", conditions=[Condition("is",False]))
crystal_tree_object.add_trace(
Trace("The recipient is hepatitis c-positive",
"rec_hcv", conditions=[Condition("is",True]))
crystal_tree_object.add_trace(
Trace("The recipient's level of AFP is lower than J_t",

"rec_afp", conditions=[Condition("lower_and_equal"]))

Listing 5: Adding labels to a Crystal-tree object.
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each condition in accordance with the feature values from the input. It is
not difficult to see that DTs that are structurally different may end up pro-
viding the same classification for any sample. For instance, we could just
reorganize the tree by switching the order in which the input features are
checked. However, the particular structure of the DT obtained by the learn-
ing algorithm is not casual: it actually reflects statistical information that
was used during the learning process. The algorithm proceeds recursively,
introducing a new condition that splits the current data set into two new
subsets in a way that the entropy of the result is minimized (that is, the
information gain is maximized). The larger the difference between the ratios
for each class in a subset, the lower the entropy is. Informally speaking, the
upper a condition node is in the tree, the more it helps to “clarify the pic-
ture” with respect to a statistical partition of the data set. In this way, this
arrangement helps in minimizing the average number of questions (depth of
the path) we make to obtain a prediction. However, it also produces curious
effects when reading the followed path as an explanation for the prediction.
A first counterintuitive effect is that a same variable may be checked several
times (even more than twice) along a path depending on different thresholds
values. As an example, take again Figure [ll and follow the path that reaches
node #21 from the root node #0. This path checks that don_microsteatosis
is below two different thresholds. First, we check in the root node checks that
microsteatosis is smaller than 1.5 but then, in node #20, at the fifth level,
we check again that it is below the smaller threshold 0.5. The reason for
the first check is that, during training, the condition don_microsteatosis
> 1.5 was able to discriminate a subset formed only by not_alive samples,
leading to a zero entropy decision node #24. But the truth is that, if our
purpose is to provide an explanation for the decision node #21, the first check
is clearly redundant, since being below 0.5 obviously implies that it is also
below 1.5. Fortunately, this redundancy can be easily removed from the ex-
planations. The tool Crystal-tree compresses each explanation using the
narrowest interval of values eventually required to follow the prediction path,
hiding the possible redundant tests made by the tree.

A second, and more important, counterintuitive effect that appears when
explaining a prediction by simply reading a path is that some of the con-
ditions we check along the path can be causally opposed to the prediction
eventually obtained. To see an example, suppose we had a transplant case
with the following data:
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don microsteatosis = 1

rec_hcv =1
don cva = 0
rec_afp = 3

and we proceed to generate an explanation. If we follow the DT conditions
using these data, we get the path in Figure B reaching node #17, whereas its

corresponding explanation is displayed in Listing ff. While the explanation
node #0
don_microsteatosis <= 1.5
value = [86, 37]
Tru:/

node #1
rec_hcv <= 0.5
value = [86, 34]

.

node #15
don_cva <=0.5
value = [16, 11]

node #16
rec_afp <=9.0
value = [3, 3]

/

node #17
value = [3, 0]
class = alive

Figure 3: Another path in the decision tree, explained by Listing H

predicts a good forecast, only two of the conditions used in the path are
known to be good justifications for the prognosis: the donor did not die
due to a stroke (don_cva=0) and the recipient’s levels of tumor marker AFP
are low (rec_afp<9). Still, the explanation also uses the facts that the
donor’s microsteatosis is below 60% (don_microsteatosis<1.5) and that
the recipient is HCV positive (rec_hcv=1). What may seem puzzling in
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Good forecast: more than 5 years, for recipient 114
|___The donor's microestatosis is low-medium (below 60%)
|___The recipient is hepatitis c-positive

|___The donor's cause of death was not a stroke

—

*
—
|
|
|
| AFP is lower than 9.0 ng/ml

Listing 6: Explanation corresponding to the path in Figure E

this example is that these two facts are not known to particularly contribute
to the good prognosis: in fact, the presence of HCV could be seen as a
negative factor, rather than a positive one. The problem here comes from a
misunderstanding of the conditions presented in the explanation: they just
correspond to the nodes followed by the tree to make a prediction but cannot
be read as necessary causes strictly required to achieve that prediction. In
other words, the truth for some of these conditions could be changed without
affecting the final result. Consider, for instance, the node asking about HCV:
in the complete tree, there are more cases with not alive when the patient is
infected than when she is not. However, our current patient is HCV-positive,
and so, the DT must follow that part of the tree in order to make a decision.
It is after checking that the donor did not have a stroke and that the AFP is
low that the tree eventually classifies the case as alive. Moreover, suppose
that we have the same data but the patient were not HCV-positive: if we
now follow the tree, we discover that the prediction is still alive, this time,
by reaching node #11. In other words, with the rest of input data unchanged,
the prediction will still be alive regardless of the value of HC'V. To sum up,
the fact that HCV-positive appears in the explanation just reflects how the
DT has organized the conditions to be checked, but cannot be read as a
necessary cause to explain the prediction. An interesting possible future line
of research is to design an algorithm that collects minimal sets of necessary
conditions for each possible prediction made by the tree, but this exceeds the
scope of the current work.

5. Logic Programming Implementation

One of the interesting features of Crystal-tree is that the generation of
explanations is implemented using a logic programming back-end. In prin-
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ciple, implementing an ad hoc procedural algorithm from scratch for the
same purpose would not bee too difficult. The main advantages of the logic
programming implementation, however, are its flexibility and declarative-
ness. Crystal-tree transforms the DT into a set of logical rules interpreted
under the stable models (or answer sets) semantics [13], so these rules can
be seen as a formal specification of the classifier. This has multiple poten-
tial advantages, like enabling variations of the classifier behavior by simple
changes in the logical rules, studying the classifier results under uncertainty
(i.e. when some variables are unknown) or allowing formal comparisons (like
the analysis of equivalence) to other DTs, when represented as logic pro-
grams. Moreover, Crystal-tree uses an already existing declarative tool,
xclingo [G], that allows generating explanations for logic programs under
the answer sets semantics. In the rest of this section, we provide a brief,
informal overview of the implementation of Crystal-tree based on logic
programming.

Answer Set Programming (ASP) [14] is a declarative problem solving
paradigm where a problem is represented as a set of rules in a logic program
and its solutions are obtained in the form of models of that program called
answer sets. ASP rules have the general form of

head :- body.

where, in the simplest case, head is some predicate atom and body is a
(possibly empty) list of literals, that is, predicate atoms optionally preceded
by negation operator not. Intuitively, the rule allows deriving head as true
when all the literals in the body are also true. When a rule has an empty
body, we just keep the head dropping the symbol ‘:-" and the rule receives
the name of fact, since its head will be unconditionally true. For instance,
the following program:

holds(55,rec_hcv,true).
holds(55,don_cva,true).
bad(I) :- holds(P,rec_hcv,true), holds(P,don_cva,true).

consists of two facts (the first two lines) and a (conditional) rule. In this
example, the facts are representing that transplantation case (or patient)
number 55 had an HCV-positive recipient and an CVA donor. Note that
the conditional rule is using a capitalized argument P. This stands for a
(universally quantified) logical variable: the rule states that any patient P
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with HCV and whose donor had CVA will be classified as bad (P). As a result,
the answer set for this simple program will also derive the fact bad (55). This
is, for instance, the result obtained by the popular ASP solver clingo [15].

xclingo [6] is an ASP tool built on top of clingo that partially imple-
ments the multi-valued extension of logic programs defined in [16]. The tool,
in addition to obtaining the solutions of an ASP program, it also explains why
a given atom was derived by tracing the relevant fired rules. To this aim, we
may use textual descriptions associated to rules or atoms in the program. As
an illustration, Listing [ shows an annotated version of the previous example
program and Listing §, the xclingo output. The directive %!trace_rule
allows associating a textual label to the rule occurring immediately below,
when the rule condition is applied. This textual label can be parametrized
using variable placeholders %. In our example, this placeholder is replaced by
the patient number P. The directive %!trace allows attaching a text label to
any derivation of a given atom, regardless of the rule(s) used to derive it. In
the example, we are specifying that any derivation of holds(P,F,V) will be
transformed into the text “F is V” (the patient number P is not used). As
a result, for instance, the fact holds(55,rec_hcv,true) becomes the label
“rec_hcv is true”. Finally, the directive %!show_trace is used to choose
which atoms are going to be explained: in this case, we decide to display
explanations for the atom bad (P).

The original DT obtained during the learning process was automati-
cally encoded into two different xclingo implementations: nodes.lp and
paths.1pH. We also use two additional files: extra.lp, which contains com-
mon code for both implementations, and cases.1p, which contains the data
from the transplantation cases to be predicted represented as ASP facts.

The nodes.1p program (partially shown in Listing E) directly represents
each DT edge using predicate tree _node (N, Instance,Dir) where N is the
child node to be activated and Dir its direction below the tree (left or right).
Note that, as the logic programs do not accept floating point numbers, the
resulting DT translations scale the numeric values to integers; when the
explanations are finally constructed, these values are returned to floating
point numbers automatically. As we can see, each rule is annotated with a
h'trace_rule describing the decision condition. Leaves are encoded as rules
with class(I,C) where I identifies the sample to be predicted and explained,

4All files publicly available in https://github.com/bramucas/Crystal-tree
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holds (55,hcv,true).

holds(55,don_cva,true).

%!trace_rule {"Patient % may fail",P}

bad(P) :- holds(P,hcv,true), holds(P,don_cva,true).
Y%'trace {"% is %",F,V} holds(P,F,V).

%!show_trace bad(P).

Listing 7: xclingo annotated program.

*
|___Patient 55 may fail
| |__rec_hcv is true
| |__don_cva is true

Listing 8: xclingo’s explanation for bad(55)
tree_node(0,I,left) :- le(I,rec_hypertension,50).
tree_node(1,I,left) :- gt(I,rec_hcv,50), tree_node(0,I,left).

C...)

tree_node(6,I,left) :- le(I,rec_afp,635), tree_node(5,I,left).
class(I, alive) :- tree_node(6,I,left).

Listing 9: Fragment from nodes.1p.

class(I, alive) :-
le(I,rec_abdominal_surgery,50),
gt(I,don_cva,50),
gt(I,rec_hcv,50),
le(I,rec_hypertension,50),
between(I,rec_afp,509,635),

le(I,don_microsteatosis,50).

Listing 10: Fragment from paths.1p.
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%ltrace {"% > %", F, T} gt(I,F,T).

%'trace {"% <= %", F, T} 1le(I,F,T).

%'trace {"% in (%,%]", F, Min, Max} between(I,F,Min,Max).
%'trace {"Class: % (instance %)", C, I} class(C,I).

Listing 11: Traces used by paths.1p.

and C represents the decided class for that sample (i.e. alive or not_alive).
Listing [12 shows an example of explanation generated using nodes.lp. As
we can see, the cascade form reflects the order in which conditions are applied
when traversing the tree, which comes from the (decreasingly) discriminatory
power of each condition. However, as a tree grows in depth, they become
less readable and most discriminant features tend to be used repeatedly with
different thresholds (as happens here with rec_afp) making the explanation
less clear.

Class: not_alive (instance 14)
__rec_afp > 5.09

don__microsteatosis <= 0.5
__rec_afp <=6.35

__rec_abdominal_surgery <= 0.5
_ _don_cva > 0.5

_rec_afp <= 12.44

rec_hcv > 0.5
___rec__hypertension > 0.5

Listing 12: Example of explanation generated by nodes.1lp.

On the other hand, paths.1p (Listing @) just encodes a rule per each leaf
in the original tree. The head of the rule encodes the class of the leaf, and the
body is a conjunction of all conditions traversed in the path. The explanation
from Listing [12 obtained with nodes.1p is reformulated as Listing [l3 when
using paths.1lp. As we can see, the order in which the conditions are checked
when following the DT is not reflected any more: all conditions occur at the
same level. However, we get the advantage that each feature involved in the
explanation is displayed only once, showing the value or interval of values
that has been used to get the final prediction. For this reason, Crystal-tree
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translates any decision tree into its paths.1lp version by default for obtaining
explanations.

Class: not_alive (instance 14)
__rec_abdominal_surgery <= 0.5
__don_cva > 05

__rec_hcv > 0.5
__rec_hypertension <= 0.5
__rec_afp in (5.09,6.35]
___don_microsteatosis <= 0.5

Listing 13: Example of explanation generated by paths.1lp.

6. Conclusions

We have presented a flexible method for explaining predictions made by
decision trees in human-readable terms. We have implemented this method
in the form of a publicly available Python tool we have called Crystal-tree.
As a real domain application, we have used this tool to obtain explanations
for long-term (five years) survival predictions for recipients of a liver trans-
plant. To this aim, we have used machine learning techniques to obtain a
decision tree from a data set collected at the liver transplantation unit from
the Coruna University Hospital Center (CHUAC) covering the transplant
cases from 2009 to 2014. Using this decision tree, we have provided different
examples of the explanations we obtain from Crystal-tree, including mul-
tiple adaptations for different languages and/or different levels of expertise.
We have shown how the resulting explanations avoid repetitive references to
a same feature, keeping a simpler description, something crucial for larger or
deeper decision trees. Also, we have discussed why these tree-based explana-
tions should not be understood under a causal reading, since the conditions
displayed are not always necessary to obtain a prediction, but just reflect
the decisions taken by the tree. Finally, we have briefly explained the logic
programming implementation of the tool.

As positive conclusions, we emphasize the good evaluation results ob-
tained by the trained Decision Tree, given the (relatively) small size of the
collected data set, the lack of balance in the selected target feature and the
added difficulty which is intrinsic to a long-term prediction of five years.
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Also, the Crystal-tree library is pretty straightforward and easy to use for
any user familiar with Python machine learning tools, which is, in fact, one
of the most used environments for machine learning nowadays. Besides, the
explanations obtained from the tool always remain short and simple, even for
deeper decision trees. This is because we display, at most, one justification
line per each different feature used in a tree path, avoiding the repetition of
conditions on a same variable. Also, the explanation labels are easily adapt-
able for different purposes and contexts without too much effort, by adding
some Python lines of code.

Some aspects can be improved yet, pointing directions for future work.
On the one hand, even though the definition of a set of text labels for the
explanations is extremely simple, it still requires some Python programming.
The implementation of a graphical user interface to facilitate this task, es-
pecially thinking on medical experts, is planned as a future addition. On
the other hand, as we discussed in Section Y, the explanations generated
from a decision tree do not take into account any potential causal relation
between the conditions displayed and the prediction. This may easily lead
to a misunderstanding, since an explanation for some prediction may include
conditions that are not actually necessary to produce the that prediction. As
future work, we plan to tackle this problem by exploring the minimization of
the logic program that represents the tree. In that way, the result would no
longer have the form of a tree, but a set of rules instead, whereas the logic
program would still be equivalent as a classifier, producing the same set of
predictions. The advantage of this method would be that we could still gen-
erate explanations from the minimal program whereas the conditions of its
rules would exclusively contain necessary checks for obtaining the prediction.
Another convenient feature to be added to the tool would be to include prob-
abilities extracted from the DT to the explanations. This would be helpful
for the final user to increase her level of trust in the system. Lastly, we also
plan to continue collecting more transplant cases for the data set.
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