
A complexity assessment for queries involving sufficient
and necessary causes?

Pedro Cabalar1, Jorge Fandinno1 and Michael Fink2

1 Department of Computer Science
University of Corunna, Spain

{cabalar, jorge.fandino}@udc.es
2 Vienna University of Technology,

Institute for Information Systems
Vienna, Austria

fink@kr.tuwien.ac.at

Abstract. In this work, we revisit a recently proposed multi-valued semantics
for logic programs where each true atom in a stable model is associated with
a set of expressions (or causal justifications) involving rule labels. For positive
programs, these causal justifications correspond to the possible alternative proofs
of the atom that further satisfy some kind of minimality or lack of redundancy.
This information can be queried for different purposes such as debugging, pro-
gram design, diagnosis or causal explanation. Unfortunately, in the worst case,
the number of causal justifications for an atom can be exponential with respect
to the program size, so that computing the complete causal model may become
intractable in the general case. However, we may instead just be interested in
querying whether some particular set of rules are involved in the atom derivation,
either as a sufficient cause (they provide one of the alternative proofs) or as a nec-
essary cause (they are mandatorily used in all proofs). In this paper, we formally
define sufficient and necessary causation for this setting and provide precise com-
plexity characterizations of the associated decision problems, showing that they
remain within the first two levels of the polynomial hierarchy.

1 Introduction

An important challenge in Knowledge Representation (KR) and Reasoning is not only
deriving conclusions from a given theory or knowledge base, but also providing expla-
nations for their derivation. This is particularly interesting in KR areas related to causal
reasoning. For instance, in diagnosis scenarios, when discrepancies between observa-
tions and predictions are found, we may be interested not only in exhibiting a set of
malfunctioning components, but also the way in which these breakdowns have eventu-
ally caused each discrepancy. Another example is legal reasoning, where determining a
legal responsibility usually involves finding out which agent (or agents) have eventually
caused a given result – checking whether the agent is involved in the explanation for

? This research was partially supported by Spanish MEC project TIN2009-14562-C05-04, by
Xunta de Galicia, Spain, grant GPC2014/070 and program INCITE 2011, Inditex-University
of Corunna 2013 grants, as well as by the Austrian Science Fund (FWF) project P24090.

that result is as important as the result occurrence itself. There are, however, different
degrees in which a set of events or actions A may be “involved” in the explanation for
some effect B. In some cases, A may suffice to explain B. In other cases, A alone cannot
guarantee B, but is indispensable in any explanation for the latter, i.e., it is necessary
for B. Let us illustrate these ideas with an example.

Example 1. An alarm is connected to three switches as depicted in Figure ??. Each
switch is operated by a different person and, at a given moment, they all accidentally
close the switches. We want to analyse the responsibility for firing a false alarm.

sw1

sw3

sw2
alarm

(a)

sw1

sw3

sw2
sw4

b

c

d

alarm

(b)

Fig. 1. A pair of circuits connecting switches and an alarm.

Analysing the circuit, we find two explanations for the alarm: moving down sw1 and
sw3 together suffices to fire the alarm, and the same happens for sw2 and sw3. However,
had sw3 not been moved down, the alarm would have not been fired. That means that
closing sw3 is a necessary cause to fire the alarm, pointing out that the operator for
that switch has, somehow, a higher degree of responsibility. Consider now the elabora-
tion depicted in Figure ?? with a fourth switch and its corresponding person in charge,
and suppose again that all persons close their respective switches. The set of events
{sw1,sw3,sw4} obviously suffice to fire the alarm, since {sw1,sw3} are still sufficient
for that purpose. However, sw4 is irrelevant, and so, it does not constitute an actual
cause, whereas {sw1,sw3} is a sufficient cause since nothing can be removed from it
without ceasing to be a sufficient explanation.

Until now, we have made explanations in terms of actions, ignoring their connection
to their effects through chains of intermediate events. Suppose that we want to reflect,
for instance, the causal relation between the switch movements and the facts represent-
ing that there is current at wire points b, c or d in Figure ??. To this aim, we will need
to represent each explanation not just as a set of events, but as an ordered arrangement
of them instead. For instance, the final effect for sw1 is that the current reaches point d
and the complete explanation for that effect would be now the sequence sw1·b·d. This,
together with the action of closing sw3, is a sufficient cause for alarm. Similarly, the
joint occurrence of sw2·c·d and sw3 constitutes a second, alternative sufficient cause. A
useful way of depicting explanations is by means of directed graphs with vertices repre-
senting events and edges representing causal connections among them. Figure ?? shows

three sufficient explanations G1, G2 and G3 for alarm corresponding to the circuit in
Figure ??. The first two explanations G1 and G2 are sufficient causes, whereas G3 is not
a cause, since we can “remove” sw4 and b and still get the sufficient explanation G2.

In this paper, we provide a formal definition for the three3 different types of causal
relations introduced above, that is sufficient explanation, sufficient cause and necessary
cause, and study how these causal assertions can be derived from a representation in
the form of a labelled logic program. To this aim, we use a recently proposed causal
approach [?] that provides a multi-valued extension of the stable model semantics [?].
In this approach, each true atom in a stable model is associated an expression involving
rule labels, called its causal justification, that has a direct relation to sets of causal
graphs as those in Figure ??. We summarise our contributions as follows.

– We formally define the concepts of sufficient explanation, sufficient cause and nec-
essary cause for some atom (cf. Section ??).

– We show that the number of possible sufficient causes for an atom can be, in the
worst case, exponential with respect to the program size. Despite this fact, proving
exact complexity characterisations (cf. Section ?? and see Figure ??) of the asso-
ciated decision problems, we establish that sufficient queries are not harder than
traditional (brave or cautious) reasoning tasks under the stable model semantics.

sw1

��

sw3

��

sw2

��

sw3

��

sw2

��

sw4

zz

sw3

��

b

��

c

��

c
��

b
��

d

))

d

))

d

))alarm alarm alarm

G1 G2 G3

Fig. 2. Sufficient explanations for the alarm firing in Figure ??. G1 and G2 are causes.

2 Background

In this section, we recall several definitions and notation from [?]. A signature is a pair
〈At,Lb〉 of sets that respectively represent atoms (or propositions) and rule labels.

The syntax is defined as follows. As usual, a literal is defined as an atom p (positive
literal) or its default negation not p (negative literal). In this paper, we will concentrate
on programs without disjunction in the head (leaving its treatment for future work).

3 We leave the study of actual causation (that is, events that are needed for some sufficient
cause) for future work.

positive
programs

with negation
(brave)

with negation
(cautions)

sufficient explanation P NP coNP
sufficient cause P NP coNP
necessary cause coNP Σ P

2 coNP

Fig. 3. Completeness results for deciding different types of causation in causal logic programs.

Definition 1 (Causal logic program). Given a signature 〈At,Lb〉, a (causal) logic pro-
gram P is a set of rules of the form:

t : H← B1, . . . ,Bn, (1)

where t ∈ Lb∪{1}, H is an atom (the head) and B1, . . . ,Bn are literals (the body). �

For any rule R of the form (??) we define label(R) def= t. We denote by head(R) def= H
its head, and by body(R) def= {B1, . . . ,Bn} its body. When n = 0 we say that the rule is a
fact and omit the symbol ‘←.’ When t ∈ Lb we say that the rule is labelled; otherwise
t = 1 and we omit both t and ‘:’. By these conventions, for instance, an unlabelled fact
p is actually an abbreviation of (1 : p←). A logic program P is positive if it contains
no default negation.

The semantics relies on assigning, to each atom, a causal term defined as follows.

Definition 2 (Causal term). A (causal) term, t, over a set of labels Lb, is recursively
defined as one of the following expressions t ::= l | ∏S | ∑S | t1 · t2 | (t1) where l ∈ Lb,
t1, t2 are in their turn causal terms and S is a (possibly empty and possible infinite) set
of causal terms. When S is finite and non-empty, S = {t1, . . . , tn} we write ∏S simply as
t1 ∗ · · · ∗ tn and ∑S as t1 + · · ·+ tn. The set of causal terms is denoted by TLb. �

We assume that ‘∗’ has higher priority than ‘+’. When S = /0, we denote, as usual ∏S
by 1 and ∑S by 0. These values are the indentities for the product and the addition,
respectively. All three operations, ‘∗’, ‘+’ and ‘·’ are associative. Furthermore, ‘∗’ and
‘+’ are commutative and they hold the usual absorption and distributive laws with re-
spect to infinite sums and products of any completely distributive lattice, as shown4 in
Figure ??. The behaviour of the ‘·’ operator is more specific from this approach and is
captured by the properties shown in Figure ??. Note that distributivity with respect to
the product is applicable to terms c, d, e without sums (this means that the empty sum,
0, is not allowed either). As usual for lattices, we define an order relation≤ as follows:

t ≤ u iff (t ∗u = t) iff (t +u = u)

By the identity properties of + and ∗, this immediately means that 1 is the top element
and 0 the bottom element of this order relation.

Given a signature 〈At,Lb〉 a causal interpretation is a mapping I : At → TLb as-
signing a causal term to each atom. We denote the set of causal interpretations by I.

4 For readability sake, we only show the properties for finite sums and products, but they still
hold in the infinite case.

Associativity
t + (u+w) = (t+u) + w
t ∗ (u∗w) = (t ∗u) ∗ w

Commutativity
t + u = u + t
t ∗ u = u ∗ t

Absorption
t = t + (t ∗u)
t = t ∗ (t+u)

Distributive
t + (u∗w) = (t+u) ∗ (t+w)
t ∗ (u+w) = (t ∗u) + (t ∗w)

Identity
t = t + 0
t = t ∗ 1

Idempotence
t = t + t
t = t ∗ t

Annihilator
1 = 1 + t
0 = 0 ∗ t

Fig. 4. Sum and product satisfy the properties of a completely distributive lattice.

Absorption
t = t + u · t · w

u · t · w = t ∗ u · t · w

Associativity
t · (u·w) = (t·u) · w

Identity
t = 1 · t
t = t · 1

Annihilator
0 = t · 0
0 = 0 · t

Indempotence
t · t = t

Addition distributivity
t · (u+w) = (t·u) + (t·w)
(t + u) · w = (t·w) + (u·w)

Product distributivity
c ·d · e = (c ·d)∗ (d · e) with d 6= 1

c · (d ∗ e) = (c ·d)∗ (c · e)
(c∗d) · e = (c · e)∗ (d · e)

Fig. 5. Properties of the ‘·’ operator (c,d,e are terms without ‘+’).

For interpretations I and J we say that I ≤ J whether I(p)≤ J(p) for each atom p ∈ At.
Hence, there is a ≤-bottom interpretation 0 (resp. a ≤-top interpretation 1) that maps
each atom p to 0 (resp. 1). The value assigned to a negative literal not p by an interpre-
tation I, denoted as I(not p), is defined as: I(not p) def= 1 if I(p) = 0; and I(not p) def= 0
otherwise.

We define next a simple variation of the standard Gelfond and Lifschitz’ program
reduct [?]. The reduct of program P with respect to a causal interpretation I, in symbols
PI , is the result of: (1) removing from P all rules R, s.t. I(B) 6= 0 for some negative
literal B ∈ body(R); and (2) removing all negative literals from the remaining rules.

Definition 3 (Causal model). Given a positive causal logic program P, a causal in-
terpretation I is a causal stable model, in symbols I |= P, if and only if I is the ≤-least
interpretation holding (

I(B1)∗ . . .∗ I(Bn)
)
· t ≤ I(H)

for each rule R ∈ P of the form (??). An interpretation I is a causal stable model of any
program P iff I is a causal stable model of PI . �

Definition 4 (Direct consequences). Given a positive logic program P over signature
〈At,Lb〉, the operator of direct consequences is a function TP : I −→ I such that, for
any causal interpretation I and any atom p ∈ At:

TP(I)(p) def= ∑
{ (

I(B1)∗ . . .∗ I(Bn)
)
· t | (t : p← B1, . . . ,Bn) ∈ P

}
Theorem 1 (From Theorem 2 in [?]). Let P be a (possibly infinite) positive logic
program with n causal rules. Then, (i) lfp(TP) is the least model of the program P, and
(ii) lfp(TP) = TP ↑ ω (0) = TP ↑ n (0). �

3 Query language

In order to characterise the different types of causation, we must begin first by a formal
description of causal explanations. In particular, an explanation will have the form of a
particular kind of graph involving rule labels, as defined below.

Definition 5 (Explanation or Causal graph). Given a set of labels Lb, an explanation
or causal graph (c-graph) G is a transitively and reflexively closed directed graph with a
set of vertices V ⊆ Lb and a set of edges E ⊆V ×V . We denote the set of causal graphs
by CLb. �

Imposing reflexivity is not essential, but is more convenient for obtaining simpler defini-
tions. Transitivity, however, is crucial for defining an adequate ordering relation among
explanations with the simple use of the subgraph relation. To see why, let us consider
again the graphs G2 and G3 in Figure ??. As we explained in the introduction, G3 is a
sufficient explanation for alarm but is not a sufficient cause because G2 is also sufficient
and somehow “smaller.” In fact, G2 can be obtained by “removing” b and sw4 from G3
while respecting the rest of causal dependence relations. However, G2 is not a subgraph
of G3 since the edge (c,d) is not present in the latter. To capture this idea of being
smaller as a result of “removing parts” we must use instead the transitive closures: the
transitive closure of G2 is indeed a subgraph of the transitive closure of G3.

For any c-graph G we define an associated causal term term(G) as follows:

term(G) def= ∏{ v1 · v2
∣∣ (v1,v2) is an edge of G }

Definition 6 (sufficient explanation, sufficient cause, necessary cause). Given an in-
terpretation I and an atom p we say that a c-graph G is

– a sufficient explanation for p iff term(G)≤ I(p)
– a sufficient cause of p iff it is a subgraph-minimal sufficient explanation for p
– a necessary cause of p iff it is a subgraph of all sufficient causes of p and I(p) 6= 0. �

Example 2 (Ex. ?? continued). A possible representation of the circuit in Figure ?? is
the logic program P1 containing the following causal rules:

alarm : alarm(T) ← down(sw3,T), current(c,T)

b : current(b,T) ← down(sw1,T)

c : current(c,T) ← down(sw2,T)

d : current(d,T) ← current(b,T)

d : current(d,T) ← current(c,T)

down(X ,T) ← m(X ,d,T)

up(X ,T) ← m(X ,u,T)

plus the corresponding inertia rules for atoms up and down (we consider that the rest of
the fluents are non-inertial, and so, false by default):

up(X ,T+1)← up(X ,T),not down(X ,T+1) down(X ,T+1)← down(X ,T),not up(X ,T+1)

where X is any switch number X ∈ {1,2,3,4} and T is a natural number representing a
time instant. Atoms m(X ,D,T) represent the action of moving switch X up ‘u’ or down
‘d’ at time instant T . Consider now a story where, initially, all switches are up, then sw1

and sw2 are closed in Situation 1, then sw3 is closed at 3 and finally sw4 closed at 4.
The following set of facts, added to P??, captures this scenario:

up(sws,0) for s ∈ {1,2,3}
sw1 : m(sw1,d,1) sw2 : m(sw2,d,1) sw3 : m(sw3,d,3) sw4 : m(sw4,d,4)

In the least model I of P??, I(alarm) = (sw1·b·d∗sw3) ·alarm+(sw2·c·d∗sw3) ·alarm.
The correspondence between the left and right operands in the addition above with c-
graphs G1 and G2 in Figure ?? is easy to see. For instance sw1 ·b·d corresponds to the
left branch of G1, sw3 to the right one and alarm is its root. In fact, it can be shown, by
successive application of algebraic equivalences in Figures ?? and ??, that

term(G1) = (sw1·b·d ∗ sw3) ·alarm and term(G2) = (sw2·c·d ∗ sw3) ·alarm

In other words, I(alarm) = term(G1)+term(G2) in the only causal stable model. Now,
it is also easy to see, by idempotence of addition, that term(G1)+ I(alarm) = I(alarm)
which implies that term(G1)≤ I(alarm). According to Definition ??, this means that
G1 is, as we mentioned in the introduction, a sufficient explanation for alarm. Further-
more, no subgraph of G1 is a sufficient explanation for p and consequently G1 is also a
sufficient cause of p. By a similar observation, G2 is also a sufficient cause of p and it
can be checked that, apart from G1 and G2, no other c-graph is a sufficient cause of p.
�

In the previous example, the causal term for alarm obtained in the unique sta-
ble model of the program was equal to the sum of all terms associated with its suf-
ficient causes. In fact, this constitutes a general property, as stated below.

Theorem 2. Given an interpretation I and an atom p, the following holds:

– I(p) = ∑
{

term(G)
∣∣ G is a sufficient cause of p

}
, and

– any c-graph G is a necessary cause of p (Def. ??) iff I(p) ≤ term(G) and I(p) 6=
0. �

Finally, for a program with negation and its possible stable models, we define, as
usual, cautious and brave versions of the three types of explanations defined before.

Definition 7. Given a causal logic program P, an explanation of any type (sufficient
explanation, sufficient cause or necessary cause) for an atom p is further said to be
brave (resp. cautious) if it constitutes an explanation of that same type for p in some
(resp. every) stable model of P. �

4 Complexity assessment

The table in Figure ?? summarizes our complexity assessment (completeness results).
Each row represents a query type – sufficient explanation, sufficient cause and necessary
cause. The first column contains results for positive programs (unique stable model),
whereas the second and the third columns respectively show the results for brave and

cautions reasoning for programs with negation. Note that for sufficient queries the com-
plexity is the same as for checking the truth of an atom in standard stable model seman-
tics. Subesequently, we establish these results formally, starting with membership.

In order to check whether a c-graph G is, for instance, a brave (resp. cautious) suf-
ficient cause of a given atom p for a program P we can begin computing the standard
(non-causal) stable models of P. Since the causal reduct removes negations depend-
ing on whether negated atoms are 0 or different from 0 and there exists a one-to-one
correspondence between causal stable models and standard stable models (see [?] for
more details), we can build the reduct PJ using each non-causal stable model J and then
proceed to compute its least causal model iterating the direct consequences operator
for that reduct, TPJ . Due to [?, Theorem 6], there is a 1-to-1 correspondence between
least causal models obtained in this way and causal stable models of the program. Now
it would remain to check whether term(G) ≤ I(p) in some (resp. every) causal stable
model I. Unfortunately, comparing two arbitrary causal terms t and t ′ is not an easy task
(in fact it is coNP-hard). A naive approach for that comparison would be rewriting t and
t ′ in a normal form where ‘·’ and products are not in the scope of additions, something
that can be always achieved by applying distributive laws of ‘·’ and ‘∗’ with respect to
‘+’. Once in that normal form, comparison is more or less straightforward (Σ ti ≤ Σ t ′j iff
for each term ti there is some t ′j ≥ ti, and comparing terms just containing products and
‘·’ is a simple task). However, applying distributivity may easily blow up complexity.
Consider the positive program P2 consisting of the rules:

a : p1

c : q1

b : p1

d : q1

mi : pi← pi−1, qi−1 for i ∈ {2, . . . ,n}
ni : qi ← pi−1, qi−1 for i ∈ {2, . . . ,n}

It is easy to see that the interpretations of atoms p1 and q1 in the least causal model I of
P?? are a+b and c+d, respectively. The interpretation for p2 corresponds to:

I(p2) = (I(p1)∗ I(q1)) ·m2 = ((a+b)∗ (c+d)) ·m2

= (a∗ c) ·m2 + (a∗d) ·m2 + (b∗ c) ·m2 + (b∗d) ·m2

This addition cannot be further simplified. Thus, by Theorem ??, the four summands
above are sufficient causes for p2. Analogously, I(q2) can also be expressed as a sum of
four sufficient causes – we just replace m2 by n2 in I(p2). But then, I(p3) corresponds
to (I(p2) ∗ I(q2)) ·m3 and, applying distributivity, this yields a sum of 4× 4 sufficient
causes. In the general case, each atom pn or qn has 22n−1

sufficient causes so that ex-
panding the complete causal value into this additive normal form becomes intractable.

Program P?? also reveals another issue. Even if distributivity is not applied, the
causal terms directly obtained by the TPJ operator for p2 and q2 require 4 operators, the
causal terms for p3 and q3 require 10, I(p3)= ((a+b)∗(c+d)) ·m2∗((a+b)∗(c+d)) ·
n2
)
·m3 and, in general, the terms for pn or qn would require 2n + 2n−1− 2 operators.

However, an interesting observation is that subterm (a1 +b1)∗ (c1 +d1) occurs twice in
I(p3) above, and the same happens for I(q3). This subterm will occur four times in the
causal terms for atoms p4 and q4. Avoiding repetitions will allow us computing the least
model of TPJ in polynomial time (and thus, using a polynomial number of operators to
represent it).

Definition 8 (Term and interpretation graph). Given a set of labels Lb, a term graph
(t-graph) T̃ = 〈V,E, fV , fE ,vr〉 is a rooted, connected and labelled directed graph with

·

le f tvv right ((∗

vv ((

a3

· le f t

''

right

vv

·le f t

ww

right

((
a2 ∗

ww ''

b2

+

~~

+

��

a1 b1 c1 d1

Fig. 6. The t-graph associated to I(p3) in program P??.

a set of vertices V , edges E, root vr ∈V and label functions fV : V −→ Lb∪{1,+,∗, ·}
and fE : E −→ {le f t,right} such that

1. all leafs are labelled with unitary causes (a label in Lb or 1),

2. all non-leaf nodes are labelled with operators

3. for any vertex labelled with the application operator ‘·’ there are exactly two out-
going edges labelled ‘le f t’ and ‘right’ being the target for the latter a leaf node.
The rest of edges in the graph are unlabelled. �

Each vertex in a t-graph T̃ represents a corresponding causal term as follows:

termT̃ (v) = fV (v) for any leaf v in T̃

termT̃ (v)
def= ∑{ term(v′)

∣∣ (v,v′) ∈ E } if fV (v) = +

termT̃ (v)
def= ∏{ term(v′)

∣∣ (v,v′) ∈ E } if fV (v) = ∗
termT̃ (v)

def= termT̃ (u) · termT̃ (w) if fV (v) = · and fE(v,u) = le f t

and fE(v,w) = right

The term associated to a t-graph T̃ is the term associated with its root vertex vr. As an
example, Figure ?? represents the t-graph corresponding to I(p3) in the last example.
We also extend these notions to interpretations. For an interpretation I, a term inter-
pretation (t-interpretation) Ĩ is just a function mapping each atom p ∈ A to a t-graph
T̃ such that I(p) = term(Ĩ(p)) for any atom p. We can now compute the least model
of a positive program by iterating, a new direct consequences operator T̃P defined as

T̃P(Ĩ)(p) def= 〈Vp,Ep, fV,p, fE,p,vp〉 where:

Vp
def=
⋃
{ VĨ(R) ∪{vp}

∣∣ R ∈ P, head(R) = p }

Ep
def=
⋃
{ EĨ(R)∪{(vp,vR)}

∣∣ R ∈ P, head(R) = p }

VĨ(R)
def=
⋃{

VĨ(q)

∣∣ q ∈ body(R)
}
∪
{

vR,wR,vl
}

EĨ(R)
def=
⋃{

EĨ(q)∪{(wR,vĨ(q))}
∣∣ q ∈ body(R)

}
∪
{
(vR,wR)),(vR,wl)

}

fV,p(v)
def=

+ if v = vp

· if v = vR

∗ if v = wR

label(R) if v = wl

fV,Ĩ(q)(v) if v ∈VĨ(q)

fE,p(e)
def=

le f t if e = (vR,wl)

right if e = (vR,wR)

fE,Ĩ(q)(e) if e ∈ EĨ(q)

and, for any atom q, VĨ(q), EĨ(q), fV,Ĩ(q), fE,Ĩ(q), vĨ(q) are respectively the set of vertices,
edges, the label functions of vertices and edges and the root of the t-graph Ĩ(q).

Theorem 3. Let P be a positive logic program with n rules, and let I be its least model.
Then I(p) = term(T̃P ↑ n (0̃)(p)) for all atoms p. Moreover, T̃P ↑ n (0̃)(p) is computable
in polynomial time with respect to the size of P. �

Theorem ?? builds on a polynomial time computable procedure to obtain the least
model of a positive program P. We exploit now the fact that the term associated to
a c-graph has no sums to define a boolean function sufficient(G, T̃ ,v, l) that can be re-
cursively computed as follows:∨
{ sufficient(G, T̃ ,vi, l)

∣∣ (v,vi) ∈ E } aa if fV (v) = +∧
{ sufficient(G, T̃ ,vi, l)

∣∣ (v,vi) ∈ E } if fV (v) = ∗
sufficient(G, T̃ ,vl , l) if fV (v) = ·, fE(v,vl) = le f t, fE(v,vr) = right,

and fV (vr) = 1
sufficient(G, T̃ ,vl , lr) if fV (v) = ·, fE(v,vl) = le f t, fE(v,vr) = right,

fV (vr) = lr and (lr, l) ∈ G
true if fV (v) = 1 and l = 1
true if fV (v) = 1, l 6= 1 and (l, l) ∈ G
true if fV (v) = l′ ∈ Lb, l = 1 and (l′, l′) ∈ G
true if fV (v) = l′ ∈ Lb, l 6= 1 and (l′, l) ∈ G
f alse otherwise

Then, we define sufficient(G, T̃) def= sufficient(G, T̃ ,root(T̃),1).

Theorem 4. Given an interpretation I and a t-interpretation Ĩ, a causal graph G is a
sufficient explanation for an atom p with respect to I iff sufficient(G, Ĩ(p)) = true. �

Corollary 1. Given a positive causal logic program P, a causal graph G, and an atom
p, deciding whether G is a sufficient explanation for p with respect to its least model is
feasible in polynomial time. �

In order to decide whether a causal graph is a sufficient cause, we recall that the
transitive reduction of a directed graph G is another graph that preserves the reachability
relation of G with a minimal set of edges. Deciding whether a c-graph G is a sufficient
cause of some atom p in the least model of a program P can be done by:

1. checking whether G is a sufficient explanation for p
2. computing the transitive reduction GR of G
3. computing the set SR of graphs obtained from GR by removing one of its edges
4. computing the set S obtained from the transitive closures of all graphs in SR

5. checking for every causal graph G′ in S that it is not a sufficient explanantion for p.

Theorem 5. Given a positive logic program P, a causal graph G, and an atom p, de-
ciding whether G is a sufficient cause of p with respect to its least model is feasible in
polynomial time. �

We consider now sufficient explanation and sufficient cause queries for programs
with negation using the following nondeterministic procedure:

1. guessing a set of atoms J
2. checking whether J is the least classical model of the reduct PJ (ignoring labels)
3. checking whether G is a sufficient explanation for (resp. cause of) p w.r.t. PJ

This will succeed for some (resp. all) sets J iff G is a sufficient explanation for/cause of
p with respect to some (resp. all) causal stable model(s) of P. Consequently we have the
following membership results for brave (resp. cautions) sufficient explanations/causes:

Theorem 6. Given a program P, deciding whether a c-graph G is a brave (resp. cau-
tious) sufficient explanation or sufficient cause of an atom p is in NP (resp. in coNP). �

In a similar way, we can decide whether G is a necessary cause as follows:

1. guess a set of atoms J and a causal graph G′

2. check whether J is the least classical model of the reduct of PJ (ignoring labels)
3. succeed if J does not contain p
4. check whether G′ is a sufficient cause of p w.r.t. PJ

5. check whether G is not a subgraph of G′

This procedure succeeds iff G is not a cautious necessary cause of p with respect to
program P yielding the following result:

Theorem 7. Given a causal logic program P, deciding whether a c-graph G is a cau-
tious necessary cause of an atom p is in coNP. �

Finally, we can check brave necessary causation for an atom p by:

1. non-deterministically guessing a set of atoms J,
2. checking whether J is the least classical model of the reduct PJ (ignoring labels)
3. checking with an NP-oracle (Theorem ??) whether G is necessary for p w.r.t. PJ

This will succeed iff G is necessary for p with respect to some stable model of pro-
gram P. Hence, the problem can be decided non-deterministically in polynomial time
with an NP-oracle (NPNP = Σ P

2):

Theorem 8. Given a causal logic program P, deciding whether a c-graph G is a brave
necessary cause of an atom p is in Σ P

2 . �

Turning to hardness, first note that any standard logic program is also an unlabelled
causal logic program and an atom p is true in the former iff the empty c-graph (causal
term 1) is a sufficient explanation (resp. a sufficient cause) for p. Therfore, the following
result trivially follows:

Theorem 9. Given a causal logic program P, deciding whether a c-graph G is a brave
(resp. cautious) sufficient explanation or sufficient cause of some atom p is NP-complete
(resp coNP-complete). Furthermore, P-hardness holds when P is positive. �

Let us next turn to the complexity results for necessary cause decision problems and
show that they are tight too. First, we show that deciding whether a c-graph G is a brave
necessary cause of some atom is Σ P

2 -hard by constructing a log-space reduction of de-
ciding the truth of any quantified boolean formula of form ϕ = ∃y1, . . . ,yn∀x1, . . . ,xm ρ ,
where ρ = ψ1 ∨ . . .∨ψr and each ψi = Li1 ∧Li2 ∧Li3 is a conjunction of three literals
Li j over atoms y1, . . . ,yn,x1, . . . ,xm. Given ϕ , we construct a causal logic program Pϕ

as follows:

xk : xk for each k ∈ {1, . . . ,m}
t : t

xk : ψi← t if Li j = xk for each i ∈ {1, . . . ,r}, j ∈ {1,2,3}
f : ψi← xk if Li j = xk for each i ∈ {1, . . . ,r}, j ∈ {1,2,3}

ρ ← ψ1, . . . , ψr

yk ← not yk for each k ∈ {1, . . . ,n}
yk ← not yk for each k ∈ {1, . . . ,n}

f : ψi← yk, t if Li j = yk for each i ∈ {1, . . . ,r}, j ∈ {1,2,3}
f : ψi← yk, t if Li j = yk for each i ∈ {1, . . . ,r}, j ∈ {1,2,3}

ψi← yk if Li j = yk for each i ∈ {1, . . . ,r}, j ∈ {1,2,3}
ψi← yk if Li j = yk for each i ∈ {1, . . . ,r}, j ∈ {1,2,3}

Obviously this transformation can be done using logarithmic space. Moreover, it can
be shown that ϕ is true if and only if the c-graph Gt f formed by the edge (t, f) is a
necessary cause of atom ρ . To wit, first observe that I(ψi) =σI(Li1)+σI(Li2)+σI(Li3),
for any causal stable model I of Pϕ , and therefore

I(ρ) = ∑
{

σI(L1 j1)∗ . . .∗σI(Lr jr)
∣∣ ji ∈ {1,2,3}

}
where

σI(xk) = t · xk

σI(xk) = xk · f

σI(yk) = t · f if I |= yk

σI(yk) = t · f if I 6|= yk

σI(yk) = 1 if I 6|= yk

σI(yk) = 1 if I |= yk

The value assigned to atom ρ corresponds to the conjunctive normal form of for-
mula ρ , replacing

∧
by ∑, ∨ by ∗ and Li ji by σI(Li ji). Clearly, ∀x1, . . . ,xm ρ is true

if and only if all disjunctions of its conjunctive normal form are valid. The latter is
the case for a disjunction if it contains an existential variable yk assigned to true or
two complementary literals of an universal variable xk. Intuitively, every causal stable
model I encodes an assignment to the existential variables y1, . . . ,yn. If some yk is as-
signed to true, then σI(yk) = t · f . Thus, with every disjunction L1 j1∨ . . .∨ yk ∨ . . .Lr jr
containing variable yk, the value σI(L1 j1)∗ . . .∗ t · f ∗ . . .σI(Lr jr) is associated, which
is obviously smaller than t · f . The same also applies to every disjunction contain-
ing the literal yk when yk is assigned to false. Moreover, disjunctions of the form of
L1 j1∨ . . .∨ xk ∨ . . .∨ xk ∨ . . .∨Lr jr , i.e., containing complementary literals over an uni-
versal variable, are assigned a causal term σI(L1 j1)∗ . . .∗ t ·xk ∗ . . .∗ xk · f ∗ . . .∗σI(Lr jr),
which also is smaller than t · f . As a consequence, formula ϕ is true if and only if
there exists some causal stable model I (corresponding to an assignment on variables
y1, . . . ,yn) such that I(p)≤ t· f (i.e., formula ∀x1, . . . ,xm ρ is true under this assignment).
The latter is equivalent to deciding whether the causal graph Gt f is a brave necessary
cause of p (cf. Theorem ??).

Finally note that, for n = 0, i.e., when there are no existentially quantified variables,
deciding whether ϕ is true is coNP-hard and Pϕ becomes positive. Therefore:

Theorem 10. Given a program P, a c-graph G, and an atom p, deciding whether there
exists a causal stable model of P such that G is a necessary cause of p is Σ P

2 -complete
(coNP-complete when P is positive). �

5 Related Work and Conclusions

In this work, we have revisited a recent proposal for causal semantics in logic pro-
gramming [?] that assigns a causal explanation to each true atom in a stable model,
providing formal definitions for three different causal relationships: being a “sufficient
explanation”, being a “sufficient cause” and being a “necessary cause”. We have shown
that, while obtaining the complete causal explanation of an atom has exponential cost,
querying whether some cause of p is of any of these three types remains within the first
two levels of the polynomial hierarchy (see Figure ??). Although these results could
be reasonable or sometimes even expected, their real significance is that they affirm the
adequacy of the causal semantics proposed. In fact, this complexity study has led us to
disregard a weaker approach previously considered in [?] where causal explanations did
not guarantee transitivity, since this lack actually yielded higher complexity bounds.

The types of causation defined in the current paper are directly inspired by Hall’s
classification [?]. In that paper, a sufficient explanation is just called “being sufficient”
whereas a sufficient cause is said to be “minimally sufficient.” There are also other re-
lated works on explanations for logic programs as provided by approaches to debugging
in ASP [?,?,?,?] or other approaches for justifications [?,?,?]. Apart from establishing
formal comparisons to these approaches, future work will be focused on three differ-
ent directions. The next immediate step is implementing the query language to allow
queries for positive programs and brave and cautious reasoning for programs with nega-

tion. A second line of research is completing the query language and the complexity as-
sessment for actual causation. An actual cause, in the sense of Mackie [?] can be easily
defined in this setting as any cause (or causal graph) that is stronger than (i.e., it is a
subgraph of) some sufficient cause. This concept can be sometimes convenient since,
in order to query if some graph is a sufficient cause, we must provide its complete de-
scription, including intermediate events, while for actual causation, we could just check
if a partial description of that cause is involved in one of the sufficient explanations.
Finally, our most challenging goal is incorporating this type of causal relationships as a
new type of literals in program bodies. This would allow representing problems of the
form “if sw3 was a necessary cause for alarm then operator for sw3 must be penalized”
directly as logic program rules.

