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Abstract. In this work, we present a causal extension of logic programming un-
der the stable models semantics where, for a given stable model, we capture the
alternative causes of each true atom. The syntax is extended by the simple addi-
tion of an optional reference label per each rule in the program. Then, the obtained
causes rely on the concept of a causal proof : an inverted tree of labels that keeps
track of the ordered application of rules that has allowed deriving a given true
atom.

1 Introduction

Causality is a concept firmly settled in commonsense reasoning. It is present in all kind
of human daily scenarios, and has appeared in quite different cultures, both geographi-
cally and temporally distant. Paradoxically, although people reveal an innate ability for
causal reasoning, the study of causality, or even its very definition, has become a diffi-
cult and controversial topic, being tackled under many different perspectives. Philoso-
phers, for instance, have been concerned with the final nature of causal processes and
even discussed if there exists so. Logicians have tried to formalise the concept of causal
conditionals, trying to overcome counterintuitive effects of material implication. Sci-
entists have informally applied causal reasoning for designing their experiments, but
usually disregarded causal information once their formal theories were postulated.

In Artificial Intelligence (AI), we can find two different and almost opposed fo-
cusings or currents: (1) using causal inference; and (2) extracting causal knowledge.
Current (1) has been adopted in the area of Reasoning about Actions and Change where
most causal approaches have tried to implement some kind of causal derivation in or-
der to solve other reasoning or representational problems. We can cite, for instance,
the so-called causal minimizations proposed by Lifschitz [1] or by Haugh [2] that were
among the first solutions to the well-known Yale Shooting Problem [3], or other later
approaches like [4–6] applying causal mechanisms to simultaneously solve the frame
and ramification problems. All these formalisms are thought to reason using causality
but not about causality. To put an example, we may use a causal rule like “A causes
B” to deduce that effect B follows from a fact A, but we cannot obtain the information
“A has caused B.” The only concern is that the rule behaves in a directional way: for
instance, we do not want to derive ¬A as an effect of fact ¬B. A well-studied formal-
ism based on McCain and Turner’s work [5] is the approach of Non-monotonic Causal
Theories [7] developed by V. Lifschitz and his former doctorate students.
? This research was partially supported by Spanish MEC project TIN2009-14562-C05-04.



Current (2), on the contrary, consists in recognising cause-effect relations like “A
has caused B” from a more elementary, non-causal formalisation1. For instance, [10]
propose a definition for “event A is an actual cause of event B in some context C”
in terms of counterfactuals dealing with possible worlds. These possible worlds cor-
respond to configurations of a set of random variables related by so-called structural
equations. Under this approach, we observe the behaviour of the system variables in
different possible situations and try to conclude when “A has causedB” using the coun-
terfactual interpretation from [11]: had A not happened, B would not have happened.
Recently, [12] refined this definition by considering a ranking function to establish the
more “normal” possible worlds as default situations. Under this focusing we cannot,
however, describe the system behaviour in terms of assertions like “A causes B” as
primitive rules or axioms: this must be concluded from the structural equations.

A third and less explored possibility would consist in treating causality in an epis-
temological way, embodied in the semantics as primitive information, so that we can
derive causal facts from it. In this case, the goal is both to describe the scenario in terms
of rules like “A causes B” and derive from them facts like “A has caused B”. This
may look trivial for a single and direct cause-effect relation, but may easily become a
difficult problem if we take into account indirect effects and joint interaction of differ-
ent causes. An approach that followed this focusing was [13] that allowed to derive,
from a set of causal rules, which sets of action occurrences were responsible for each
effect in a given transition system. This approach was limited in many senses. For in-
stance, only actions could form possible causes, but not intermediate events. The causal
semantics was exclusively thought for a single transition. Besides, the implementation
of causal rules and the inertia default relied on an additional (and independent) use of
the nonmonotonic reasoning paradigm of answer set programming (ASP) [14, 15], that
is, logic programs under the stable model semantics [16].

In this paper we go further and propose to embed causal information inside the
lower level of ASP. In particular, we are interested in a formal semantics to capture the
causes for each true atom in a given stable model. To this aim, we extend the syntax by
including a label for each rule. Inspired by the Logic of Proofs [17], the causes of a given
true atom p are then expressed in terms of inverted trees of labels, called causal proofs,
that reflect the sequence and joint interaction of rule applications that have allowed
deriving p as a conclusion. As a result, we obtain a general purpose nonmonotonic
formalism that allows both a natural encoding of defaults and, at the same time, the
possibility of reasoning about causal proofs, something we may use later to encode
high level action languages and extract cause-effect relations among actions and fluents
in a more uniform and flexible way.

The rest of the paper is organised as follows. In the next section we explain our
motivations and provide a pair of examples. After that, we introduce our semantics for
causal proofs, explaining their structure and defining interpretations and valuation of
formulas. The next section proceeds to consider positive logic programs explaining how,

1 Some approaches relying on inductive learning [8, 9] also extract causal information from
sets of non-causal observations. However, we do not consider them inside current (2) because
the learned theory is of type (1), that is, it allows capturing the domain behaviour but not
concluding cause-effect relations like “A has caused B.”



for that case, a concept of model minimality is required. Then, we move to programs
with default negation, defining stable models in terms of a straightforward adaptation
of the well-known idea of program reduct [16]. Finally, we discuss some related work
and conclude the paper.

2 Motivation and Examples

Let us see several examples to describe our understanding of a causal explanation for
a given conclusion. Causal explanations (or causal proofs) will be provided in terms of
rule labels used to keep track of the possible different ways to obtain a derived fact. For
readability, we will use different names for labels (usually a single letter) and propo-
sitions, but this restriction is not really required. Sometimes, we will also handle un-
labelled rules, meaning that we are not really interested in tracing their application for
explaining causal effects.

We begin observing that, in order to explain a given derived atom, we will need
to handle causes that are due to the joint interaction of multiple events. For instance,
suppose we have a row boat with two rowers, one at each side of the boat. The boat will
only move forward fwd if both rowers strike at a time. We can encode the program as:

p : port s : starb port ∧ starb→ fwd

where we labelled the facts port (port rower made a stroke) and starb (starboard rower
made a stroke) respectively using p and s. Suppose that, in this first example, we are
only interested in keeping track of actions (in this case, the labelled facts) and that we
leave the rule for fwd unlabelled. From this program we expect concluding not only
that fwd (the boat moves forward) is true, but also that its cause is {p, s}, that is, the
simultaneous interaction of both strokes.

On the other hand, we will also need considering alternative (though equally effec-
tive) causes for the same conclusion. For instance, if we additionally have a following
wind, the boat moves forward too:

w : fwind fwind→ fwd

so that we have now two alternative and independent ways of explaining fwd: {w} and
{p, s}.

From these examples, we conclude that in order to explain a conclusion, we will
handle a set of alternative sets of individual events, so that the full explanation for fwd
above would be the set {{w}, {p, s}} of its two alternative causes.

Apart from recording labels for facts, we may be interested in a more detailed de-
scription that also keeps track of the applied rules. To illustrate the idea, take the fol-
lowing example. Some country has a law l that asserts that driving drunk is punishable
with imprisonment. On the other hand, a second law m specifies that resisting arrest
has the same effect. The execution e of a sentence establishes that any punishment to
imprisonment is made effective unless the accused is exceptionally pardoned. Suppose
that some person drove drunk and resisted to be arrested. We can capture this scenario



with the next program:

l : drive ∧ drunk → punish d : drive
m : resist→ punish k : drunk
e : punish ∧ ¬pardon→ prison r : resist

We want to conclude that punish holds because of two alternative causes. The first
one is the application of law l on the basis of the joint cause {d, k}. We will denote
this as l · {d, k}. Similarly, the second one would be due to resistance to arrest m ·
{r}. These two causes are independent, so the explanation for punish would contain
two alternative causes: {l · {d, k}} and {m · {r}}. Finally, as there is no evidence of
pardon we would conclude that the two independent causes for prison are inherited
from punish plus the sentence execution e, that is: {e · {l · {d, k}}} and {e · {m · {r}}}.
We proceed next to formalise these ideas.

3 A semantics for causal proofs

A signature is a pair 〈At, Lb〉 of finite sets that respectively represent the set of atoms
(or propositions) and the set of labels (or causal events). A formula F is defined by the
grammar:

F ::= p | ⊥ | F1 ∧ F2 | F1 ∨ F2 | l : F1 → F2

where p ∈ At is an atom and l can be a label l ∈ Lb or the null symbol ε 6∈ Lb.
Symbol ε is used when we do not want to label an implication, so that we allow an
unlabelled formula ϕ → ψ as an abbreviation of ε : ϕ → ψ. We write ¬ϕ to stand
for the implication ϕ → ⊥, and write > to stand for ¬⊥. We also allow labelling non-
implicational formulas l : ϕ with some non-null label l ∈ Lb, so that it stands for an
abbreviation of l : > → ϕ. A theory is a finite set of formulas that contains no repeated
labels (remember ε 6∈ Lb).

The semantics will rely on the following concept.

Definition 1 (Causal tree). A causal tree for a set of labels Lb is a structure l ·C where
l ∈ Lb is a label (the root) and C is, in its turn, a (possibly empty) set of causal trees. �

The informal reading of l · C is that “the set of causal trees in C are used to ap-
ply l.” We can graphically represent causal trees as regular trees of labels, l being the
root and C the child trees, which cannot contain duplications (remember C is a set).
We depict trees upside down (the root in the bottom) and with arrows reversed, as in
Figure 1, since this better reflects the actual causal direction, as explained before. In
the figure, t1 and t2 are causal trees but t3 is not, since there exists a node (the root a)
with two identical child trees (the leftmost and rightmost branches). We can deal with
usual graph-theoretical terminology for trees so that, for instance, a causal tree with no
children l · ∅ is called a leaf (we will just write it l for short). Similarly, the height of a
causal tree is the length of the longest path to any of its leaves.

Note that, for any non-empty Lb, we will have an infinite set of causal trees. To see
why, it suffices to observe that just taking Lb = {l} we can build, among others, the
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Fig. 1. Three examples of (reversed) trees of labels. t1 and t2 are causal trees.

infinite sequence of causal trees l, l · {l}, l · {l · {l}}, etc. However, as we can see, most
trees in T are not very interesting. Many of them contain some subtree l · C where l
occurs in C – this means that we are using l to conclude l. When this happens, we say
that l · C is a self-supported causal tree. For instance, t2 in Figure 1 is self-supported.
Anything we could explain using t2 can be also explained using leaf a alone. Any causal
tree containing a self-supported subtree is said to be redundant.

Definition 2 (Causal proof). A causal proof l · C is a non-redundant causal tree. �

We write PLb to stand for the set of all possible causal proofs for a set of labels Lb.
If Lb is finite, PLb is also finite and its cardinality is given below.

Proposition 1. The number of causal proofs |PLb| that can be formed with a set Lb of
n different labels is given by the recursive function:

f(n) =

{
1 if n = 1
n 2f(n−1) if n > 1

�

For instance, with the pair of labels Lb = {a, b} we get 4 possible causal proofs
PLb = {a, b, a · {b}, b · {a}}.

We define a cause C as any (finite) set of causal proofs, that is, C ∈ 2PLb . We write
CLb = 2PLb to refer to the set of all possible causes for a set of labels Lb. An interesting
observation is that given any causal proof l · C, the set C forms a cause.

As we explained before, the intuitive meaning of a cause is that it collects a set of
causal proofs whose joint interaction suffices to explain a given fact or formula. On the



other hand, we may have a set of causes that are independent alternative explanations.
Our semantics will consist, therefore, in assigning a set of causes (that is, a set of sets
of causal proofs) to each formula. However, as happened with redundant trees, a set of
causes may easily introduce irrelevant information. Consider the following example.

a : p p→ r r → s
b : p→ q q → s

Fact s can be obtained following two different paths: one following the implications
in the first row, leading to cause {a}; and the other one following the second row of
implications and leading to cause {b ·{a}}. The causal proof in the first case, a, actually
forms a subtree of b · {a}. So, from a causal point of view, the latter is not a fully
independent alternative, since with the simple application of a it will always suffice
to get s. Of course, it may be objected that the number of implications for {a} is not
smaller (it could even be larger). However, all of them are unlabelled, and so, irrelevant
for causality steps – we can think of them as “instantaneous.” Therefore, we will be
interested in dealing with alternative causes that are in some sense minimal (this will
be formalised next). Note, however, that inside a cause, we would not want to force
minimal causal proofs. For instance, if we modify the previous example as follows:

a : p p→ r q ∧ r → s
b : p→ q

now s requires both q and r. It seems obvious that b necessarily participates in proving
s, so we would get the joint cause {a, b · {a}} for explaining s, although one of its
proofs is a subproof of the other.

Let us capture now these ideas in a formal way. We mutually define relations of
subproof and subcause denoting them, by abuse of notation, with the same symbol �.

Definition 3 (subproof/subcause). Let C,C ′ denote causes, l, l′ labels and t, t′ causal
proofs. Then:

– l · C is a subproof of l′ · C ′, written l · C � l′ · C ′, when:
• Either l = l′ and C � C ′;
• or {l · C} � C ′.

– C is a subcause of C ′, written C � C ′, when:
for all t ∈ C there is some t′ ∈ C ′ such that t � t′.

�

From a graphical point of view, t is a subproof of t′ if it constitutes a subtree, i.e.,
any tree formed with a subset of nodes and a subset of edges from t′. We can also see the
subcause relation C � C ′ by understanding that any proof like l ·C will be a subtree of
l ·C ′ for any l. From this observation, it is quite easy to see that both� are partial order
relations. Obviously, ∅ � C for any cause C, so ∅ is the smallest subcause. Figure 2
shows three subproofs of t1 in Figure 1.

This conclusion is wrong. The subcause relation is, in fact, weaker than the subtree
relation. In fact, � is just a preorder, i.e., it satisfies reflexivity and transitivity, but not



antisymmetry. As a counterexample with proof trees: t = a ·{b, b ·{c}} and t′ = a ·{b},
where both t � t′ and t′ � t but t′ 6= t.

The reader is referred to [18] for a corrected and substantially improved approach.
The correction implies representing both proof trees and causes as a graphs of labels,
and defining C1 � C2 as C1 ⊆ C∗2 where C∗2 is the reflexive and transitive closure of
C2 and ⊆ is the standard subgraph relation. The rest of results in the current paper are
subsumed by the new version [18].
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Fig. 2. Three examples of subproofs of t1.

Sets of causes S ∈ 2CLb will be represented with capital boldface letters. By min(S)
we denote the set of �-minimal causes from S, formally:

min(S)
def
= {A ∈ S | there is no B ∈ S s.t. B � A}

We define the application of l ∈ (Lb ∪ ε) to a set of causes S, written l � S, as the
set of singleton causes l � S

def
= { {l · C} | C ∈ S}. For convenience, the expression

{ε · C} will be understood as an alternative notation for cause C. Using this definition,
it is easy to see that ε� S = S.

A causal value is a set of causes that are minimal. Formally, the set of causal values
VLb is defined as:

VLb
def
= {V ∈ 2CLb |V = min(V)}

A causal interpretation is a function I : At −→ VLb. As I(p) represents the set of
alternative causes for p to be true, this means that when I(p) = ∅ (there is no cause for
p) we understand that p is false2. It is easy to see that the minimality condition implies,
for instance, that if ∅ ∈ V then V = {∅}, for any causal value V. When I(p) = {∅} we
understand that p is true due to the empty cause ∅. The empty cause will allow deriving
conclusions without tracing their proofs with causal labels and, as we see next, it will
represent the concept of “maximal truth.” Note the difference between I(p) = ∅ (p
false) and I(p) = {∅} (p maximally true).

2 This is because we will later associate ¬p to default negation: there is no cause for p. If we
were interested in representing causes for p being false, this would mean introducing a second
kind of negation, usually called explicit or strong negation.



We define a partial ordering relation ‘v’ on causal values so that for any V,V′ ∈
VLb:

V v V′
def
= for all C ∈ V there is some C ′ � C in V′

The intuitive meaning of V v V′ is that V′ makes an atom (or formula) to be more
justified than with V. For instance, take the particular case V ⊆ V′ which obviously
implies V v V′. This means that V′ is offering additional alternative causes to explain
a given fact that were not present in V. In the particular case where V = ∅, this would
mean that V′ makes the fact true (possibly by several causes) whereas V makes it
false. Now, rather than just using a simple inclusion relation, we further specialize it
so that each cause in C ∈ V is not necessarily present in V′, but there must be some
“more justifying cause” C ′ ∈ V′ that subsumes C, that is C ′ � C. For instance, take
V = {{a · {b}}, {c, d}} and V′ = {{b}, {d}, {e}}. We have V v V′ because in V′,
we can find subcauses for all elements of V: {b} � {a · {b}} and {d} � {c, d}.

Proposition 2. 〈VLb,v〉 constitutes a complete lattice with the following least upper
bound (lub) ‘t’ and greatest lower bound (glb) ‘u’:

V tV′
def
= min(V ∪V′)

V uV′
def
= min

(
{ (C ∪ C ′) | C ∈ V, C ′ ∈ V′}

)
being the top element lub(VLb) = {∅} and the bottom element glb(VLb) = ∅. �

Proposition 3. If V is a causal value then l � V with l ∈ (Lb ∪ ε) is also a causal
value.

Definition 4 (Valuation of formulas). Given a causal interpretation I for a signature
〈At, Lb〉, we define the valuation of a formula ϕ, by abuse of notation also written I(ϕ),
following the recursive rules:

I(⊥) def
= ∅

I(ϕ ∧ ψ) def
= I(ϕ) u I(ψ)

I(ϕ ∨ ψ) def
= I(ϕ) t I(ψ)

I(l : ϕ→ ψ)
def
=

{
{∅} if l � I(ϕ) v I(ψ)
I(ψ) otherwise

�

As explained before, falsity ⊥ is understood as absence of cause, and thus, I(⊥) =
∅. The causes of a conjunction are formed with the joint interaction of pairs of possible
causes of each conjunct. That is, if C is a cause for ϕ and D a cause for ψ then C ∪D
together will form a cause for ϕ ∧ ψ, provided that C ∪ D results minimal among all
unions C ′∪D′ of that kind. The causes for a disjunction collects (the minimal elements
of) the union of causes of both disjuncts. Finally, the most important part is the treatment



of implication, as it must act as a proof constructor. As we can see, we have two cases.
In the first case, the implication is assigned {∅} (simply true) when any cause for the
antecedent C ∈ I(ϕ) forms a cause for the consequent, in principle, {l · C} ∈ I(ψ)
where, as we can see, we “stamp” the application of l as a prefix. We say “in principle”
because I(ψ) can also be v-greater (more true) just because I(ψ) = {∅} for instance.
If the condition of the first case fails, then the implication inherits the causal value of
the consequent I(ψ).

We say that a causal interpretation I is a causal model of some theory Γ if for all
ϕ ∈ Γ , I(ϕ) = {∅}.

Observation 1 If Lb = ∅ then valuation of formulas collapses to classical proposi-
tional logic with truth values ∅ (false) and {∅} (true).

Let us see some particular cases of implications. For instance, when l = ε, we get:

I(ϕ→ ψ)
def
=

{
{∅} if I(ϕ) v I(ψ)
I(ψ) otherwise

When ψ = ⊥ the implication becomes l : ¬ϕ and the condition l � I(ϕ) v I(⊥) = ∅
amounts to I(ϕ) = ∅ obtaining the valuation:

I(l : ¬ϕ) def
=

{
{∅} if I(ϕ) = ∅
∅ otherwise

In particular, we can use this to conclude I(l : >) = I(l : ¬⊥) = {∅}. Another
interesting particular case is ϕ = >, that is, I(l : > → ψ) or I(l : ψ) for short. In this
case, the set l� I(ϕ) becomes l�{∅} that is {{l · ∅}} = {{l}}. As a result, we obtain:

I(l : ψ)
def
=

{
{∅} if {{l}} v I(ψ)
I(ψ) otherwise

A final degenerate case would be I(ε : > → ψ) for which ε � {∅} = {∅} and we
get the condition:

I(ε : > → ψ)
def
=

{
{∅} if {∅} v I(ψ)
I(ψ) otherwise

which trivially collapses into I(ε : > → ψ) = I(ψ).
We extend the ordering relationv to causal interpretations so that given two of them

I, J , we write I v J when I(p) v J(p) for every atom p.

4 Positive programs and minimal models

Although we will begin focusing on programs without negation, let us first introduce
the general syntax of a logic program. As usual, a literal is an atom p (positive literal)
or its negation ¬p (negative literal). A (labelled) logic program P is a finite set of rules
of the form:

l : B → H



whereB is a conjunction of literals (the rule body) andH is a disjunction of literals (the
rule head). The empty conjunction (resp. disjunction) is represented as> (resp.⊥). We
write B+ (resp. B−) to represent the conjunction of all positive (resp. negative) literals
that occur as conjuncts in B. Similarly, H+ (resp. H−) represents the disjunction of
positive (resp. negative) literals that occur as disjuncts inH . A logic program is positive
if H− and B− are empty for all rules, that is, if it contains no negations. A positive
program is further called a Horn program if, for all rules, H is an atom. We assume
that all the abbreviations seen before are still applicable. Thus, for instance, a rule with
empty body l : > → H is also written as l : H . A rule like l : p, with p an atom, is
called a fact.

Let us see several simple examples. Consider first the program P1 just consisting of
fact a : p. The expected behaviour is concluding that p holds because of the only cause
{a}. However, as we saw in the previous section, satisfaction of a : p just requires
{{a}} v I(p). With one label we can only form one causal proof a, and thus, only
two causes {a} and ∅. Since causal values must collect minimal causes, we get exactly
three possible causal values ∅ v {{a}} v {∅}. This means that I(p) = {∅} would also
satisfy a : p. In fact, it is quite easy to see that, for a positive program, there always
exists a model assigning {∅} to all atoms in At. It seems obvious that, as happens with
standard (non-causal) logic programs, we are interested in a Closed World Assumption,
whose reading here would be: “if something is not known to cause a conclusion, it does
not cause it.” In practice, this means taking v-minimal models.

On the other hand, we still want to accept stronger causal values I(p) = {∅}. This
is because other rules could offer more justification for the same atom p. Take, for
instance, program P2 consisting of P1 plus the (unlabelled) fact p. Now, the only model
of a : p and p is I(p) = {∅}. Informally speaking, an unlabelled fact means that p is
“trivially true” and this makes any other rule with p in the head to become redundant (it
can be just removed).

Consider now the program P3:

a : p b : p→ p

From a : p once again we know that {{a}} v I(p). The second rule imposes the
restriction b � I(p) v I(p). For instance, b � {{a}} corresponds to causal value {{b ·
{a}} and this is v-smaller than {{a}} (a is a subtree of b · {a}). So, it can be seen that
a v-minimal model should just make I(p) = {{a}}.

Take now program P4:

a : p b : p→ q

c : r d : q ∧ r → s

One can easily see that a v-minimal model should still make I(p) = {{a}} as in P1,
and a similar reason applies to I(r) = {{c}}. In a next step, we proceed to atoms
depending on p and r, so from b : p→ q we may conclude I(q) = {{b · {a}}}. Finally,
in a last step we would get I(s) = {{d · {b · {a}, c}}} so that the single causal proof



for s can be graphically depicted as:
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This step by step procedure is well-known in standard logic programming. It is
usually obtained from the least fixpoint of a direct consequences operator [19] for Horn
programs. We define an analogous notion for causal Horn programs as follows:

Definition 5 (Direct consequences). We define the direct consequences operator TP
for a causal Horn logic program P as a mapping from causal interpretations to causal
interpretations such that, for any atom p and interpretation I:

TP (I)(p)
def
=
⊔{

l � I(B) | (l : B → p) ∈ P
}

�

That is, we take the least upper bound of all causal values l � I(B) obtained from
each pair of label l and rule body B for p.

Proposition 4. Operator TP is monotonic with respect to ordering v among interpre-
tations. �

By Knaster and Tarski’s theorem [20], Proposition 4 implies that there exists a great-
est and a least fixpoint of TP , gfp(TP ) and lfp(TP ) respectively. We can thus extrap-
olate the classical result from [19] to causal programs:

Theorem 1. A causal Horn programP has av-least model that coincides with lfp(TP ). �

We conjecture3 that TP is also continuous so it can be computed by iteration on the
v-smallest interpretation that makes all atoms false, I(p) = ∅ for all p.

Finally, to illustrate the effect of disjunction, consider the program P5 consisting of
the single rule a : p ∨ q. Some models of this rule satisfy I(p) = {∅} or I(q) = {∅}.
For the rest of interpretations, we also have models where {{a}} v I(p) or {{a}} v
I(q). The program has two minimal models I(p) = {{a}}, I(q) = ∅ and the dual one
I(p) = ∅, I(q) = {{a}}.

5 Default negation and stable models

Consider now the addition of negation, so that we deal with arbitrary programs. In order
to achieve a similar behaviour for default negation to that provided by stable models
in the non-causal case, we introduce the following straightforward rephrasing of the
traditional program reduct [16].

3 A formal proof is still under study.



Definition 6 (Program reduct). We define the reduct of a program P with respect to
an interpretation I , written P I , as the result of the following transformations on P :

1. Removing all rules s.t. I(B−) = ∅ or I(H−) = {∅};
2. Removing all negative literals from the rest of rules.

Definition 7 (Stable model). A causal interpretation I is a stable model of a causal
program P if I is a v-minimal model of P I .

As an example, take the program P6:

a : ¬q → p b : ¬p→ q c : p→ r

As we saw in previous sections, negation ¬ϕ is always two-valued: it returns ∅ if ϕ
has any cause and {∅} otherwise. So, when deciding possible reducts, it suffices with
considering which atoms, among those negated, will be assigned ∅. Suppose first we
take some I such that I(p) = ∅, I(q) 6= ∅. The reduct P I

6 will correspond to:

b : > → q c : p→ r

whose least model is J(p) = ∅, J(q) = {{b}}, J(r) = ∅. In particular, taking I = J
is consistent so we obtain a first stable model. Suppose now we take some I ′ such that
I ′(p) 6= ∅, I ′(q) = ∅. The reduct this time would be:

a : > → p c : p→ r

The least model of this program is J ′(p) = {{a}}, J ′(q) = ∅, J ′(r) = {c · {a}}
which is consistent with the assumption I ′ = J ′ so that we get a second stable model.
Applying a similar reasoning for the remaining cases, we can easily check that P6 has
no more stable models.

6 Related Work

Apart from the different AI approaches and orientations for causality we mentioned in
the Introduction, from the technical point of view, the current approach can be classified
as a labelled deductive system [21]. In particular, the work that has had a clearest and
most influential relation to the current proposal has been the Logic of Proofs [17] (LP).
We have borrowed from that formalism (most part of) the notation for our causal proofs
and rule labellings and the fundamental idea of keeping track of justifications by con-
sidering the rule applications. The syntax of LP is that of classical logic extended with
the construct t : F where F is any formula and t a proof polynomial, a term following
the grammar:

t ::= a | x | !t | t1 · t2 | t1 + t2



where a is a proof constant (corresponding to our labels) and x a proof variable. The
meaning of t : F is that t constitutes a proof for F . LP is an axiomatic system contain-
ing the axioms:

A0. Propositional Calculus
A1. t : F → F “reflection”
A2. t : (F → G)→ (s : F → (t · s) : G) “application”
A3. t : F →!t : (t : F ) “proof checker”
A4. s : F → (s+ t) : F, t : F → (s+ t) : F “sum”

Without entering into further detail, let us overview the main common points and dif-
ferences between both formalisms. A first important difference comes from the purpose
of each approach. While LP is thought for capturing a particular logical system, causal
logic programs are thought for dealing with non-logical axioms that allow knowledge
representation of specific scenarios. Besides, from a technical point of view, LP is an
axiomatic system, whereas our formalisation relies on a semantic description.

As we can see, proof polynomials are quite similar to our causal proofs. Axiom A2
looks like a syntactic counterpart of our semantics for labelled implications. However,
there also exist some important differences when comparing proof polynomials and
causal proofs. For instance, LP is much more expressive in the sense that the t : F
construction in our approach is exclusively limited to the case in which t is a label. In
other words, we have not specified a syntax for expressing that a given cause is assigned
to some formula – this information is only obtained as a semantic by-product. As we
explain later, the possibility of adding new operators for inspecting causes is left for
future study. Another difference is that, while LP represents alternative proofs s and
t as the polynomial s + t, in our causal proofs the ordering or repetition is irrelevant,
and so, we simply handle a set of causes. Note also that axiom A4 does not make sense
under our causal reading: if s is a cause for F , then not any unrelated twill form a cause
s + t for F . It is also interesting to observe that the idea of joint causes (that is, the
simultaneous interaction of several causal proofs) does not have a syntactic counterpart
in LP.

Finally, another important difference, especially when thinking about its application
to Knowledge Representation, is that LP is monotonic whereas our approach allows
non-monotonic reasoning and, in fact, is a proper extension of logic programs under the
stable model semantics. In this sense, the crucial feature is the introduction of default
negation, something that is not present in LP.

A preliminary version of the current approach was presented in [22] where most
ideas were already present. However, the treatment of causal values and their ordering
relation has been considerably improved and generalised now. This has allowed us,
for instance, treating disjunction and conjunction respectively as the least-upper and
greatest-lower bounds of the causal values lattice. Furthermore, it has also simplified
the definition of the direct consequences operator and the proof of its monotonicity.

7 Conclusions

We have introduced an extension of logic programming under the stable model seman-
tics that allows dealing with causal explanations for each derived atom p in a stable



model. These explanations are given as sets of alternative, independent causes. In their
turn, each cause corresponds to the joint interaction of (one or more) causal proofs,
being those used to keep track of the different rule applications that have taken place in
the derivation of p.

Many open topics remain for future study. For instance, implementation and a com-
plexity assessment are the next immediate steps. We plan to establish a series of formal
results relating regular (non-causal) stable model semantics and the information ob-
tained with causal stable models. These results can be exploited for implementation.
Regarding expressivity, an interesting topic is the introduction of new syntactic opera-
tors for inspecting causal information. Apart from directly representing whether some
cause is an explanation for a given formula, we can imagine many different interesting
constructs, like checking the influence of a particular event or label in a conclusion, ex-
pressing necessary or sufficient causes, or even dealing with counterfactuals. Another
interesting topic is removing the syntactic reduct definition in favour of some full log-
ical treatment of default negation, as happens for (non-causal) stable models and their
charaterisation in terms of Equilibrium Logic [23]. This may allow extending the def-
inition of causal stable models to an arbitrary syntax and to the first order case, where
the use of variables in labels may also introduce new interesting features. Finally, as po-
tential applications, our main concern is designing a high level action language on top
of causal logic programs with the purpose of modelling some typical scenarios from the
literature on causality in AI. Another possible application domain is trying to establish
a relation to relevant approaches [24, 25] for debugging in answer set programming.
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