
A Qualitative Spatial Representation of
String Loops as Holes

Pedro Cabalara, Paulo E. Santosb

aDept. Computación,
University of Corunna, Spain

cabalar@udc.es
bAI and Automation Group (IAAA)

Centro Universitário da FEI
São Paulo, Brazil

psantos@fei.edu.br

Abstract

This research note contains an extension of a previous work by Cabalar and Santos
(2011) that formalised several spatial puzzles formed by strings and holes. That
approach explicitly ignored some configurations and actions that were irrelevant
for the studied puzzles but are physically possible and may become crucial for
other spatial reasoning problems. In particular, the previous work did not consider
the formation of string loops or the situations where a holed object is partially
crossed by another holed object. In this paper, we remove these limitations by
treating string loops as dynamic holes that can be created or destroyed by a pair of
elementary actions, respectively picking or pulling from strings. We explain how
string loops can be recognised in a data structure representing the domain states
and define a notation to represent crossings through string loops. The resulting
formalism is dual in the sense that it also allows understanding any hole as a kind
of (sometimes rigid) closed string loop.

Keywords: Spatial Representation; Problem Solving; Reasoning about Actions

Introduction

The design of computer programs and machines with commonsense reasoning
constitutes an important long-term goal of Artificial Intelligence. In most com-
monsense reasoning scenarios, the spatial component of the domain plays a fun-
damental role. People usually reason about spatial entities and their behavior in

Preprint submitted to Elsevier May 20, 2016

their daily lives without apparent effort – it is somehow an embodied (and pos-
sibly innate) feature in the human minds. As a simple example, think about all
the steps for putting on a pair of trousers and a belt. While children usually learn
this process without much difficulty, scenarios like this become a real challenge
for computer programs as they must deal with complex geometric figures (e.g.
the pants, the zipper), measure-related constraints (such as choosing the right hole
in the belt, depending on your waist size) and other object constraints related to
rigidness (the belt buckle) versus flexibility (the clothes and the belt).

Research on spatial commonsense reasoning comes from two main sources in
the Knowledge Representation (KR) literature. On the one hand, the area of Rea-
soning about Actions and Change comprises a family of logical languages [1, 2,
3, 4, 5] for the formalization of an intelligent agent operating in action domains
and performing common reasoning tasks such as simulation, planning, tempo-
ral explanation or diagnosis. On the other hand, Qualitative Spatial Reasoning
(QSR) [6, 7] aims at the rigorous treatment of qualitative abstractions of spatial
entities that constitute the foundations of our commonsense understanding of the
external world. Although the combination of QSR and temporal reasoning is not
unfrequent in the literature (see for instance [8]), in general QSR approaches have
traditionally overlooked a formal treatment of actions as those involved in our pre-
vious example or tackled temporal reasoning tasks such as planning, simulation
or explanation.

Trying to fill this gap, we have concentrated our efforts in formalizing action
domains that involve flexible objects and holes, as they are very common in differ-
ent scenarios like our trousers example1. Our methodology, applied along a series
of papers [9, 10, 11, 12, 13], has consisted in studying spatial puzzles in a bottom-
up fashion, starting from restricted cases and gradually covering new puzzles with
more challenging features. Puzzles constitute a good test bed, as they offer a small
number of objects requiring a minimum background knowledge about unrelated
features, while they keep enough complexity to constitute a challenging problem
for KR. Most of these puzzles consist in releasing a rigid ring from an entangle-
ment of strings and other objects.

Our initial efforts were put in solving the so-called Fisherman’s Folly puz-
zle shown in Figure 1 using a list-based representation of string crossings. All

1In fact, most actions in the example involve passing objects through holes: we pass our legs
through the trousers sleeves, the button through the buttonhole, the belt through loops in the
trousers, the belt tip through the belt buckle, and the buckle bolt through a hole in the belt.

2

this work eventually led to an extensive paper [11] describing a complete logical
formalization plus a preliminary planner capable of solving a family of related
puzzles with similar features.

(a) Initial (b) Goal: the ring is free

Figure 1: A spatial puzzle: the Fisherman’s Folly.

In [11] some issues were left open. In particular, we did not consider states
where a holed object was partially crossing another hole, as in Figure 2(a), or
the formation of string loops as in Figure 2(b). Both situations were irrelevant
for solving the family of puzzles under study but, as it can be imagined, ignoring
them may easily suppose a lack of elaboration tolerance for other closely related
puzzles. For instance, the variation of Fisherman’s Folly shown in Figure 3(a) is
essentially the same puzzle with the difference that the holed post has been re-
placed by a long metallic arc. The latter forms a hole that, in its turn, must cross
the ring hole, becoming a case of Figure 2(a). Although this feature is not essen-
tial for solving Fisherman’s Folly, there are other puzzles that cannot be solved
without removing these restrictions - for instance, in [14] we studied the so-called
“easy-does-it” puzzle (Figure 3(b)) which cannot be solved without representing
(and acting upon) string loops.

(a) Crossings.

String loop

(b) String loop.

Figure 2: String loops and hole-hole crossings.

3

The present paper shows how the recent developments reported in [14] fill up
a number of gaps left open in [11] and allow removing the above mentioned lim-
itations by considering the formation of string loops. We describe how to recog-
nize loops in a list of string crossings and define a notation to represent crossings
through string loops, as they actually behave as regular holes. On top of the pre-
vious approach, we identify two basic new actions on strings that may form or
destroy loops: (1) picking a string segment through a hole, and (2) pulling from
a string to unwind a loop. The most difficult part of the paper corresponds to the
description of the direct and indirect effects of these two actions and, particularly,
to the fact that a loop may be inside some larger loop. As a result, an action on a
loop may imply inheriting crossings with respect to a larger loop. We also explain
how a hole can also be seen as a kind of (sometimes rigid) closed string loop,
allowing the representation of problems such as the one in Figure 2(a). The next
section introduces the basis upon which this work was developed.

(a) A variation of Fisher-
man’s Folly.

(b) Easy does it

Figure 3: Puzzles

Describing states: strings, holes and crossings

The basic ontology consists of strings, holes and regular objects. A string s
is generally understood as a (possibly flexible) long object with two differentiated
points called tips that are arbitrarily denoted as sb and se to stand for the beginning
and the end of s, respectively. Strings will be graphically represented as (possibly
curved) line segments with an arrow head that represents a direction from the be-
ginning sb to the end se of the string. A hole represents an empty region delimited
by a boundary, normally, the body of some object hosting the hole. This work ex-
clusively focuses on “tunnel-shaped” holes, that is, those with two exits. Since we
will not represent geometric shapes or measures, we can think about a hole h as a

4

closed surface with two faces, arbitrarily denoted as h+ and h−, that represent the
hole exits. Given a face f , we write f to represent its opposite face, i.e., h+ def

= h−

and h−
def
= h+. A regular hole h will be represented as an ellipse with an arrow

head in its boundary pointing out a spin, using the right thumb rule to determine
the positive face h+, as in Figure 4(a). In the diagrams, the strings crossing a hole
h also help to fix its orientation: h+ is always shown as the “visible” surface, and
the string portion in h− is hidden.

sb se

string s

hole h

h- h+

(a) A string and a hole.

Sphere1 Sphere2

PostH

Disk2Disk1

Base

Ring

Str:0 Str:1 Str:2 Str:3

Post:1

Post:0

(b) Fisherman’s Folly initial state

Figure 4: Examples of diagrams with strings and holes.

Regular objects (depicted as boxes) do not show any particular spatial feature.
They act as points where string tips can be linked to. They also restrict the possible
ways in which the string tips can pass through the different holes, something that
is relevant for solving a given puzzle.

A system state will describe two kinds of basic relations among strings and
other objects: links and crossings. A string tip can be linked to a regular object, to
a holed object or to another tip2. We will represent a link as a thick dot. On the
other hand, a string can be passing through several holes at a given situation: each
time that a string crosses some hole is called a crossing. Note that the same string
can be crossing the same hole several times and in different directions although,
obviously, at different points in the string. As introduced in [9], we will use a
list structure, called chain(s), to capture the sequence of hole crossings that each
string s traverses from sb to se. Each crossing of s through a hole h is represented
by the exit hole face. For instance, if s crosses h from h− to h+, we represent

2For simplicity, we do not consider linking tips from different strings, but this could also be
perfectly possible to be defined within the formalism presented.

5

the crossing as h+ in the chain representation. In the diagrams, crossings will be
represented as a small dash, perpendicular to the string direction.

As an example of all these elements, consider the schematic representation of
the Fisherman’s Folly puzzle in Figure 4(b). The diagram shows two long objects
(Str and Post), three regular objects (Base, Disk1 and Disk2) and four holed
objects (PostH , Sphere1, Sphere2 and Ring). The list of crossings for the string
Str corresponds to chain(Str) = [Sphere1+, PostH+, Sphere2+].

Suppose we have a list for a string s of the form chain(s) = [x1, . . . , xn]
containing n crossings. Then, we can consider a division of the string into n + 1
(string) segments, we represent as s : i for i = 0, . . . , n so that crossing xj is
preceded by segment s : (j − 1) and followed by segment s : (j + 1). For instance,
Figure 4(b) shows four string segments3, Str :0 to Str :3, for string Str.

Passing objects through holes

The system dynamics is described in terms of transitions between states caused
by the execution of actions. In [11], we considered an elementary action pass(o, f)
for passing an object o through some hole h toward one of its faces f ∈ {h+, h−}.
The executability of this action was limited by the specification of constraints.
For that purpose, we defined a (static) predicate CannotPass(o, h, s) meaning
that object o cannot pass through hole h when the latter is being crossed by the
set of strings s. For instance, some constraints in the Fisherman’s Folly are that
the post base cannot pass through the ring, i.e. CannotPass(Base,Ring, ∅), that
a sphere x ∈ {Sphere1, Sphere2} cannot pass through the post hole, that is,
CannotPass(x, PostH, ∅) or that it cannot pass through the ring when the latter
is crossed by the post CannotPass(x,Ring, {Post}).

The execution of pass(o, f) could affect the string crossings in the cases where
o was a string tip or a holed object. When o is a string tip, the movement is very
simple: depending on the direction, it just adds or removes the last crossing in
the string chain. When o was a holed object, on the contrary, the effects were
more complex, especially if o was, in its turn, crossed by other strings. Figure 5
shows the result of passing the holed object h toward a ring face f when the string
s is crossing h – this was encoded as movement (1R). A second movement not
displayed, (1L), performed the opposite movement undoing (1R). Note that we
assumed that these movements had to be complete, that is, we disregarded any

3We place an arrow head in each segment to remind the general direction of the string.

6

intermediate state where the moved ring was partially overlapping the crossed
ring since, although physically possible, these states were cases of Figure 2(a).
A second observation is that, in the resulting state of (1R), string s has formed a
new loop (as in Figure 2(b)) because of being pulled through ring p. The situation
where that loop is crossed by a new string could not be represented before, but
will be part of the generalisation we introduce in this paper.

Another feature from [11] was the extension of action pass to sets of objects
linked altogether. Thus, for instance, since Stre and Disk2 are linked in the Fish-
erman’s Folly initial state, we can execute pass({Stre, Disk2}, PostH−) mean-
ing that both pass(Stre, PostH−) and pass(Disk2, PostH−) are simultaneously
performed. The rest of the movements are shown on Figure 6. Note that state S5

has reached the goal since, at this point, the ring hole Ring does not occur in any
list, i.e., it is not crossed by any long object. In Figure 6 do(A, S) denotes the
resulting situation after performing action A on situation S.

Situation S do(pass(h,f),S)

Movement (1R)

h

h

s s

chain(s)=[..., h, ...] chain(s)=[..., f, h, f, ...]

f

f

f

f

Figure 5: Effects of passing a holed object through another hole [11].

String loops as holes

Although [11] did not consider loops as formal objects, the truth is that they
can be easily detected in any structure chain(s) by recognizing two (possibly
non-consecutive) crossings through the same hole with the general pattern:

chain(s) = [. . . , f, . . . , f︸ ︷︷ ︸
loop

, . . .],

where f, f are the two faces of a same hole. For example, state S1 in Figure 6 has
a loop formed by the interaction of Str and the hole PostH that can be directly

7

State chain(Post) chain(Str)
S0 [Ring+] [Sphere1+, PostH+, Sphere2+]
S1 [Ring+] [Sphere1+, PostH+, Sphere2+, PostH−]
S2 [] [Sphere1+, Ring−, PostH+, Ring+, Sphere2+,

Ring−, PostH−, Ring+]
S3 [] [Sphere1+, Ring−, PostH+, Sphere2+, PostH−, Ring+]
S4 [] [Sphere1+, PostH+, Ring−, Sphere2+, Ring+, PostH−]
S5 [] [Sphere1+, PostH+, Sphere2+, PostH−]

Sphere1 Sphere2

PostH

Disk1

Base

Ring

Disk2
Sphere1

Sphere2

PostH

Disk1

Ring

Disk2

Base

Sphere1

Sphere2

PostH

Disk1

Ring

Disk2

Base

S1 = do(pass({Str+, Disk2}, PostH−), S0) S2 = do(pass({PostH, Post+}, Ring−), S1) S3 = do(pass({Sphere2}, Ring−), S2)

Sphere1 Sphere2

PostH

Disk1

Ring

Disk2

Base

Sphere1 Sphere2

PostH

Disk1

Ring

Disk2

Base

S4 = do(pass({Ring}, PostH+), S3) S5 = do(pass({Sphere2}, Ring+), S4)

Figure 6: A formal solution for the Fisherman’s puzzle and its graphical representation [11].

8

seen in chain(Str) as:

chain(Str) = [Sphere1+, PostH+, Sphere2+, PostH−︸ ︷︷ ︸
loop

]. (1)

An interesting observation is that loops formed in this way also constitute a
new kind of “hole” on which we can apply the same actions we use for normal or
permanent holes (passing objects through them, picking or pulling other strings,
etc) but that differ from the latter in that they are temporary, that is, they can be
created or destroyed depending on the operations that are performed on their host
strings. Several types of loop-holes can be considered depending on how they are
formed. Figure 7 shows four general types. Types 1 and 2 are loops formed by
the interaction of a string and a hole, represented here as a ring. Type 1 are loops
where the string passes twice through the same hole, but in opposite directions.
This kind of loops can be formed by “pulling” a segment of the string through
the hole, and will actually constitute the main focus of this paper. Loops of type
2 correspond to cases where the string passes twice through the same hole but in
the same direction. This situation can only be achieved by a sewing-like sequence
of actions passing the string tip through the different crossings. Type 3 constitutes
the case where both string tips are linked together or linked to the same object. As
we will see, this can be represented as a particular subcase of type 1. Finally, type
4 corresponds to “virtual” loops formed by a string crossing or superposing itself
(the figure shows just one possibility, but more cases can be built using different
strings). In these cases, the loop is more conceptual than physical, since the string
crossings do not constitute real joints, but still, most practical knot handbooks ac-
tually describe and manipulate these loops as regular holes. This classification just
considers loops generated by a string. Complex loops can be formed by the inter-
action of different objects that sometimes behave as a string such as, for instance,
a chain formed by different links, a train consisting of linked wagons, etc. This
issue is left for future investigations.

In order to represent loops of Type 1 and crossings through them, we introduce
the following notation. Take some chain(s) = [x1, . . . , xi, . . . , xj, . . . , xn] with
0 ≤ i < j ≤ n and assume that xj = xi, that is, xi and xj are opposite hole faces.
Then, by l(s, xi, [i, j]) we denote the loop comprising the set of segments {(s :
i), . . . , (s : j−1)}. As an example, the loop in Formula (1) can be represented as
l(Str, PostH+, [2, 4]) and comprises the segments Str :2 and Str :3 (respectively
the third and fourth segments, since we count from 0) that can be seen in state S1

of Figure 6.

9

Type 1 Type 2 Type 3 Type 4

Figure 7: Effects of passing a holed object through another hole.

The previous notation can also be used to represent loops of Type 3. To this
end, we consider that tips sb and se in a string s actually define a pair of virtual
holes that constitute the initial and final crossings in chain(Str). We take the cri-
terion that sb is always crossed toward its negative face, and se toward its positive
one. For instance, Formula (1) can be represented instead as:

chain(Str) = [Str−b , Sphere1
+, PostH+, Sphere2+, PostH−, Str+e].

For coherence, we assume now that the first crossing Str−b has index 0 since there
is no previous segment and, similarly, Str+e has index n+1, which coincides with
the number of segments in the string. A loop l(s, xi, [i, i+1]) consisting of a single
segment s : i receives the name of single loop.

To illustrate how a loop of Type 3 is formed, consider the leftmost diagram
in Figure 8 where string s has both tips free with the corresponding chain(s)
= [s−b , s

+
e]. If both tips are moved toward each other until they are linked together

(or they are linked to the same object) we reach the situation in the rightmost di-
agram where holes sb and se become the same, i.e., sb = se and we use sb to
denote both. In this case, the string has chain(s) = [s−b , s

+
b] and ends up forming

a (closed) single loop l(s, s−b , [0, 1]) = {(s : 0)}. Note how the diagram for this
loop is essentially identical to the one we use for a holed object. When a closed
string R forming a single loop chain(R) = [R−b , R

+
b] is persistent, i.e., it can-

not be made open by any domain action, it is named as ring and its related loop
l(R,R−b , [0, 1]) is abbreviated as the string name R by a slight abuse of notation.
In the Fisherman’s Folly, Ring, PostH,Disk1 and Disk2, are examples of rings.

As a more elaborated example of loop of Type 3, note how we can repre-
sent now the variation of the Fisherman’s Folly in Figure 3(a) where the post
is replaced by a metallic arc. Figure 9 shows the diagrammatic representation
from which we can derive chain(Post) = [Post−b , Ring+, Ring−, Post+b] since
in this case Postb = Poste as both tips are linked to the Base. As a result,
we get two loops in the post: the main loop, l(Post, Post−b , [0, 3]) = {(Post :

10

s

=

s

sesb

sb se

s

sb se

Figure 8: When both tips are joined, the whole string forms a loop.

0), (Post : 1), (Post : 2)}, formed by all the Post segments, and an inner loop
l(Post, Ring+, [1, 2]) = {(Post :1)}. This example illustrates another interesting
feature, since l(Post, Ring+, [1, 2]) ⊂ l(Post, Post−b , [0, 3]), that is, a loop may
be included in another.

Sphere1 Sphere2

PostH

Disk2Disk1

Base

Ring

Str:0 Str:1 Str:2 Str:3

Post:1

Post:0Post:2

Figure 9: Initial state for Fisherman’s Folly variation in Figure 3(a).

The inclusion of loops inside larger loops is well illustrated by state S2 in
Figure 6. At that state, chain(Str) has the form4:

[Sphere1+, ︸ ︷︷ ︸
l(Str,Ring−,[2,4])

Ring−, PostH+,

l(Str,Ring+,[4,6])︷ ︸︸ ︷
Ring+, Sphere2+, Ring−, PostH−, Ring+︸ ︷︷ ︸

l(Str,Ring−,[6,8])︸ ︷︷ ︸
l(Str,Ring−,[2,8])

]

4This chain omits the initial and final crossings Str−b and Str+e for brevity.

11

forming four loops that share endpoints and, moreover, three of them are included
in the larger (outermost) one l(Str, Ring−, [2, 8]).

Actions on loops

The introduction of loops in the representation of states implies a reconsider-
ation of the set of actions from [11] that may be relevant for causing state transi-
tions. One first obvious way to build a state containing loops is by starting with
a free string s and successively passing its end tip se through all the involved
holes in the order represented by chain(s). This is what we may informally call
“sewing.” For this purpose, action pass(se, f) from [11] (described above) does
not require any modification: each time a new hole is crossed, it includes a new
crossing in chain(s). However, in [11], actions pass(se, f) or pass(sb, f) could
also remove a crossing from chain(s) and this effect must be disregarded now.
The effects of these actions in [11] were symmetric in the sense that passing a
string tip toward one hole face f and then backwards to f returns the chain to its
original state. For instance, imagine a string s and a hole h initially unrelated, as
in Figure 4(a). If pass(se, h+) is executed, we would get chain(s) = [s−b , h

+, s+e]
depicted as state 1 in Figure 10. If the next movement is pass(se, h

−) the effect
of that action, according to [11], was completely “pulling” back from the string
tip se leaving chain(s) = [s−b , s

+
e] free again, as in state 3 in Figure 10, i.e., the

original situation in Figure 4(a). In this paper, we consider instead that the result
of passing a string tip through a hole always creates a new crossing. As a result,
in the example of Figure 10, executing pass(se, h

−) on state 1 will actually lead
to state 2, where we have chain(s) = [s−b , h

+, h−, s+e] forming the single loop
l(s, h+, [1, 2]), disregarded in [11] as an irrelevant intermediate step. Once this
restriction is removed, however, we must consider a pair of new actions. For in-
stance, to allow the transition from state 2 to state 3, pulling from a string segment
to undo a single loop is required. Moreover, in some situations we can also require
the opposite movement, that is, passing from state 3 to state 2 by just picking the
string without actually moving its tips. For instance, it may be the case that the
string tips are linked to some object that cannot pass through the hole, so we can-
not create the loop in state 2 by performing pass(se, h

+) and then pass(se, h
−) as

before, but we can still pick the string to h+ to form the loop.
To sum up, we define two new actions, pick(s : i, f) and pull(s : i, f), that re-

spectively allow picking or pulling some string segment s : i toward a hole face f .
The direct effects of these two actions are represented in Figure 11, which shows
the effect of picking from left to right and the effect of pulling in the opposite

12

s

h

s

h

s

h

state 1 state 2 state 3

Figure 10: Undoing passing a string tip forms an intermediate state with a loop.

direction. As we can see, Figure 11 is quite similar to Figure 5 with the only dif-
ference that now the string can be picked or pulled without the necessity of having
a holed object h to be passed through the target hole.

We assume that the action pick(s : i, f) can always be executed on a string,
regardless the origin and target of segment x : i, and that it always creates a new
single loop5 of the form [. . . , f, f , . . .] in chain(s). As happens with passing a
tip, the action pick is not symmetric: if we execute pick(s : i, f) on the left state
of Figure 11 and then we pick again toward the opposite face, pick(s : i+ 1, f)
we do not return to the original state, but we obtain a nested loop of the form
chain(s) = [s−b , f , f, f , f, s

+
e] instead.

Pick S do(pick(s:i,f),S)

s:i
f

f

f

f

s:i s:i+2

s:i+1

S´do(pull(s:i+1,f),S´)Pull

Figure 11: Picking and pulling a loop.

As we can see in Figure 11, if we want to undo a single loop, we must actually
use the action pull. The execution of pull(s : i, f) is only possible if chain(s) =

5We are assuming an ideal string that can be arbitrarily stretched. In the real world, the number
of loops may be limited by the relative sizes (of the loop and the host string, the string length and
its stretchability).

13

[x1, . . . , xi, xi+1, . . . , xn] has a single loop at the i-th position, that is, if xi+1 = f
then xi = f . The direct effect of this action is just removing the pair of crossings
xi, xi+1 from the list. The main complication, however, is that pull may also imply
two types of indirect effects. First, when the pulled loop was crossed by other
strings, these end up picked in the same direction. As an example, Figure 12 shows
how pull(s : i, f) picks string t (dashed) that was crossing the removed loop s : i.
In the resulting state, string t ends up forming a new single loop t :j + 1, which is
now crossed by s. This operation takes place for any string crossing the removed
loop. That is, if we had n strings crossing s : i we would get n new single loops
crossed by s. The ordering in which those crossings occur in chain(s) is arbitrary,
understanding the action outcome as non-deterministic.

Pull S do(pick(t:j,f),S)
do(pull(s:i,f),S)

f

f

t:j t:j+2

t:j+1
s:i-1 s:i

f

f

t:j t:j+1

s:i-1

s:i

s:i+1

Figure 12: Pulling loop in s : i causes picking string t as indirect effect.

A second kind of indirect effect associated with the action pull has to do with
the inclusion of a single loop inside a larger one. When two loops L and L′ satisfy
L ⊆ L′ (as sets of segments), any string that crosses L is also crossing L′. In the
chain structure, we just represent the crossing through the smallest loop L, but
when the latter is unwinded by some pull action, the removed crossing through L
must be replaced by a crossing through the next loop L′ in the inclusion hierarchy.

To illustrate the second kind of indirect effect associated to pull, consider
again Figure 12 and imagine that strings s and t respectively represent the Post
and Str at Figure 9 and that f is the hole face Ring−. The movement pull(s :
i, f) corresponds in this context to pull(Post : 1, Ring−), i.e., pulling the post
downwards or, if preferred, sliding the ring upwards the post. The initial state of
chain(Str) in Figure 9 is:

[Str−b , Sphere1
+, l(Post, Ring, [1, 2])+, Sphere2+, Str+e]

and, according to Figure 12, Str will be picked toward Ring−. So, in principle,
we should just replace the crossing through the pulled loop l(Post, Ring, [1, 2])+

14

by the new pair of crossings Ring−, Ring+ in the list above. However, as we saw
before, l(Post, Ring, [1, 2]) was actually part of a larger loop l(Post, Str−b , [0, 3])
since both ends of the post are linked to the Base. As a result, the crossing through
l(Post, Ring, [1, 2])+ must be actually replaced by l(Post, Ring, [0, 1])+ in the
resulting state, where we have readjusted the loop interval [0, 3] to [0, 1] since
crossing 1 and 2 in chain(Post) are removed. In this way, the resulting state for
chain(Str) corresponds to:

[Str−b , Sphere1
+, Ring−, l(Post, Ring, [0, 1])+, Ring+, Sphere2+, Str+e].

To conclude this section, it is worth mentioning that the previous actions
in [11], movement (1R) in Figure 5 and its inverse (1L), that allowed passing
holed objects through holes, can be seen now as macro actions consisting of se-
quences of elementary pickings and pullings. For instance, Figure 13 shows how
movement (1R) in Figure 5 can be achieved by first picking a segment of ring
h toward f− and then pulling from the rest of h, which will drag string s as an
indirect pick.

S0 S1=do(pick(h:0,f),S0)

h

h

s sh
s

f

f f

S2=do(pull(h:0,f),S1)- -

Figure 13: Movement (1R) in Figure 5 decomposed as a pick followed by a pull.

Related work

To the best of our knowledge, the current AI literature presents no other work
aiming at the representation and reasoning about domains containing flexible ob-
jects and holes. However, a few related references from the standpoint of phi-
losophy are worth mentioning. A finer ontology of holes is described in [15, 16],
whereas a general first-order theory of holes and spatial inclusion is created within

15

an interplay of ontological, mereological, topological and morphological con-
cepts. Similarly, [17] describes an investigation of compositionality, lexical and
normative elements present in natural knots and suggests a research agenda for
the investigation of the structure underlying the human ability to make knots. Re-
search on the topological structure of knots (known as Knot Theory) [18], al-
though interested in mathematical knots (whose ends are tied together), is some-
what related to the work presented in this paper in the sense that the Reidemeister
moves can be implemented as actions to be applied on knots (as shown in [19]).
Although rigorously well-defined, both philosophical and topological approaches
to theories about flexible or immaterial objects are defined on a level of abstraction
that makes them unfeasible to be applied on the automated solution of puzzles.

In [14] we presented a solution to the Easy-does-it puzzle (Figure 3(b)) that
demanded the mathematical formalisation of string loops. That paper also intro-
duced a proof of correctness of our proposed formalism with respect to Reide-
meister moves in knot theory. The present paper complements the work reported
in [14] putting it in a more general context, discussing how it can be used to solve
some of the issues left open in [11].

Concluding remarks

This paper discussed a solution to the challenging problem of formally de-
scribing a particular characteristic of flexible objects such as strings: their ca-
pacity of making loops that can be used (and reasoned about) as holes in spatial
reasoning processes. This solution resolves two issues left open in our previous
work (reported in [11]), namely, the representation of states where a holed ob-
ject partially crosses another hole and the creation of string loops. In this paper,
we have described the identification of string loops in lists of string crossings,
together with the actions related to the creation and unwinding of string loops.
In possession of these actions, the framework in [11] can now be used to reason
about spatial puzzles where the manipulation of loops is an essential part of the
solution.

Future research shall be conducted mainly in two fronts: the consideration
of actions related to winding (and unwinding) knots and the deployment of these
ideas in real application domains. The latter may include tasks such as autonomous
needle steering or the actual manipulation of (and reasoning about) real world ob-
jects by a humanoid robot, such as the Darpa Robotics Challenge6 that has as one

6http://www.theroboticschallenge.org/overview, accessed in Nov. 2015.

16

http://www.theroboticschallenge.org/overview

of its goals the implementation of a humanoid robot with the “ability to manipu-
late and use a diverse assortment of tools designed for humans”.

Acknowledgements. We wish to thank the reviewers of both this paper and [11] for pointing
out some of the problems treated in the current paper. Paulo E. Santos acknowledges financial
support from FAPESP grant 2012/ 04089-3, and CNPq “bolsa de produtividade em pesquisa” grant
307093/2014-0. Pedro Cabalar was partially supported by Spanish MINECO project TIN2013-
42149-P. This work was developed while Paulo E. Santos was visiting the University of Corunna
sponsored by the “Bolsa Ibero-Americana para Jovens Professores e Pesquisadores - Santander
Universidades”.

References

[1] J. McCarthy, P. Hayes, Some Philosophical Problems from the Standpoint of
Artificial Intelligence, Machine Intelligence Journal 4 (1969) 463–512.

[2] R. Kowalski, M. Sergot, A Logic-based Calculus of Events, New Generation
Computing 4 (1986) 67–95.

[3] M. Thielscher, Introduction to the fluent calculus, Electronic Transactions
on Artificial Intelligence 2 (3-4) (1998) 179–192.

[4] P. Doherty, J. Gustafsson, L. Karlsson, J. Kvarnström, (TAL) Temporal Ac-
tion Logics: Language Specification and Tutorial, Electronic Transactions
on Artificial Intelligence 2 (3-4) (1998) 273–306.

[5] M. Gelfond, V. Lifschitz, Action Languages, Electronic Transactions on Ar-
tificial Intelligence 2 (3-4) (1998) 193–210.

[6] A. G. Cohn, J. Renz, Qualitative Spatial Representation and Reasoning, in:
F. van Hermelen, V. Lifschitz, B. Porter (Eds.), Handbook of Knowledge
Representation, Elsevier, 551–596, 2008.

[7] G. Ligozat, Qualitative Spatial and Temporal Reasoning, John Wiley & Sons,
2013.

[8] B. Bennett, A. G. Cohn, F. Wolter, M. Zakharyaschev, Multi-dimensional
modal logic as a framework for spatio-temporal reasoning, Applied Intelli-
gence 17 (2002) 239–251.

17

[9] P. Cabalar, P. Santos, Strings and holes: an exercise on spatial reasoning,
in: Proc. of the 10th Ibero-American Artificial Intelligence Conference (IB-
ERAMIA’06), vol. 4140 of Lecture Notes in Artificial Intelligence, Springer,
Ribeirão Preto, Brazil, 419–429, 2006.

[10] P. E. Santos, P. Cabalar, The Space within Fisherman’s Folly: Playing with a
Puzzle in Mereotopology, Spatial Cognition & Computation 8 (1-2) (2008)
47–64.

[11] P. Cabalar, P. E. Santos, Formalising the Fisherman’s Folly puzzle, Artificial
Intelligence 175 (1) (2011) 346–377.

[12] P. E. Santos, P. Cabalar, An investigation of actions, change, space within a
hole-loop dichotomy, in: Proc. of the 11th Intl. Symp. on Logical Formaliza-
tions of Commonsense Reasoning (Commonsense’13), Ayia Napa, Cyprus,
2013.

[13] P. E. Santos, P. Cabalar, An investigation of actions, change, space, in: Proc.
of the 23rd International Conference on Automated Planning and Scheduling
(ICAPS 2013), Rome, Italy, 2013.

[14] P. E. Santos, P. Cabalar, Framing holes within a loop hierarchy, Spatial Cog-
nition and Computation 16 (2016) 54–95.

[15] R. Casati, A. C. Varzi, Parts and Places, MIT press, 1999.

[16] A. C. Varzi, Reasoning about space: The hole story, Logic and Logical Phi-
losophy 4 (1996) 3 – 39.

[17] R. Casati, Knowledge of knots: shapes in action, in: Shapes 2.0: The
Shapes of Things, vol. 1007 of CEUR Workshop Proceedings, http://ceur-
ws.org/Vol-1007, 2013.

[18] K. Reidemeister, Knot Theory, BCS Associates, 1983.

[19] J. Takamatsu, T. Morita, K. Ogawara, H. Kimura, K. Ikeuchi, Representation
for knot-tying tasks, IEEE Transactions on Robotics 22 (1) (2006) 65–78.

18

	Introduction
	Describing states: strings, holes and crossings
	Passing objects through holes
	String loops as holes
	Actions on loops
	Related work
	Concluding remarks

