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Abstract

In this paper, we introduce aspBEEF, a tool for generating explanations for the outcome of an arbitrary machine learning
classifier. The tool implements Grover’s et al. framework known as Balanced English Explanations of Forecasts (BEEF) that
generates explanations in terms of finite intervals over the values of the input features. In BEEF, outcomes of a classifier are
clusterized in box-shaped clusters, whose limits are then used for explaining the behaviour of the model. Resulting clusters
can be characterized in terms of three quality measures: purity, overlapping and inclusion. In general, it is preferable to
maximize purity and inclusion and to minimize overlapping. The problem of obtaining the optimal BEEF clusters for a set of
classified samples has been proved to be NP-hard, and so forth BEEF existing implementation computes an approximation.
In this work we use instead an encoding into the Answer Set Programming paradigm, specialized in solving NP problems,

to guarantee that the computed solutions are optimal.
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Introduction

One of the biggest challenges to overcome in the field of
machine learning (ML) is explainability. To able to inter-
pret models produced by ML algorithms and to be able
to explain their predictions and estimations is desirable
in general but required in some cases. For example, in
domains where decisions can seriously affect people’s
lives, domain experts need to understand the decisions
of ML models in order to trust them, and for avoiding
biased or unfair decisions. Examples of these domains
could be healthcare or the legal domain. Besides, there
also exist some regulations such as the General Data Pro-
tection Regulation (GDPR), which requires the system to
provide the user with an explanation of how its decisions
are made. Some ML algorithms, such as Decision Tree,
produce transparent models by design, so it is easy to
interpret them and to obtain local and/or global expla-
nations from them. However, the best performance is
often achieved by non-transparent models for any task,
so an external method for explaining those models is re-
quired. Unfortunately, explaining why a non-transparent
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ML model makes a given prediction is often a non-trivial
task, especially when the aim is to do it in human terms.

Explainable Artificial Intelligence (XAI) field studies
how to obtain explainable models either by developing
new transparent ML algorithms or by developing tech-
niques that aim to explain any ML model disregarding its
underlying algorithm. Such model-agnostic techniques,
allow decoupling the process of obtaining a good model
for prediction from the explanation step so the engineer
has no longer to be limited to a transparent model which
may not obtain the best performance for the specific
task. Another important consequence is that they could
be applied for explaining already deployed models, so
there is no need to develop new models in order to meet
the regulations. One interesting kind of model-agnostic
techniques are those that make use of surrogate mod-
els, which are transparent models that approximate the
outcome of the original model and provide explanations.
The idea is to first develop a predictor model which may
not be transparent, and then develop a surrogate model
based not on actual data, but on the predictions of the
first model. The original model is used for making pre-
dictions, and the surrogate model is used for obtaining
explanations. Both resulting models do not always have
to be in an agreement given a particular input. The level
of agreement depends on the one hand on the quality
of the predictions used to build the surrogate model in
terms of quantity and completeness, and on the other
hand on parameters specific to the selected surrogate
model.

One model-agnostic, surrogate model-based is Balanced
English Explanations of Forecasts (BEEF) [1]. The algo-
rithm employs a special clustering method as a surrogate
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model for explaining the outcome of ML binary classi-
fiers. The quality of the surrogate model that is computed
is measured by three metrics (overlapping, purity and in-
clusion). Then, the surrogate clustering model is used for
providing natural language explanations for local predic-
tions in terms of ranges over the input features of the
original model.

However, BEEF’s finding of such clusters is heuristic-
guided and does not provide the optimal solutions. In
this paper, we present a prototype called aspBEEF, which
provides an optimal solution given a preference over the
quality metrics . It does so by the use of Answer Set
Programming (ASP) for representing and solving the
optimization problem and asprin for modelling the op-
timization preferences.

The contents of this paper are summarized in the fol-
lowing. Section 2 explains in more detail how the BEEF
algorithm works. Section 3 provides a short description
of ASP and asprin. Section 4 describes in detail how
aspBEEF prototype works. Section 5 makes a short eval-
uation of the prototype. Finally, Section 6 makes some
comments about the future work and concludes the pa-

per.

2. BEEF algorithm

BEEF is a model-agnostic cluster-based XAI framework
for explaining the outcome of ML binary classifiers.
Given a set of predictions, BEEF computes a set of clusters
that globally describe the classifier’s behaviour. From a
single prediction or classification, BEEF uses those clus-
ters for providing a set of what authors call balanced
explanations. This balanced explanations explain any out-
come of the classifier in terms of intervals over its input
features.

Once fed with predictions from the ML model, some
traditional clustering method such as KMeans is used
for obtaining a set of clusters that accurately group the
predicted classes. This is run in a vector space where the
input features are the dimensions, and each classifier pre-
diction is a point labelled with its predicted class. Using
the obtained cluster centroids as a starting point, BEEF ap-
proximates a set of axis-aligned hyperrectangular-shaped
clusters around them. We will be calling the new clusters
boxes from now on for short. As they are axis-aligned, the
obtained boxes can be described as a set of ranges over
the input features of the classifier. Each box is associated
with a predicted class, which is the majority predicted
class within that cluster. As a result of this approximation
process, boxes could overlap each other and predictions
could fall outside any box. Figure 1 shows the general
process of BEEF.

The obtained boxes generally describe the behaviour
of the classifier and they can also be used for obtaining

explanations from a single outcome. Given a single clas-
sified sample, a box where the point fell in can be used
for building an explanation that argues why the example
belongs to the box’s associated class based on the box
boundaries. BEEF explanations are expressed in natural
language by selecting sentences from previously written
text templates to explain each of the boxes to the user.

Although a single explanation may be preferable in
most cases, as the boxes can overlap each other, a single
classified sample could fall within more than a cluster,
leading to multiple explanations or even none when it
falls outside of any box. Besides, the class associated with
an explanation does not always match the outcome of
the original classifier, which leads to two types of expla-
nations: supporting explanations when they match, and
opposing explanation it does not. All the possible expla-
nations (regardless of their types) presented together is
what is called a balanced explanations.

The previously described properties depend on the
quality of the obtained boxes, which can be quantified
using the following three quality metrics:

1. Overlapping: two boxes can overlap each other
when they share space for at least one dimension
(or input feature). For example, if for dimension
d1, box By lays within the range [2,10] and box
B3 lays within the range [-2, 6] then their overlap
of that dimension is 4. The overall overlapping of
two pairs of boxes is then defined following the
geometric intersection, as the product of all their
overlaps for all dimensions. When approximating
the boxes, BEEF algorithm aims to minimize the
overlapping or even suppress it.

2. Purity: it is defined as the percentage of samples
of the majority class inside the box and is tried to
be maximized for all boxes by the BEEF algorithm.

3. Inclusion: is the percentage of samples that are
included in at least one box concerning the total of
samples. Since the algorithm aims to explain the
most elements possible, BEEF tries to maximize
inclusion.

The original algorithm creates the sets of boxes from
the initially classified data and then adjusts the bound-
aries of the boxes in an iterative manner, optimizing
the metrics mentioned above until a given set of thresh-
olds over the previously defined properties are satisfied.
Then a feature selection is performed, trying to keep only
the subset of relevant features in terms of the informa-
tion they provide to the final explanations. This is done
through a greedy algorithm that activates or deactivates
the features that provide the largest or lowest marginal
contribution, respectively.

Through this process, the original BEEF algorithm
obtains good solutions at the cost of losing optimality.
Our aspBEEF tool aims to obtain an optimal set of boxed
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Figure 1: The general process of BEEF framework. Predictions from a ML model are represented in a vector space where axis
are the model’s input features (e.g., f1, f2 and f3 in the figure). Points are then grouped in hyperrectangular axis-aligned
clusters which will be used for explaining the model’s behaviour in terms of intervals over the input features. Unlike aspBEEF,

BEEF only works with binary classifiers.



given a set of predictions and a defined order over the
boxes properties (overlapping, purity and inclusion).

3. ASP and asprin

aspBEEF relies in ASP [2, 3, 4] for both specifying and
solving the optimization problem stated above. We as-
sume basic familiarity with ASP for this article. In partic-
ular, aspBEEF is built on top of clingo [5], through the
use of its python api [6], for both grounding and solving.
In addition, we make use of asprin for modelling the
optimization preferences instead of making direct use of
ASP #minimize statements.

asprin [7] is an ASP extension tool that al-
lows the specification of preferences easily and
flexibly. It provides a #preference statement that
allows declaring user-defined preferences which
allow more expressiveness and functionality than
ASP. In the following example from the authors,

#tipreference(costs,
dive}.
#optimize(costs).

less(weight)) {40:sauna, 70:

the #preference statement declares a preference identified
by costs with type less(weight) and some weights
assigned to the atoms sauna and dive. These preferences
can be used for declaring new ones, so the use of
the #optimize statement is mandatory for pointing
asprin which preference relation must be used for the
optimization. With the previous setup, stable models
which include those atoms will sum their associated
cost, and those with lower cost will be preferred during
solving. The computation of these preferred stable
models is done via what is called preference programs.
The last computed stable model is then provided as the
optimal one.

4. The aspBEEF Tool

The BEEF algorithm first clusters the classified samples
and uses them as the starting point for finding a set of
box-shaped clusters which perform well in terms of the
quality metrics defined in Section 2 The problem has been
proven to be NP-complete by the authors, so therefore the
original algorithm performs a greedy search to obtain
a good set of boxes. We present aspBEEF as an ASP
implementation of such an algorithm for obtaining the
optimal set of boxes. The presented implementation is
an ongoing development and has some differences from
the original one that will be explained throughout this
section.

As in the original algorithm, aspBEEF initially takes
as an input a set of already classified samples, typically

the outcome of an already trained ML classifier. The data
must be introduced into the tool in CSV format, whereas
the columns encode all the input features and the out-
come class from the ML model. The name of the column
which encodes the classification outcome is needed to
be input into the tool by the user. The samples are then
clustered using a traditional method such as KMeans or
any other. As a result of the clustering, each sample is
now related with its original class (the outcome of the
ML model) but also with its cluster. Note that, if the user
has already clustered the data (for example, it is known a
domain-dependent way to cluster the samples), this can
be input into the tool by the user for using it as the start-
ing point instead. The clustered data is then encoded to
ASP facts to use alongside the rest of the ASP rule set. See
figures 2 and 3 for an example of the encoding. Note that,
since clingo cannot work with floating-point numbers,
all of the numerical data is automatically transformed
to an integer by multiplying the original values by the
smallest necessary power of ten.

In the example, the features from the samples (the
input features of the ML classifier, also the columns
from the input CSV file) are represented using the
attribute/1 predicate. There is an additional attribute
predtarget, which stands for the name of the generated
column (named predtarget) which encodes the cluster for
each sample. Each sample is then encoded row by row
(i.e. sample by sample) using value/3 predicate. Its ar-
guments specify, respectively, the identifier of the sample
(as an integer number), the feature which is encoded and
the value of the sample for that very feature.

The previously described facts are used alongside
the ASP rule set encoding the BEEF search problem.
Unlike BEEF, aspBEEF receives the number of input
features to be used, which is encoded in the ASP
rule set as a constant named selectcount. That
constant is used for selecting which features to use
for building the boxes in the following choice rule,

selectcount {selattr(A):attribute(A), not
classtarget(A), not predtarget(A)}
selectcount.

where the classtarget/1 indicates which is the class
feature (i.e. the outcome classification) and predtarget
indicates which is the cluster feature. The user is allowed
to specify some fixed features through a command-line
option, which are called fixed features. Those are forced
to be selected by adding selattr facts to the ASP
program, so they no longer depend on being chosen by
the choice rule. The rest used features are called free
features. Note that fixed features considerably prune
the search space as evaluation results will show.

The user defines the number of boxes to find, which
is passed to the clustering algorithm and therefore



sepal length,sepal width,petal length,petal width,species

5.1,3.5,1.4,0.2,Iris-setosa
9,3,1.4,0.2,Iris-setosa
7,3.2,1.3,0.2,Iris-setosa

>

4.
4.

attribute('sepal_length').
attribute('petal_width').

value(0, 'sepal_length',51). value(O0, 'sepal_width',35). value(0, 'petal_length',14).
'c_iris_setosa').
value(1, 'sepal_length',49). value(1l, 'sepal_width',30). value(1l, 'petal_length',14).
'c_iris_setosa').
value(2, 'sepal_length',47). value(2, 'sepal width',32). value(2, 'petal length',13).
'c_iris_setosa').

value(0, 'petal_width',2). class(0,

value(1, 'petal_width',2). class(1,

value(2, 'petal_width',2). class(2,

attribute('sepal_width').
attribute('species').

attribute('petal_length').
attribute('predtarget').

cluster(0, 'c1').

cluster(1, 'c1').

cluster(2, 'c2').

Figure 2: Sample of the original CSV data clustered and parsed to ASP facts

selattr('sepal_length') selattr('sepal_width') selattr('petal_length') selattr('petal_width')
rectinliercount('p_0',50) rectinliercount('p_1',55) rectinliercount('p_2',35)
rectcluster('p_0','p_0') rectcluster('p_1','p_1') rectcluster('p_2','p_2")
minrectval('p_0', 'sepal width',23,44)
minrectval('p_0', 'petal width',1,6)
minrectval('p_1', 'sepal width',20,34)
minrectval('p_1"', 'petal_width',10,24)
minrectval('p_2', 'sepal_width',26,38)
minrectval('p_2', 'petal_width',16,25)

outliercount(10) overlapcount(0) impurecount (0)

minrectval('p_0', 'sepal length',43,58)
minrectval('p_0', 'petal length',10,19)
minrectval('p_1', 'sepal length',49,64)
minrectval('p_1', 'petal_length',30,51)
minrectval('p_2', 'sepal_length',62,79)
minrectval('p_2', 'petal_length',50,69)

Figure 3: Output facts of an aspBEEF execution over the IRIS dataset

match the number of pre-computed clusters. For each
box (identified using rectangle/1 predicate) and
selected feature, a pair of existing values of the dataset
are chosen to define the lower and upper limits for the
particular feature. The following choice rule generates
the pair of values V' for each box R and feature A.

2 {rectval(R,A,V)
rectangle(R),

: fringevalue(R,A,V)} 2 :-
selattr(A).

fringevalue/3 encodes the values V' in the feature
A which fall within the fringe of the precomputed cluster
R. The fringe is defined as the outer rim of each cluster,
its thickness can be configured by parameter. By default
this fringe covers all of the cluster data, but it can be
made thinner so we avoid using the innermost values.
This helps speeding up the process but we risk losing the
optimal values when selecting the box bounds. For each
cluster, R a box is defined as the set of rectval pairs
for each feature.

For each defined box, quality metrics are computed.
To deal with them, it is necessary to know which samples
fall inside which boxes. The following code takes care of

this.

attrinlier(R,I,A) :- value(I,A,V), rectval(R,A,
V0), rectval(R,A,V1), V>=V0, V<=V1, VO<V1.

attroutlier(R,I,A) :- value(I,A,V), rectval(R,A,
V0), rectval(R,A,V1), V<V0, VO<V1

attroutlier(R,I,A) :- value(I,A,V), rectval(R,A,
Vv0), rectval(R,A,V1), V>V1, VO<V1.

rectoutlier(R, I) :- attroutlier(R,I,A).
rectinlier(R, I) :- attrinlier(R,I,A),
rectoutlier(R,I).

not

rectinliercount(R,C) :- rectangle(R), C=#count{
I : rectinlier(R,I)}.

Predicates attrinlier/3 and attroutlier/3 (re-
spectively) state if a sample I, fall inside the range of box
R (or not) for the feature A. Consequently, predicates
rectoutlier/2 and rectinlier/2 (respectively)
state if a sample I, fall inside the box R (or not), when
taking into account all the selected features. Finally, the
rectinliercount/2 predicate tells the total number
of samples C which fall inside the box R.

There exist some differences in the way some quality



metrics are handled by aspBEEF concerning the origi-
nal approach. For instance, while BEEF maximizes the
inclusion (previously defined in Section 2), aspBEEF in-
stead equivalently minimizes the exclusion (i.e. sam-
ples which fall outside any box, or outlier samples). Us-
ing the previous rules, the following ASP predicates
point out which points I are outliers and which are not.

inlier(I)
outlier(I)

:- rectinlier(R,I).
:- pointid(I), not inlier(I).

Overlapping is handled more differently. In the
original approach, overlapping is defined as the
geometrical intersection areas of each pair of boxes.
For simplicity, aspBEEF instead consider overlapping
samples which are samples that fall inside more than
one box. Such samples are handled in the following rule
reusing the rectinlier/2 predicate shown before.

overlappoint(I,R1,R2) :- rectinlier(R1,I),
rectinlier(R2,I), R1<R2.

Finally, as with inclusion, instead of maximizing purity,
aspBEEF minimizes impurity. To handle impurity, sam-
ples of the minority class within each box, or impure sam-
ples, are counted. That is handled by the following rules.

impure(R) :- rectangle(R), rectinlier(R,I1),
rectinlier(R,I2), I1<I2, cluster(Il1,C1),
cluster(12,C2), C1!=C2.

impurity(R,CL1,IC) :- impure(R),
IC=#count{I: cluster(I,CL2),
rectinlier(R,I)}.

impurity(R,M) :- impure(R), M=#min{CLI :
impurity(R,CL,CLI)}.

cluster(CL1),
CL2!=CL1,

The impure boxes are defined as those with at least
two samples belonging to different classes with the
predicate impure/1. impurity/3 predicate counts
how many samples IC' from the class CL1 are inside
box R. Finally, impurity/2 predicate states that count
M but just for the minority class for each box R.

Using the rules given so far, the global quality metrics
for a particular set of boxes are defined as follows,

outlier(I)}.
overlappoint (I,

outliercount(C)

overlapcount (C)
R1,R2)}.

impurecount (C)

:- C=#count{I :
:- C=#count{I :

:- C=#count{I : impurepoint(I)}.
where C'is the respective count.

Given the metric definitions, aspBEEF relies in
asprin preferences for finding the global optimal
solution.  For each metric, an asprin #prefer-
ence statement is declared as in the code below.

#preference(overlap, less(cardinality)) {
overlappoint (I, R1, R2) : rectangle(R1l),
rectangle(R2), pointid(I)
3.
#preference(impurity,less(cardinality)) {
impurepoint (I): pointid(I)

3.

#preference(outlier, less(cardinality)) {
outlier(I) : pointid(I)

3.

#preference(all, lexico) {
overlapprio: :**overlap;
impurityprio::**impurity;
outlierprio::**outlier

3.

#optimize(all).

The three preferences (respectively identified by
overlap, impurity and outlier), are defined with
the type less(cardinality). They are aggregated within a
lexico preference identified by all. Besides, they are sort
by priority values which are encoded as the following
ASP constants: overlapprio, impurityprio and outlierprio.
These priorities define the order of preference for their
respective quality metrics to be optimized. By default,
the order is overlapping, then impurity and finally
exclusion. Finally, the #optimize sentence indicates the
all preference to be optimized.

The explained code so far is provided to asprin which
iteratively finds better and better solutions (i.e. sets of
boxes) until the optimal is found. Once found, this op-
timal is presented to the user as the set of ASP facts
describing the ranges of each box as shown in Figure 4
or as a set of rules in form of text as shown in Figure 5.

Besides, our tool is also able to generate graphical
HTML reports in the form of dynamic 2D scatter plots to
graphically show the found solutions. In those reports,
the user is allowed to select the features of the dataset by
pairs and visualize the projection of the boxes for those
two very dimensions alongside the classified samples. A
summary of the quality of the solution metrics is also
shown. An example of the visualization can be seen in
Figure 6. Additionally, a sample live version of an HTML
report using the IRIS dataset and four free features can be
viewed in the authors’ repository: http://trigork.github.
io/asp/aspbeef/IRIS/

There exist some other differences in addition to those
already explained. The first one is that aspBEEF imple-
mentation can handle more than two classes, unlike BEEF
which only deals with binary problems. However, while
BEEF also adjusts the number of boxes, the current im-
plementation of aspBEEF needs this number to be fixed
by the user to work.

The second one is that aspBEEF activates and deacti-
vates features globally. This means that given a solution,
all boxes use the same features. The original approach
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selattr('sepal length') selattr('sepal width') selattr('petal length') selattr('petal width')

rectinliercount('p _0',50) rectinliercount('p_1'

,55) rectinliercount('p_2',35)

rectcluster('p_0','p_0') rectcluster('p_1','p_1') rectcluster('p_2','p_2")

minrectval('p_0', 'sepal_length',43,58)

minrectval('p_0', 'sepal_width',23,44)

minrectval('p_0', 'petal_length',10,19) minrectval('p_0', 'petal_width',1,6)

minrectval('p_1', 'sepal_length',49,64) minrectval('p_1"', 'sepal_width',20,34)
minrectval('p_1', 'petal_length',30,51) minrectval('p_1"', 'petal_width',10,24)
minrectval('p_2', 'sepal_length',62,79) minrectval('p_2', 'sepal_width',26,38)
minrectval('p_2', 'petal_length',50,69) minrectval('p_2', 'petal_width',16,25)

outliercount(10) overlapcount(0) impurecount (0)

Figure 4: Output facts of an aspBEEF execution over the IRIS dataset

Rule(s) for Class p_0
Rule #0
sepal_length is between 4.3 and 5.8
sepal_width is between 2.3 and 4.4
petal_length is between 1.0 and 1.9
petal width is between 0.1 and 0.6
Rule(s) for Class p_1
Rule #0
sepal_length is between 4.9 and 6.6
sepal_width is between 2.0 and 3.4
petal_length is between 3.0 and 5.1
petal_width is between 1.0 and 1.9
Rule(s) for Class p_2
Rule #0
sepal_length is between 6.2 and 7.9
sepal width is between 2.6 and 3.8
petal length is between 5.0 and 6.9
petal width is between 1.6 and 2.5

Figure 5: Output rules of an aspBEEF execution over the
IRIS dataset

is instead able to turn on and off features for each of
the clusters individually, depending on if those features
provide valuable information or not. In an attempt to
mitigate this effect, as was explained through this sec-
tion, aspBEEF allows to manually select relevant features
(fixed features) alongside the total number of features to
use. Leaving a possible feature selection process up to
the user.

5. Evaluation

A short evaluation of the tool has been performed. The
IRIS dataset, which is publicly available, has been used
for the evaluation. In particular, the instance of the used
IRIS data set is available in https://archive.ics.uci.edu/
ml/datasets/iris For simplicity, the ground truth classes
of the samples in the dataset were used to feed the al-
gorithm, instead of using the outcome of a ML trained

classifier. The dataset is composed of 150 samples along-
side its ground truth class and 4 features: sepal lenght,
sepal width, petal length and petal width.

Several tests were performed by using random samples
of the dataset and used features to evaluate the influence
of those factors in the computational cost of aspBEEF.
Three random samples were extracted from the whole
data set, each one with a different size: 60 samples, 90
samples and 150 samples. Tests were performed using 2,
3 and 4 features and both fixed and free feature selection
methods were tested. Each test was performed 100 times
and then averaged to smooth out the outlying values
in the final measure. Both grounding and solving times
were reported to see which of both require a bigger effort.
Results are shown in Table 5

As can be seen in the table, solving time requires a
bigger effort. On average, solving time represents 63.25%
of the invested time taking all the tests into account. If
analyzed by sample sizes, results show how solving time
increases with sample sizes. Note 40.04% of average
solving time for 60 sample size tests, 60.65% for 90 and
90.27% for 150. This makes sense since aspBEEF use
values from the samples as possible thresholds, so as the
number of samples increases, the number of possible
boxes also increases exponentially.

However, that is not what increases the computational
cost the most. When dealing with free features, increas-
ing its number has a huge impact on the invested time. In
general, if results for 2 and 4 free features are compared,
a big time decrease is observed, a 57.68% for sample size
60 from (1.028 to 0.435), a 51.49% for 90 from (from
1.309 to 0.635) and a 63.47% for 150 (from 33.117 to
12.099). Given a total number of available features N and
several free features to be selected f, the number of fea-
ture combinations to be tested by aspBEEF is Cy ¢ (e.g
combinations without repetitions of f elements within
a set of V). This means that the more free features are
used, the lower the number the combinations that have to
be tested and hence the invested time, up to the minimal
when f = N and all the features are used.

Despite the long computational times when using free
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Figure 6: Visualizations of the petal_length and sepal_length features for the solutions 32 and 101 (final solution) of
the search process for the whole IRIS Dataset



Sample Size  Used Features

Time w/ Free Features

Time w/ Fixed Features

60 2 1.028 (0.70) 0.471s (0.13)
60 3 0.736 (0.41) 0.560 (0.23)
60 4 0.435 (0.11) 0.400s (0.09)
90 2 1.309s (0.82) 1.269s (0.82)
90 3 3.558s (3.11) 1.402s (0.95)
90 4 0.635 (0.17) 1.134 (0.62)
150 2 33.117s (32.37) 7.282s (6.53)
150 3 24.029s (23.29) 4.2555 (3.51)
150 4 12.099 (11.33) 3.979 (3.23)

Table 1

Times table for a data set of 150 points and 4 features. We provide total time (i.e. grounding and solving) and just the solving

time alongside between parenthesis.

features, the automatic selection prunes the less useful
features and so provides additional insight about the be-
havior of the model and also more concise explanations.
Although optimizations are planned as future work, even
large computational times could be worth it given that
the algorithm is adding additional value by explaining
already developed ML models, which usually do not have
such a feature. In cases where the useful (or desired)
features for explaining are known beforehand, then fixed
features would be the recommended approach to prune
the search space. When the opposite happens and some
features are to be dispensed with, a mixed approach could
also be useful. Undesired features should not be provided
in the data to prevent aspBEEF to explore them, known
useful features should be forced as fixed features for prun-
ing the search space and finally the rest can be used as
free features and let the algorithm decide if they are going
to be included or not in the explanations.

6. Conclusions and Future Work

We have introduced the tool aspBEEF which obtains op-
timal BEEF explanations of machine learning classifiers
by implementing the framework in ASP. The tool com-
putes the optimal set of BEEF box-shaped clusters given
a specific order over the quality measures (overlapping,
purity and inclusion) and describes the found clusters.
For doing so, it receives the predictions of a machine
learning classifier (in csv format), the number of boxes
to find, a set of fixed features and a set of free features.
asprinis used for declaring the preferences and actually
for performing the optimization process. The evaluation
shows that the technique has a high computational cost,
especially with the increase of free features. One option
for tackling the problem would be to externally perform
a feature selection process for fixing just the important

features. Anyway, the effort is reasonable having in mind
that our goal is not simple classification but obtaining
rich explanations of the outcome of already trained ML
classifiers, which rarely present such a feature.

As future work, we aim to modify the way aspBEEF
handle features by allowing the activation of features to
be box-dependent. For some cases, some features could
be useful for explaining one class predictions but could
be no more than noise for explaining the other. Cur-
rently, all classes have to be explained using the same
features, since features are enabled or disabled globally
for all boxes during optimization. By allowing the boxes
to use different sets of features, those features which
improve quality the least could be disregarded for some
boxes, which would also simplify the explanations. In
such a setting, each resulting box would only use the
important features for explaining the predictions within
it. This would be convenient from the perspective of
an end-user since explanations would be more concise
and differences between classes would be clearer rather
than having. However, solutions whose boxes use more
features would always have at least the same quality
that equivalent ones that disregard some features, since
having more features decrease the probability of having
overlapping boxes. Hence, a new quality measure should
be introduced for preferring those solutions whose boxes
use fewer features. Furthermore, we aim to improve flex-
ibility by adding an option to make aspBEEF find the
best number of boxes in terms of quality. Usually using
the same number of boxes as output classes works fine,
but this has not always to be the case. The reasonable
option with the current implementation is to externally
perform an estimation with some already well-known
techniques like the elbow method. The trivial option
for introducing the feature in the tool would be to auto-
matically perform this step before the clustering method.



Another option would be to add the number of boxes as a
quality metric to be optimized. Since the optimal quality
solution would be to trivially have a box around each
prediction, a new simplicity quality measure probably
would need to be introduced to encourage solutions with
fewer boxes. Instead of receiving a fixed number, the tool
could receive a threshold over the maximum number of
boxes and find the optimal number in terms of quality
but also simplicity.

The aspBEEF prototype is open source and already
available at
https://github.com/trigork/aspBEEF.
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