
A Uniform Treatment of Aggregates and Constraints in Hybrid ASP

Pedro Cabalar1 and Jorge Fandinno2 and Torsten Schaub2 and Philipp Wanko2

1 University of Corunna, Spain
2 University of Potsdam, Germany

Abstract

Characterizing hybrid ASP solving in a generic way is difficult
since one needs to abstract from specific theories. Inspired
by lazy SMT solving, this is usually addressed by treating
theory atoms as opaque. Unlike this, we propose a slightly
more transparent approach that includes an abstract notion
of a term. Rather than imposing a syntax on terms, we keep
them abstract by stipulating only some basic properties. With
this, we further develop a semantic framework for hybrid ASP
solving and provide aggregate functions for theory variables
that adhere to different semantic principles, show that they
generalize existing aggregate semantics in ASP and how we
can rely on off-the-shelf hybrid solvers for implementation.

Introduction
Many real-world applications have a heterogeneous nature
that can only be captured by different types of constraints.
This is commonly addressed by hybrid solving technol-
ogy, most successfully in the area of Satisfiability modulo
Theories (SMT; Nieuwenhuis, Oliveras, and Tinelli 2006).
Meanwhile, neighboring areas like Answer Set Programming
(ASP; Lifschitz 2008) follow suit. In doing so, they usually
adopt the lazy approach to SMT that abstracts from specific
constraints by interpreting them as opaque atoms. This inte-
gration is however often done in system-oriented ways that
leave semantic aspects behind.

We first addressed this issue in (Cabalar et al. 2016) by pro-
viding a uniform semantic framework that allows us to cap-
ture the integration of ASP with foreign theories. This blends
the non-monotonic aspects of ASP with other formalisms in
a homogeneous representational framework. Moreover, it re-
tains the representational aspects of ASP such as expressing
defaults and an easy formulation of reachability, and transfers
them to the integrated theory. In (Cabalar et al. 2020), we ex-
tended this to conditional aggregates, which already incurred
a fraction of the aforementioned opaqueness principle. To

Copyright c© 2020 held by the author(s). In A. Martin, K. Hinkel-
mann, H.-G. Fill, A. Gerber, D. Lenat, R. Stolle, F. van Harmelen
(Eds.), Proceedings of the AAAI 2020 Spring Symposium on Com-
bining Machine Learning and Knowledge Engineering in Practice
(AAAI-MAKE 2020). Stanford University, Palo Alto, California,
USA, March 23-25, 2020. Use permitted under Creative Commons
License Attribution 4.0 International (CC BY 4.0).

illustrate this, consider the following hybrid ASP rule, taken
from (Cabalar et al. 2020)1

total(R) := sum {̇ tax (P) : lives(P,R) }̇ ← region(R)

This rule gathers the total tax revenue of each region R by
summing up the tax liabilities of the region’s residents, P .

The need for subatomic structures emerges from the obser-
vation that the meaning of this rule should remain unchanged,
in case the computation of the revenue is expressed using, for
instance, a linear expression instead of the sum aggregate.
However, this slight syntactic difference leads to a distinct
constraint atom, whose semantics can be radically different.
Only by inspecting the subatomic structure of both atoms,
we can guarantee the expected behavior.

In this paper, we build an account of such abstract sub-
atomic structures, namely constraint terms, and leverage
them to provide a uniform treatment of linear constraints,
conditional expressions, aggregates and similar future hy-
brid constructs. Furthermore, we investigate two different
principles for conditional expressions: the vicious circle prin-
ciple (vc) and a new one we call definedness (df). While
vc has been investigated in traditional ASP in (Gelfond and
Zhang 2019), this new principle ensures that the value of
any conditional expression is always defined. This is dif-
ferent from vc according to which conditional expressions
may be undefined due to cyclic dependencies (Cabalar et al.
2018). Interestingly, when combined with aggregates, the
df principle leads to a generalization of another semantics
known from ASP (Ferraris 2011), which provides the se-
mantic underpinnings of aggregates used in the ASP sys-
tem clingo (Gebser et al. 2019). Hence, for characterizing
hybrid variants of clingo, this framework is a prime can-
didate. Moreover, we are able to show how, under certain
circumstances, arithmetic aggregates (under both principles)
can be mapped into conditional linear constraints under vc.
Combined with our previous results (Cabalar et al. 2016;
2020), this allows us to use off-the-shelf constraint ASP
(CASP; Lierler 2014) solvers to implement such hybrid ex-
tensions.

Here-and-There with Conditional Constraints
The syntax of the logic HTC is based on a set of (constraint)
variables X and constants or domain values from some non-

1We put dots on top of braces, viz. “{̇ . . . }̇”, to indicate multisets.

empty set D. For convenience, we also distinguish a special
symbol u /∈ X ∪ D that stands for undefined.

We introduce next what we call basic constraint terms,
atoms and formulas and then extend these three concepts
to incorporate conditional expressions. We define the set of
elementary terms T e def= X ∪ D ∪ {u}, that is, variables,
domain values and the symbol u. Each theory will be de-
fined over a given set of basic (constraint) terms, denoted
as T b, that will include, at least, all elementary terms, i.e.,
T e ⊆ T b. The syntax of a basic term is left open, but can be
any expression of infinite length. A basic (constraint) atom
is an expression containing a (possibly infinite2) number of
basic terms. For each theory, we assume a particular set of
basic constraint atoms, denoted as Cb. We do not impose
any limitation on their syntax, though, in most cases, that
syntax is defined by some grammar or regular pattern. For
instance, difference constraint atoms are expressions of the
form “x − y ≤ d”, containing the elementary terms x, y, d
where x, y ∈ X are variables and d ∈ D a domain value.
Note that we are free to define the subexpression “x− y” as
a basic term or not, at our convenience. This does not affects
the definition of “x−y ≤ d” as a basic atom. The importance
of distinguishing terms is thus not syntactic, but meta-logical:
Distinguishing terms allows us to guarantee some properties
that may not be satisfied on unstructured atoms.

A basic formula ϕ over Cb is defined as

ϕ ::= ⊥ | c | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ where c ∈ Cb

We define > as ⊥ → ⊥ and ¬ϕ as ϕ→ ⊥ for every for-
mula ϕ. We sometimes write ϕ← ψ instead of ψ → ϕ to
follow logic programming conventions.

We now extend these notions to incorporate conditional
constructs. A conditional term is an expression of the form

(s|s′:ϕ)

where s and s′ are basic terms and ϕ is a basic formula. The
intuitive reading of a conditional term is “get the value of s
if ϕ holds, or the value of s′ if it does not.” Now, a (constraint)
term is either a basic term, a conditional term or some (possi-
bly infinite) expression involving basic and conditional terms.
As before, a (constraint) atom is an expression involving a
(possibly infinite) number of constraint terms. We denote the
set of all constraint terms and atoms by T and C, respectively.

A formula ϕ over C is defined as a basic formula above
but with c ∈ C being an arbitrary constraint atom rather than
a basic one. Given a constraint term, atom or formula α, we
denote the set of variables occurring in α by vars(α) ⊆ X .

For the semantics, we start by defining the extended do-
main as Du

def= D ∪ {u}. A valuation v over X ,D is a func-
tion v : X → Du where v(x) = u represents that variable x
is left undefined. Moreover, if X ⊆ X is a set of variables,
valuation v|X : X → Du stands for the projection of v on X .
A valuation v can be alternatively represented as the set
{(x, v(x)) | x ∈ X , v(x) ∈ D} by what no pair (x,u) is in

2An atom may have an infinite number of terms of infinite length.
This cannot be represented as a string, but is still a expression similar,
for instance, to some formula in infinitary logics.

the set. This representation allows us to use standard set
inclusion for comparison. We thus write v ⊆ v′ to mean that

{(x, v(x)) |x ∈ X , v(x) ∈ D}
⊆ {(x, v′(x)) | x ∈ X , v′(x) ∈ D}

The set of all valuations over X ,D is denoted by VX ,D and
X ,D dropped whenever clear from context.

We define the semantics of basic constraint atoms via
denotations, which are functions J · K : Cb → 2V , mapping
each basic constraint atom to a set of valuations. For instance,
each difference constraint like x−y ≤ d can be captured by a
constraint atom “x−y ≤ d” whose denotation J “x−y ≤ d” K
is given by the expected set:

{v ∈ V | v(x), v(y), d ∈ Z, v(x)− v(y) ≤ d} (1)

Satisfaction of constraint atoms involving conditional
terms is defined by a previous syntactic unfolding of their
conditional terms, using some interpretation to decide the
truth values of formulas in conditions. Formally, an interpre-
tation over X ,D is a pair 〈h, t〉 of valuations over X ,D such
that h ⊆ t. The interpretation is total if h = t. With this,
we define next two valuation functions for conditional terms,
one following the vicious cycle principle (vc) and another
ensuring the definedness of conditional terms (df).

Definition 1 Given an interpretation 〈h, t〉 and a conditional
term s = (s′|s′′:ϕ), we define:

vc〈h,t〉(s) =

{
s′ if 〈h, t〉 |= ϕ
s′′ if 〈t, t〉 6|= ϕ
u otherwise

(2)

df 〈h,t〉(s) =

{
s′ if 〈h, t〉 |= ϕ
s′′ if otherwise (3)

Note that the valuation functions rely on the satisfaction
relation |= defined below.

To illustrate the different behavior of vc and df , take the
following simple example

x = 1 ← (1|0:x = 1) ≥ 0 (4)

stating that x must have value 1 when the conditional expres-
sion (1|0:x = 1) ≥ 0 holds. We see below that this rule has
no stable model under vc-semantics while it has a unique one
with t(x) = 1 under df -semantics. We face here a completely
analogous situation to the following standard (non-hybrid)
ASP rule with an aggregate:

holdsx(1) ← count {̇1 : holdsx(1)}̇ ≥ 0 (5)

where predicate atom holdsx(1) is playing the role of x = 1
in (4). Rule (5) has the unique stable model {holdsx(1)} un-
der Ferraris’ semantics for aggregates, which does not comply
with vc, whereas it has no stable model3 under Gelfond and
Zhang’s semantics, which satisfies vc.

Observation 1 Given some total interpretation 〈t, t〉 and
any conditional term s, we have vc〈t,t〉(s) = df 〈t,t〉(s).

3 Gelfond and Zhang’s semantics is defined exclusively for set
based aggregates, but lifting it to multi-sets is straightforward.

2

Hence, for total interpretations, we may just write eval t(s)
instead of vc〈t,t〉(s) and df 〈t,t〉(s). In our running example,
if 〈t, t〉 is a total interpretation such that 〈t, t〉 |= (x = 1),
then eval t(1|0:x = 1) is 1. This means that to evaluate
whether 〈t, t〉 satisfies (4) wrt any of the two semantics, we
replace the conditional expression by the domain element 1
and, thus, evaluate whether 〈t, t〉 satisfies the basic formula

x = 1 ← 1 ≥ 0 (6)

which obviously holds since we assumed 〈t, t〉 |= (x = 1).
For non-total interpretations, the valuation is slightly more
involved, so we will resume our example after introducing
the definition of the satisfaction relation.

We permit that different occurrences of conditional expres-
sions are interpreted according to different valuation func-
tions (vc or df). This can be simply achieved by some syn-
tactic distinction like, for instance, enclosing the expression
with (·) for vc and with [·] for df . This allows us assigning
different interpretations to different occurrences of the same
expression, e.g., in the formula

x = 1 ← (1|0:x = 1) ≥ 0 ∨ ¬[1|0:x = 1] ≥ 0 (7)

In order to abstract from the particular syntax used, we just
assume that there exists some selection function κ that tells us,
for each occurrence of a conditional term s, which evaluation
function must be used, that is, either κ〈h,t〉(s) = vc〈h,t〉(s)
or κ〈h,t〉(s) = df 〈h,t〉(s).

For a constraint atom c ∈ C, we define κ〈h,t〉(c) as the
basic constraint atom that results from replacing each condi-
tional term s in c by the basic term κ〈h,t〉(s).

Definition 2 Given a denotation J · K, a selection func-
tion κ, an interpretation 〈h, t〉 satisfies a formula ϕ, written
〈h, t〉 |=κ ϕ, if

1. 〈h, t〉 |=κ c if w ∈ Jκ〈w,t〉(c) K for w ∈ {h, t}
2. 〈h, t〉 |=κ ϕ ∧ ψ if 〈h, t〉 |=κ ϕ and 〈h, t〉 |=κ ψ

3. 〈h, t〉 |=κ ϕ ∨ ψ if 〈h, t〉 |=κ ϕ or 〈h, t〉 |=κ ψ

4. 〈h, t〉 |=κ ϕ→ ψ if 〈w, t〉 6|=κ ϕ or 〈w, t〉 |=κ ψ
for w ∈ {h, t}

We say that 〈h, t〉 is a κ-model of ϕ when 〈h, t〉 |=κ ϕ. In
particular, vc- and df -models are those corresponding to
evaluating all conditional terms according to vc or df , re-
spectively. Furthermore, we may just write 〈h, t〉 |= ϕ when
ϕ is a basic formula or when 〈h, t〉 is total, because the val-
uation function becomes irrelevant in those cases. Note that
this satisfaction relation without subindex is the one used
in Definition 1 for the valuation function. In the rest of the
paper, we assume a fixed underlying denotation for constraint
atoms. If not explicitly stated otherwise, we also assume a
fixed underlying selection function.

It is worth noting that Definition 2 differs from (Cabalar et
al. 2020) in Condition 1, which in our setting corresponds to:

1’. 〈h, t〉 |=vc c if h ∈ J vc〈h,t〉(c) K
That is, satisfaction of an atom was only checked on the here
world h and the selection function was fixed to vc. In fact,
the satisfaction relation was not parameterized with κ, since
the unique valuation function used was vc. The following

result4 states that our semantics parameterized with the vc
mapping actually corresponds to the semantics we introduced
in (Cabalar et al. 2020).
Proposition 1 Let ϕ be a formula and 〈h, t〉 be some in-
terpretation. Then, 〈h, t〉 |=vc ϕ iff 〈h, t〉 is a model of ϕ
according to (Cabalar et al. 2020).

To illustrate satisfaction of formulas under vc, take
again (4) and suppose we have some 〈h, t〉 where h(x) = u
and t(x) = 1. Then, 〈t, t〉 satisfies x = 1 and, as we saw
above, this implies that 〈t, t〉 satisfies (4). On the other
hand, we also can see that 〈h, t〉 does not satisfy x = 1 and,
by definition, we get: 〈h, t〉 |=vc (1|0:x = 1) ≥ 0 iff both
〈h, t〉 |= u ≥ 0 and 〈t, t〉 |= 1 ≥ 0. In fact, in view of Propo-
sition 1, it is enough to check whether 〈h, t〉 satisfies u ≥ 0.
That is, 〈h, t〉 |= (4) iff 〈h, t〉 satisfies the formula

x = 1 ← (u ≥ 0) (8)

which holds because 〈h, t〉 6|= (u ≥ 0).
A theory is a set of formulas. An interpretation 〈h, t〉

is a κ-model of some theory Γ, written 〈h, t〉 |=κ Γ, when
〈h, t〉 |=κ ϕ for every ϕ ∈ Γ. A formula ϕ is a tautology
(wrt some underlying denotation and selection function)
when 〈h, t〉 |=κ ϕ for every interpretation 〈h, t〉. Note that,
this implies that a basic constraint atom c ∈ Cb is tautologous
whenever J c K = V .
Definition 3 A (total) interpretation 〈t, t〉 is a κ-equilibrium
model of a theory Γ, if 〈t, t〉 |=κ Γ and there is no h ⊂ t such
that 〈h, t〉 |=κ Γ.
Valuation t is also called a κ-stable model of a set of formu-
las Γ when 〈t, t〉 is an κ-equilibrium model of Γ. For the case
of vc-stable we get the next result.
Corollary 1 The vc-stable models of any theory coincide
with its stable models according to (Cabalar et al. 2020).

Following with our example above, it is easy to see that
the interpretation we had, 〈h, t〉 with t(x) = 1 and h(x) = u,
is not a vc-stable model of (4) because 〈h, t〉 |=vc (4). If we
consider, instead, the df -semantics, we will see that t is in
fact a df -stable model of (4). This is because no h′ ⊂ t
forms a model 〈h′, t〉. We will prove it for h′ = h where
h(x) = u and the proof for other interpretations is similar.
First, note that for the df -semantics, Condition 1 of Defini-
tion 2 always uses the evaluation in both worlds h and t. It
does not suffice with using h, as happened with vc (Propo-
sition 1). Hence, to satisfy 〈h, t〉 |=df (1|0:x = 1) ≥ 0 we
need both 〈h, t〉 |= 0 ≥ 0 and 〈t, t〉 |= 1 ≥ 0. As a result,
〈h, t〉 |=df (4) iff 〈h, t〉 satisfies the formula

x = 1 ← (0 ≥ 0) ∧ ¬¬(1 ≥ 0) (9)

which does not hold. Just note that the right hand side is
a tautology and that 〈h, t〉 does not satisfy x = 1 because
h(x) = u. Hence, t is a df -stable model of (4). The following
result generalizes this double negation formalization.
Proposition 2 Let 〈h, t〉 be an interpretation and c ∈ C be a
constraint atom.

Then, 〈h, t〉 |=κ c iff 〈h, t〉 |= κ〈h,t〉(c) ∧ ¬¬eval t(c).

4An extended version of the paper including all proofs can be
found here: https://arxiv.org/abs/2003.04176

3

The reason why we need to check both worlds for the
df -semantics is to keep the persistence property of HT as
stated in the following result.
Proposition 3 (Persistence) Let 〈h, t〉 and 〈t, t〉 be two in-
terpretations, and ϕ be a formula.

Then, 〈h, t〉 |=κ ϕ implies 〈t, t〉 |=κ ϕ.
The need for the additional evaluation in t comes from the
fact that, under df valuation, some constraint atoms c may
satisfy h ∈ J df 〈h,t〉(c) K but t 6∈ J df 〈h,t〉(c) K, and so, if we
only used h, persistence would be violated. To illustrate this
feature, take the conditional constraint atom

(1|2:x = 1) ≥ 2 (10)

and, again, interpretation 〈h, t〉 with h(x) = u and t(x) = 1.
Then, we obtain

df 〈h,t〉(1|2:x = 1) = 2

eval t(1|2:x = 1) = 1

because 〈h, t〉 6|= (x = 1) and 〈t, t〉 |= (x = 1). But then

h ∈ J df 〈h,t〉(1|2:x = 1) ≥ 2 K

t /∈ J eval t(1|2:x = 1) ≥ 2 K

The following proposition tells us that some other usual
properties of HT are still valid in this new extension.
Let us introduce some notation first. Given any HT for-
mula ϕ, let ϕ[a/α] denote the uniform replacement of atoms
a = (a1, . . . , an) in ϕ by HTC formulas α = (α1, . . . , αn).
Proposition 4 Let 〈h, t〉 and 〈t, t〉 be two interpretations,
and ϕ be a formula. Then,

1. 〈h, t〉 |=κ ϕ→ ⊥ iff 〈t, t〉 6|=κ ϕ ,
2. If ϕ is an HT tautology then ϕ[a/α] is an HTC tautology.
As an example of Property 2 in Proposition 4, we can con-
clude, for instance, that

(x− (y|3: p) ≤ 4)→ ¬¬(x− (y|3: p) ≤ 4)

is an HTC tautology because we can replace a in the HT tau-
tology a→ ¬¬a by the HTC formula (x− (y|3: p) ≤ 4). In
particular, the second statement guarantees that all equivalent
rewritings in HT are also applicable to HTC .

Terms and assignments
As said before, the use of terms as subexpressions will be
convenient to derive structural properties of constraint atoms.
We will sometimes refer to a constraint atom using the no-
tation c[s] meaning that the expression for c contains some
distinguished occurrence of subexpression s. We further write
c[s/s′] to represent the syntactic replacement in c of subex-
pression s by s′. Then, we assume the following syntactic
properties:

1. if s ∈ T is a term, then there are constraint atoms in C of
the form s = s and s = d for every domain element d ∈ D,

2. if s ∈ T is a term, c[s] ∈ C is a constraint atom and
s′ ∈ T e, then c[s/s′] ∈ C is also a constraint atom,

3. if s, s′ ∈ T are terms such that s′ is a subexpression of s
and c[s] ∈ C is a constraint atom, then c[s/s′] ∈ C.

Intuitively, Condition 1 states that we always define, at least,
equality constraint atoms that allow comparing a term s to
any domain element or to itself.

Atom s = s is not a tautology: it is satisfied iff s has some
value. For this reason, we will sometimes abbreviate s = s
as def (s) meaning that s is defined. Conditions 2 and 3
state that replacement of terms must lead to syntactically
valid expressions. Contrarily to first order logic, we only
require that terms can be replaced by some particular class of
terms rather than all possible terms. In particular, Condition 2
implies that replacing any term by an elementary term must
lead to syntactically valid expressions. Condition 3 is similar
but for every term that is also a subexpression. For instance,
if x− y and x− y + z are terms and x− y + z ≤ 4 is a
constraint atom, then we must allow for forming constraint
atoms x ≤ 4 and x− y ≤ 4 and u + z ≤ 4 among others.
Note that, since x− y + z is not a subexpression of x− y,
we do not require x− y + z + z ≤ 4 to be a constraint atom.

These intuitions are further formalized by imposing the
following semantic properties for any denotation J · K, ba-
sic atom c ∈ Cb, basic term s ∈ T b, domain element d ∈ D,
variable x ∈ X , and any pair of valuations v, v′ ∈ V:

5. if v(x) = v′(x) for all x ∈ vars(c) then
v ∈ J c K iff v′ ∈ J c K.

6. v ∈ J c K and v ⊆ v′ imply v′ ∈ J c K,

7. v ∈ J c[s/u] K implies v ∈ J c[s] K
8. J d = d K = V ,

9. Jx = d K = {v ∈ V | v(x) = d},
10. J s = d K ∩ J s = d′ K = ∅ for any d′ ∈ D with d 6= d′

11. if v ∈ J s = s′ K for any term s′ ∈ T , then there is some
d′ ∈ D such that v ∈ J s = d′ K and v ∈ J s′ = d′ K

12. if v ∈ J s = d K, then v ∈ J c[s] K iff v ∈ J c[s/d] K,

13. if v /∈ J s = s K and v ∈ J c[s] K, then v ∈ J c[s/u] K.

Condition 5 asserts that the denotation of c is fixed by combi-
nations of values for vars(c), while other variables may vary
freely, consequently becoming irrelevant. Condition 6 makes
constraint atoms behave monotonically. Condition 7 is the
counterpart of Condition 6 for terms. Intuitively, it says that,
if a constraint does not hold for some term, then it cannot
hold when that term is left undefined. For instance, if we
include a constraint atom x − (y|z: p) ≤ 4, then we must
allow for forming the three constraint atoms x− y ≤ 4 and
x−z ≤ 4 and x−u ≤ 4, too, and any valuation for the latter
must also be a valuation for the former two. Conditions 8-13
describe the behavior of equality atoms. Conditions 12 and 13
respectively tell us that, given some valuation v, a term s can
always be replaced by its defined value v(s) = d or by u,
if it has no value. Reflexivity and symmetry of ‘=’ can be
derived from Conditions 11-12, as stated below.

Proposition 5 Given terms s, s′ and s′′, the following con-
ditions hold:

1. if v ∈ J s = s′ K and v ∈ J s′ = s′′ K, then v ∈ J s = s′′ K.
2. if v ∈ J s = s′ K, then v ∈ J s′ = s K, and
3. Ju = s K = J s = u K = Ju = u K = ∅.

4

Condition 3 implies that ‘=’ is not reflexive. Also, when
v(x) = u, atom x = x is false, i.e., v /∈ Jx = x K. The fol-
lowing interesting properties for def (s) can also be derived.

Observation 2 The following conditions hold:

1. J def (s) K =
⋃
d∈DJ s = d K for every term s ∈ T ,

2. J def (d) K = V for every domain element d ∈ D,
3. J def (x) K = {v ∈ V | v(x) 6= u} for every x ∈ X ,
4. J def (u) K = ∅.

These conditions together imply that constraint terms be-
have similar to first order terms. That is, we can define a
recursive function for valuation of terms and subterms:

Definition 4 (Term valuation) Given a valuation v ∈ V ,
an interpretation 〈h, t〉 and a term s ∈ T , we define
vκ〈h,t〉 : T −→ Du as the following function:

vκ〈h,t〉(s)
def=

{
d if v ∈ Jκ〈h,t〉(s) = d K with d ∈ D,
u otherwise

where κ〈h,t〉(s) denotes the basic term that results from re-
placing each conditional term s′ in s by κ〈h,t〉(s′).

For a constraint atom c ∈ C, we denote by vκ〈h,t〉(c) the con-
straint atom obtained by replacing each occurrence of term s
in c by vκ〈h,t〉(s) ∈ Du. Note that vκ〈h,t〉(c) for constraint atom
c becomes a syntactic transformation. For example, take as c
the following constraint atom:

(1|0:x = 1)− y ≥ 0

which is a slight elaboration of the atom in the body of (4).
Suppose that we define s = (1|0:x = 1) as a term (remem-
ber x, y, 1 and 2 are also elementary terms). Assume also
that κ applied to s in this case selects df and take the inter-
pretation 〈h, t〉 where h(x) = u, t(x) = 1 as in previous
examples, adding now h(y) = t(y) = 1. Then, using df , the
conditional term is replaced by 0 in h and by 1 in t. Therefore
vκ〈h,t〉(s) = 0 and vκ〈t,t〉(s) = 1. Given that the value of y is
fixed to 1, we get the basic atoms vκ〈h,t〉(c) = 0− 1 ≥ 0 and
vκ〈t,t〉(c) = 1− 1 ≥ 0.

Proposition 6 Given a valuation v, an interpretation 〈h, t〉,
a selection function κ, and an atom c, the following two
conditions are equivalent:

1. v ∈ Jκ〈h,t〉(c) K
2. v ∈ J vκ〈h,t〉(c) K

In other words, we can safely use the term valuation vκ〈h,t〉
to replace every term for its value in the valuation v wrt the
interpreation 〈h, t〉. Note that, in practice, we chose v to be
either h or t. When s is a basic term or 〈h, t〉 is total, the
value returned by vκ〈h,t〉(s) does not depend on κ, h or t. For
this reason, we just write v(s) in those cases.

Finally, we can establish some relation between the vc- and
df -semantics based on how they evaluate constraint terms.

Proposition 7 Any term s and interpretation 〈h, t〉 satisfy
that hvc〈h,t〉(s) 6= u implies hvc〈h,t〉(s) = hdf〈h,t〉(s) = t(s).

In other words, if the vc-semantics assigns some value to
term s in h, this value is also preserved in t. Moreover, when
this is the case the vc- and df -semantics coincide. On the
other hand, this preservation property is not satisfied by the
df -semantics, as we discussed in the example with the condi-
tional atom in (10).

As mentioned in the introduction, the main motivation to
introduce constraint terms is to permit a uniform treatment
of different constructs. This is especially relevant for assign-
ments (Cabalar et al. 2016). Intuitively, an assignment of the
form x := s is a directional construct meaning that variable x
takes the value of term s.

Definition 5 (Assignment) Given a variable x ∈ X and a
term s ∈ T an assignment is an expression of the form x := s
and stands for the formula

x = s ← def (s) (11)

Recall that, in (Cabalar et al. 2016), assignments were con-
structs where s could only be a linear expression. The intro-
duction of terms allows us to generalize the use of assign-
ments to arbitrary terms which, as we can see in following
sections, includes both linear expressions and aggregates.
The following result provides further intuition relating as-
signments with grounding in ASP.

Theorem 1 Consider a formula of the form

x := s ← ϕ (12)

where x ∈ X is a variable, s ∈ T a constraint term and ϕ a
(sub)formula. Let Γ collect the set of formulas:

x = d ← ϕ ∧ s = d (13)

for every element d ∈ D in the domain. Then, Γ and (12)
have the same κ-models.

In other words, an assignment on the consequent of an impli-
cation stands for (the possibly infinite grounding of) the first
order formula ∀Y (x = Y ← ϕ ∧ s = Y). Of course, the ad-
vantage of assignments consists in the possibility of dele-
gating their evaluation to specialized constraint solvers. For
this, such solvers only need to be able to deal with equality
constraints. This also implies that grounding is not necessary.
Note that, if D is infinite, then so is Γ.

Aggregates as constraint atoms
Aggregates are expressions that represent a function that
groups together a collection of expressions and produces a
single value as output. For instance, the expression

sum {̇ tax (P) : lives(P,R) }̇ (14)

shown in the introduction sums the tax revenue of all per-
sons P that live in some region R. In this section, we restrict
ourselves to ground atoms, that is, atoms that may contain
constraint variables but no logical variables like P andR. We
assume that aggregate atoms with logical variables are a short-
hand for their (possibly infinite) ground instantiation. For
instance, (14) is a shorthand for the infinite expression of the
form sum {̇α1, α2, . . . }̇ where each α1, α2, . . . is a sequence

5

containing a conditional term of the form tax (p) : lives(p, r)
for each pair of domain elements p and r. Intuitively, the
variable lives(p, r) is true when the person p lives in the re-
gion r and the variable tax (p) is assigned the tax revenue
of person p. If p is not a person, tax (p) is undefined, that is,
its assigned value is u. As a simpler example, we have the
following expression

sum {̇ 1:p, 1:q, 2:r }̇ ≥ 2 (15)

which holds if either r holds (regardless of the other variables)
or both p and q hold, otherwise. More generally, we allow
applying aggregates not only to numerical constants, but also
to expressions involving constraint variables. For instance,

sum {̇ x :p, y + z :q }̇ ≥ 2 (16)

holds whenever any of the following conditions hold:
• x ≥ 2 and only p holds,
• y + z ≥ 2 and only q holds, or
• x+ y + z ≥ 2 and both p and q hold.
We also allow aggregate operations that rely on the order of
the elements in the collection. For instance, the aggregate

◦〈“En”, “un”, “lugar”, “de” , “la”, “Mancha”〉 = x (17)

expresses that x is the string resulting from concatenating
all strings occurring between the brackets. That is, it is only
satisfied when the value assigned to x is the string “En un
lugar de la Mancha”.

Formally, an aggregate term is an expression of the form

op〈s1, s2, . . . 〉 (18)

where op is an operation symbol and each si ∈ T is a term.
We say that a term is aggregate-free if it contains no aggregate
terms and, in the following, we assume that each si in (18) is
aggregate-free. A basic aggregate term is an expression of
the form of (18) where each si is a basic term. We reserve the
notation {̇ . . . }̇ for aggregates whose operation is multi-set
based, like sum , and use 〈. . . 〉 in general.

An infinite sequence θ of domain elements 〈d0, d1, . . .〉
can be defined as a mapping θ : (N+ → D) so that θ(i) = di
for all i ≥ 0. Notice that θ may contain repeated occurrences
of the same domain value. We sometimes denote a finite
prefix θ′ = 〈d′0, . . . , d′n−1〉 of length n ≥ 0 and use the
concatenation θ′ · θ to yield an infinite sequence defined as
expected 〈d′0, . . . , d′n−1, d0, d1, . . .〉.

Given each aggregate term like (18), we assume there
exists an associated fixed operation ôp : (N+ → D)→ Du

assigning a domain value d ∈ D (or u) to any infinite se-
quence of domain values. As an example, in the case of the
sum aggregate we get ˆsum〈d1, d2, . . . 〉 =

∑
i≥0 di as ex-

pected. Depending on the domain and the operator, we may
sometimes obtain u as a result. For instance, if D are the
natural numbers and we sum an infinite sequence of 1’s, the
result of ˆsum〈1, 1, 1, . . . 〉 is not a natural number and the
sum would be undefined u. We say that some 0op ∈ D is a
neutral element for op if for all infinite sequence θ and any
finite prefix θ′ we have ôp(θ′ · 0op · θ) = ôp(θ′ · θ). Without

loss of generality, we restrict ourselves to operations op that
have a neutral element. Otherwise, we can always build an
equivalent function with neutral element by adding a new
element to the domain.
Definition 6 (Evaluation of a basic aggregate term) We
define the evaluation v(A) of a basic aggregate term A
like (18) with respect to a valuation v as

v(A) def=

{
ôp(θA) if v(si) 6= u for all i ≥ 1

u otherwise
(19)

where θA : N+ → D is a function mapping each positive
integer i ∈ N+ to the value v(si).

An aggregate atom (or aggregate for short) is an expres-
sion of the form A ≺ s0 where A is an aggregate term, ≺ is
a relation symbol and s0 is a basic term. We associate the
symbol ≺ with some relation ≺̂ ⊆ D ×D among elements
of the domain. The denotation of a basic aggregate atom is
then defined as

JA ≺ s0 K def= {v ∈ V | v(A) ≺̂ v(s0)}
In particular, note that ≺ can be the equality symbol. The
semantics of conditional aggregates follows directly from the
evaluation of conditions introduced in the previous section.

The following result shows how the evaluation of terms
introduced in Definition 4 applies to the particular case of
aggregate terms.
Proposition 8 (Evaluation of an aggregate term) We de-
fine the evaluation of an aggregate term A possibly contain-
ing conditional terms, with respect to some valuation v ∈ V ,
some interpretation 〈h, t〉 and a selection function κ, as

vκ〈h,t〉(A) def=

{
ôp(θκA,〈h,t〉) if vκ〈h,t〉(si) 6= u for all i ≥ 1

u otherwise

where θκA,〈h,t〉 : N+ → D is a function mapping each posi-
tive integer i ∈ N+ to the value vκ〈h,t〉(si).

Corollary 2 Given an aggregate term A (possibly with con-
ditional terms), a valuation v ∈ V , some interpretation 〈h, t〉
and a selection function κ, we have:
〈h, t〉 |= A ≺ s0 iff vκ〈v,t〉(A) ≺̂ vκ〈v,t〉(s0) for v ∈ {h, t}.
Using neutral elements, we can consider finite aggregates

as abbreviations for infinite ones. That is, a finite constraint
term of the form

op〈s1, s2, . . . , sn〉 (20)

is an abbreviation for the infinite term

op〈s1, s2, . . . , sn, 0op , 0op , . . . 〉 (21)

Treating finite aggregates as an abbreviation allows us to
deal with a unique construct for any number of elements and,
thus, ensure that aggregate terms with different number of
elements are treated in an uniform way.

We also adopt some further conventions for multi-set based
aggregates that reflect the syntax of ASP solvers. In particular,
a multi-set aggregate term is an expression of the form

op{̇τ1, τ2, . . . }̇ (22)

6

where each τi is either a basic term or an expression of the
form s′i : ϕi with s′i a basic term and ϕi a basic formula.
Such an expression is understood as an abbreviation for an
aggregate term of the form of (18) where each si is as follows:

1. si = (τi|0op : def (τi)) if τi is a basic term, and
2. si = (s′i|0op : def (s′i) ∧ ϕi) otherwise.

This allows us to capture the behavior of modern ASP
solvers. For instance, the solver clingo removes elements that
are undefined from the sum aggregate and a return value can
still be obtained. Now, the semantics of (15) and (16) can be
formalized by defining the following function

ˆsum(θ) def=
∑
{ θ(i) | i ∈ N+ and θ(i) ∈ Z } (23)

where θ : N+ → D is a family of domain elements. For ≤,
we take the usual meaning. Obviously, the neutral element
of sum is 0sum = 0. Note that combining this definition
with (19), we get that the sum of an aggregate term is unde-
fined if any of its elements is undefined, otherwise, we get
the sum of all integers in the sequence.

Let us illustrate the behavior of aggregates in our setting
taking (15) as an example. Note that, following our conven-
tion, (15) is a short hand for the atom5

sum〈 (1|0: p), (1|0: q), (2|0: r), 0, 0, . . . 〉 ≥ 2 (24)

We see that if p, q, r hold in some interpretation, then the left
hand side of the inequality evaluates to

∑
{1, 1, 2} = 4 and,

the inequality is satisfied. On the other hand, if only p, q hold,
we get

∑
{1, 1} = 2 and the inequality is not satisfied. As

another example, while evaluating the aggregate term

sum{2, 5, “hello world”, 7} (25)

the string “hello world” is ignored and the result is just 14.
Beyond arithmetic aggregates, we may also have expres-

sions like (17), which deal with strings. We define 0◦ as the
empty string and ◦̂(θ) as the string θ(1) θ(2) . . . resulting
of concatenating all strings in θ.

Aggregates as conditional linear constraints
One important difference between the understanding of ag-
gregates used in this paper and the one studied in (Cabalar et
al. 2020) is that the latter directly considers aggregates as ab-
breviations for conditional linear constraints. This viewpoint
is interesting because it allows the use of off-the-shelf CASP
solvers to compute aggregates with constraint variables. On
the downside, this approach has two drawbacks. First, it is
quite different from the usual definition of aggregates in the
ASP literature, which makes it difficult to relate to existing
approaches in standard (non-constraint) ASP. Second, it is
more restrictive as it only permits a particular class of ag-
gregates, namely those using the operation functions sum,
count, max and min.

The definition we provide in the previous section solves
these two issues, but leaves us with the question whether we
can use off-the-shelf CASP solver to compute aggregates.
In this section, we show that it is possible to translate sum

5We dropped the tautologies def (1) and def (2).

aggregates into conditional linear constraints. Thus, affirma-
tively answering the above question for the vc-semantics.
In the next section, we extend this result to an interesting
class of theories under the df -semantics. Aggregates with
operations count, max and min can be mapped to sum
ones (Alviano, Faber, and Gebser 2015).

We start by reviewing the definition of conditional lin-
ear constraints from (Cabalar et al. 2020), but incorporat-
ing our notion of term. A product term is either an inte-
ger d ∈ Z, a variable x ∈ X or an expression of the form d · x
where d ∈ Z is a domain element and x ∈ X is a variable. A
finite basic linear term is either a product term or an expres-
sion of the form s1 + . . .+ sn where each si is a product
term. A linear term is an expression of s1 + s2 + . . . where
each si is either a finite basic linear term or a conditional
term of the form (s′i|s′′i :ϕi) with s′i and s′′i finite basic lin-
ear terms and ϕi a basic formula. A linear constraint is a
comparison of the forms α ≤ β, α < β, α = β or α 6= β for
linear terms α and β. As usual, we write α ≥ β and α > β
to stand for β ≤ α and β < α, respectively.

We adopt some usual abbreviations. We directly replace
the ‘+’ symbol by (binary) ‘−’ for negative constants and,
when clear from the context, omit the ‘·’ symbol and parenthe-
ses. We do not remove parentheses around conditional expres-
sions. As an example, the expression−x+ (3y|2y:ϕ) − 2z
stands for (−1) · x+ (3 · y|2 · y:ϕ) + (−2) · z. Other abbre-
viations must be handled with care. In particular, we neither
remove products of form 0 · x nor replace them by 0 (this is
because x may be undefined, making the product undefined).

In the rest of the paper, we assume that all integers are
part of the domain, that is, Z ⊆ D. Given a valuation v, the
semantics of basic linear constraints is defined inductively.

v(d · x) def=

{
d · v(x) if v(x) ∈ Z
u otherwise

v(s1 + s2 + . . .) def=

d if ∀i ≥ 1, v(si) ∈ Z

and
∑
i≥1 v(si) = d ∈ D

u otherwise

The denotation of a basic linear constraint α ≺ β is given by
Jα ≺ β K def= {v | v(α), v(β) ∈ Z, v(α) ≺ v(β)}

with ≺ a relation symbol among ≤, <, = and 6=. In
particular, given a linear constraint of the form α ≤ d
with α = d1 · x1 + · · ·+ dn · xn, we have v ∈ Jα ≤ d K iff
v(xi) 6= u for all 1 ≤ i ≤ n and d ≥

∑
1≤i≤n di · v(xi).

The semantics of conditional linear constraints is imme-
diately obtained by applying the corresponding evaluation
functions. The following results show how the valuation func-
tion vκ〈h,t〉 applies to (conditional) linear terms; and how to
use this for evaluating (conditional) linear constraints.
Proposition 9 (Linear term evaluation) Let v ∈ V be a
valuation, 〈h, t〉 be an interpretation and α = s1 + s2 + . . .
be a linear term (possibly containing conditional terms).
Then,

vκ〈h,t〉(α) =

d if ∀i ≥ 1, vκ〈h,t〉(si) ∈ Z

and
∑
i≥1 v

κ
〈h,t〉(si) = d ∈ D

u otherwise

7

Corollary 3 Given an interpretation 〈h, t〉 and a linear con-
straint α ≺ β (possibly containing conditional terms), we get:
〈h, t〉 |=κ α≺β iff vκ〈v,t〉(α) ≺ vκ〈v,t〉(β) for both v ∈ {h, t}.

The following result shows some interesting equivalences.
Proposition 10 Given an interpretation 〈h, t〉 and linear
terms α and β the following equivalences hold:

1. 〈h, t〉 |=κ α = β iff 〈h, t〉 |=κ α ≤ β ∧ α ≥ β,
2. 〈h, t〉 |=κ α < β iff 〈h, t〉 |=κ α ≤ β ∧ α 6= β,
3. 〈h, t〉 |=vc α < β iff 〈h, t〉 |=vc α ≤ β ∧ ¬(α ≥ β),
4. 〈h, t〉 |=vc α 6= β iff 〈h, t〉 |=vc α < β ∨ α > β.
We see that with the vc-semantics, we can define all arith-
metic relations in terms of ≤, while we need ≤ and 6= for
the df -semantics. To see that the third equivalence does
not hold for the df -semantics, take the interpretation 〈h, t〉
with h(x) = u and t(x) = 1 and the atom

(0|1:x = 1) < 1 (26)

Then, with α being the linear term on the left hand side
of (26), we get that 〈h, t〉 |=df (α ≤ 1) ∧ ¬(α ≥ 1) holds
despite of 〈h, t〉 6|=df (α < 1). Similarly, for the last equiva-
lence take the same interpretation 〈h, t〉 and the constraint

(0|1:x = 1) 6= (1|0:x = 1) (27)

Then, with α and β being the linear terms on the left and right
hand side of (27), respectively, we get 〈h, t〉 |=df (α 6= β)
despite of 〈h, t〉 6|=df (α < β) ∨ (α > β).

Let us now show how sum aggregates can be translated
into conditional linear constraints. First, we introduce a new
constraint atom int(s) whose intuitive meaning is that term s
is an integer and whose denotation is given as follows:

J int(s) K def=
⋃{

J s = d K | d ∈ Z
}

Definition 7 (Aggregate to linear term) Given an aggre-
gate term A of the form (22) with op = sum , we associate
the linear term π(A) def= π(τ1) + π(τ2) + . . . where π(τi) is
defined as follows:

1. π(τi)
def= (τi|0: int(τi)) if τi is a finite basic linear term,

2. π(τi)
def= (si|0: int(si) ∧ ϕi) if τi is of the form si : ϕi.

For a theory Γ, we define π(Γ) as the result of recursively
replacing each aggregate term A by π(A) in Γ.

Furthermore, for a selection function κ, we define the
selection function π(κ) given as follows:

1. π(κ)(s) = κ(s) for every occurrence of conditional term s
not occurring in any aggregate term A,

2. π(κ)(π(s)) = κ(s) for every occurrence of conditional
term s occurring in some aggregate term A.

Theorem 2 For any theory Γ, the κ-(stable) models of Γ and
π(κ)-(stable) models of π(Γ) coincide.

This means that we can use the techniques developed in (Ca-
balar et al. 2020) to compute the stable models of theories
with aggregate under the vc-semantics.

For instance, (16) becomes the linear constraint

(x|0: int(x) ∧ p) + (z + y|0: int(z + y) ∧ q) ≥ 2

which holds under the same conditions as (16) does. As
a further example, the aggregate term (25) is translated as
the linear constraint π(2)+π(5)+π(“hello world”)+π(7).
For any integer n, we get that π(n) = (n|0: int(n)) is
simply equivalent to n because int(n) is a tautology. On
the other hand, π(“hello world”) is equivalent to 0 be-
cause int(“hello world”) is a contradiction. Hence, we get
π(2) + π(5) + π(“hello world”) + π(7) = 2 + 5 + 7 = 14.

Logic programs
We focus now on a restricted syntax corresponding to logic
programs and show that, for stratified occurrences of condi-
tional terms, we can safely exchange vc and df -semantics. A
literal is either a constraint atom c ∈ C or the negation ¬c
of one. A rule is a formula of the form H ← B where H
is a either an assignment or a disjunction of literals and B
is a conjunction of literals called the rule’s head and body,
respectively. A theory consisting exclusively of rules is called
a (logic) program. Further, we adopt the following conven-
tions. For any rule r of form H ← B we let H (r) and B(r)
stand for the set of all literals occurring in H and B, re-
spectively. If H is an assignment x := s, we assume that B
contains additionally def (s). We denote the set of positive
and negative literals in H (r) by H+(r) def= H (r) ∩ C and
H−(r) def= H (r) \H+(r). We also define varsa(c) def= {x}
if c is an assignment x := s and varsa(c) def= vars(c) if c is a
constraint atom. Intuitively, varsa(c) designates all variables
assigned by atom c : Only the assigned variable is defined by
an assignment and all variables in a constraint atom.

Definition 8 (Conditional term stratification) A program
Π is said to be stratified on (an occurrence of) a conditional
term s = (s′|s′′:ϕ), if there is a level mapping ` : X −→ N
satisfying the following conditions for every rule r ∈ Π:

1. `(x) ≥ `(y) for all variables x ∈ varsa(H+(r)) and
y ∈ vars(H−(r) ∪ B(r)),

2. `(x) = `(y) for all variables x, y ∈ varsa(H+(r))

plus the following condition for the rule r where s occurs

1. `(x) > `(y) for all x ∈ varsa(H+(r)) and y ∈ var(ϕ).

A program Π is stratified if it is stratified on all occurrences
of conditional terms not occurring in the scope of negation.

Given selection functions κ, κ′ and a distinguished occur-
rence of some conditional term s, we denote by κ[s ← [κ′]
the selection functionobtained from κ by replacing the result
assigned to s by the one that κ′ assigns to it.

Theorem 3 Let Π be a program stratified on some occur-
rence of a conditional term s and κ and κ′ be two selection
functions. Let κ′′ = κ[s ← [κ′]. Then, the κ-stable models
and the κ′′-stable models of Π coincide.

Theorem 4 For a stratified program, its κ- and κ′-stable
models coincide for any pair of selection functions κ and κ′.

This means that, for stratified programs, we can use the trans-
lation from (Cabalar et al. 2020) to rely on off-the-shelf
CASP solvers to compute not only the vc-stable models but
also the df -stable models. Furthermore, as our concept of

8

stratification and the translation pertain to distinguished oc-
currences of conditional terms, it is possible to partially trans-
late non-stratified programs for stratified occurrences.

The proof of Theorem 3 relies on the notions of supported
models and splitting sets that we lift from standard ASP to
programs with conditional constraints atoms, as stated below.
For clarity, we abuse notation and let H−(r) and B(r) stand
for formulas

∨
H−(r) and

∧
B(r), respectively.

Definition 9 (Supported models) A variable x ∈ X is sup-
ported wrt a program Π and a valuation v, if there is a
rule r ∈ Π and a constraint atom c ∈ H+(r) satisfying the
following conditions:

1. x ∈ varsa(c),
2. v 6|=κ c

′ for every c′ ∈ H+(r) such that x /∈ varsa(c′),
3. v |=κ B(r) and v 6|=κ H−(r).
A model v of a program Π is supported if every variable that
is not undefined is supported wrt. Π and v.

Proposition 11 Any stable model of a program is supported.

Definition 10 (Splitting) A set of variables U ⊆ X is a
splitting set of a program Π, if for any rule r in Π one of the
following conditions holds:

1. vars(r) ⊆ U ,
2. varsa(H+(r)) ∩ U = ∅
We define a splitting of Π as a pair 〈BU (Π), TU (Π)〉 satisfy-
ing BU (Π) ∩ TU (Π) = ∅, BU (Π) ∪ TU (Π) = Π, all rules
in BU (Π) satisfy 1. and all rules in TU (Π) satisfy 2.

Given a program Π, a splitting set U of Π and a valuation v,
we denote by EU (Π, v) the program obtained by replac-
ing each variable x ∈ U in TU (Π) by v(x). We denote by
U def= X \ U the complement of U .
Proposition 12 Given program Π with splitting set U ⊆ X ,
a valuation v is a stable model of Π iff v|U is a stable model
of BU (Π) and v|U is a stable model of EU (Π, v|U).

A generalization of Ferraris’ semantics
In this section, we show that, when restricted to df -semantics,
our approach amounts to a conservative extension of the
reduct-based semantics introduced by Ferraris (2011). Under
that approach, a classical interpretation is a stable model
of a formula if it is a subset minimal classical model of
the reduct wrt that interpretation. The reduct of a formula
wrt an interpretation is obtained by replacing all maximum
subformulas not classically satisfied by the interpretation by
⊥. We now adapt those notions to HTC .

Given a denotation J · K, a valuation t classically satisfies a
formula ϕ, written t |=cl ϕ, if the following conditions hold:

1. t 6|=cl ⊥
2. t |=cl c if t ∈ J eval t(c) K
3. t |=cl ϕ ∧ ψ if t |=cl ϕ and t |=cl ψ

4. t |=cl ϕ ∨ ψ if t |=cl ϕ or t |=cl ψ

5. t |=cl ϕ→ ψ if t 6|=cl ϕ or t |=cl ψ

We say that a valuation v is a classical model of theory Γ
when v |=cl ϕ for all formulas ϕ ∈ Γ.

Observation 3 For any interpretation 〈t, t〉, formula ϕ and
selection function κ, we have 〈t, t〉 |=κ ϕ iff t |=cl ϕ

Definition 11 (Reduct) The reduct of a formula ϕ wrt an
interpretation t, written ϕt, is defined as the expression:
• ⊥ if t 6|=cl ϕ for any formula ϕ,
• c[st1, st2, . . .] if t |=cl c[s1, s2, . . .] for any constraint

atom c ∈ C where s1, s2, . . . are all conditional terms in c
and sti

def= (s|s′:ϕt) for each si = (s|s′:ϕ).
• ϕt1 ⊗ ϕt2 if t |=cl ϕ1 ⊗ ϕ2 with ⊗ ∈ {∧,∨,→}
The reduct of a theory Γ is defined as Γt def= {ϕt | ϕ ∈ Γ}.
A valuation v is called a F -stable model of Γ iff it is a
⊆-minimal model of Γt.

An aggregate atom of the form of

op〈 (s1|0op :ϕ1), (s2|0op :ϕ2), . . . 〉 ≺ s0 (28)

can be seen as a generalization of aggregate atoms as defined
in (Ferraris 2011) in three ways. First, it permits applying the
operation op to both finite or infinite collections of elements.
Second, it allows operations op that may or may not depend
on the order of the elements in the collection. And third,
and more important for our purposes, it allows each si to be
any expression involving constraint variables rather than just
numbers. The following result shows that the application of
our reduct to an aggregate of the form of (28) produces a
straightforward generalization of Ferraris’ reduct.
Proposition 13 Given an aggregate A of the form (28) and
a valuation t, it follows that

At=

{
⊥ if t 6|= c

op〈(s1|0op :ϕt1), (s2|0op :ϕt2), . . . 〉 ≺ s0 otherwise

Let us now enunciate the main result of this section.
Theorem 5 A valuation is a df -stable model of a theory Γ
iff it is an F -stable model of Γ.

Discussion
HTC is a logic for capturing non-monotonic constraint theo-
ries that permits assigning default values to constraint vari-
ables. Since ASP is a special case of this logic, it provides a
uniform framework for integrating ASP and CP on the same
semantic footing. We elaborate on this logic by incorporating
constraint terms. A notion that allows us to treat linear con-
straints, conditional expressions and aggregates in a uniform
way. In particular, this allows us to introduce assignments
for aggregate expressions. We also present a new semantics
for conditional expressions in which their result is always
defined (df) and show that, when combined with an appro-
priate definition of aggregates, it leads to a generalization of
the semantics by Ferraris (2011). Recall that this semantics
is the foundation for aggregates in the system clingo.

Interestingly, for programs stratified on aggregates, we can
translate aggregates using the df principle into conditional
constraints under the vicious circle principle. Then, we can
leverage our previous results and translate these constructs
into the language of CASP solvers. As a reminder, the frag-
ment covered by the ASP Core 2 semantics (Calimeri et al.
2012) only allows for stratified aggregates.

9

Ongoing work is directed towards an implementation of a
hybrid variant of clingo based on the framework developed
here. For solving programs with non-stratified aggregates, we
are looking into extending the notions of unfounded-sets (Van
Gelder, Ross, and Schlipf 1991) and loop formulas (Lin and
Zhao 2004) to programs with constraint variables.

References
Alviano, M.; Faber, W.; and Gebser, M. 2015. Rewriting
recursive aggregates in answer set programming: Back to
monotonicity. Theory and Practice of Logic Programming
15(4-5):559–573.
Cabalar, P.; Kaminski, R.; Ostrowski, M.; and Schaub, T.
2016. An ASP semantics for default reasoning with con-
straints. In Kambhampati, R., ed., Proceedings of the Twenty-
fifth International Joint Conference on Artificial Intelligence
(IJCAI’16), 1015–1021. IJCAI/AAAI Press.
Cabalar, P.; Fandinno, J.; Fariñas del Cerro, L.; and Pearce,
D. 2018. Functional ASP with intensional sets: Application
to Gelfond-Zhang aggregates. Theory and Practice of Logic
Programming 18(3-4):390–405.
Cabalar, P.; Fandinno, J.; Schaub, T.; and Wanko, P. 2020.
An asp semantics for constraints involving conditional ag-
gregates. In Proceedings of the Twenty-fourth European
Conference on Artificial Intelligence (ECAI’20), to appear.
Calimeri, F.; Faber, W.; Gebser, M.; Ianni, G.; Kaminski, R.;
Krennwallner, T.; Leone, N.; Ricca, F.; and Schaub, T. 2012.
ASP-Core-2: Input language format.
Ferraris, P. 2011. Logic programs with propositional connec-
tives and aggregates. ACM Transactions on Computational
Logic 12(4):25.
Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2019. Multi-shot ASP solving with clingo. Theory and
Practice of Logic Programming 19(1):27–82.
Gelfond, M., and Zhang, Y. 2019. Vicious circle principle,
aggregates, and formation of sets in ASP based languages.
Artificial Intelligence 275:28–77.
Lierler, Y. 2014. Relating constraint answer set programming
languages and algorithms. Artificial Intelligence 207:1–22.
Lifschitz, V. 2008. What is answer set programming? In Fox,
D., and Gomes, C., eds., Proceedings of the Twenty-third
National Conference on Artificial Intelligence (AAAI’08),
1594–1597. AAAI Press.
Lin, F., and Zhao, Y. 2004. ASSAT: computing answer sets
of a logic program by SAT solvers. Artificial Intelligence
157(1-2):115–137.
Nieuwenhuis, R.; Oliveras, A.; and Tinelli, C. 2006. Solv-
ing SAT and SAT modulo theories: From an abstract Davis-
Putnam-Logemann-Loveland procedure to DPLL(T). Jour-
nal of the ACM 53(6):937–977.
Van Gelder, A.; Ross, K.; and Schlipf, J. 1991. The well-
founded semantics for general logic programs. Journal of the
ACM 38(3):620–650.

10

