
A Complete Planner for Temporal
Answer Set Programming?

Pedro Cabalar, Manuel Rey and Concepción Vidal

Department of Computer Science
University of Corunna, SPAIN

{cabalar,j.manuel.rey,concepcion.vidalm}@udc.es

Abstract. In this paper we present tasplan, a complete planner for
temporal logic programs. The planner receives a planning specification as
input, having the form of a temporal ASP program, and obtains as output
one or several alternative (shortest) plans, if the problem is solvable,
or answers that no solution exists, otherwise. The tool allows different
search strategies, including informed search algorithms if the user defines
a domain-dependent heuristics with additional program rules.

1 Introduction

The paradigm Answer Set Programming (ASP [12, 11]) has become a popular
approach for practical Knowledge Representation and problem solving thanks to
its simple semantics based on stable models [9], the availability of efficient solvers
and their application in a wide spectrum of diverse domains [7]. Although the
ASP modelling language and its associated solvers are designed for static com-
binatorial search problems, many ASP applications require handling a dynamic
component, normally, dealing with transition systems over discrete time. An ex-
tension of ASP for temporal reasoning was proposed with the introduction of
Temporal Equilibrium Logic (TEL) [4, 1], a combination of Equilibrium Logic [13]
(the logical characterisation of stable models) with the usual modal temporal op-
erators from Linear-time Temporal Logic (LTL [10, 14]). The first tools for TEL
inference were based on model checking [2] and automata transformation meth-
ods [5]. Although these implementations were convenient for studying system
properties or strong equivalence under the assumption of infinite traces, they
were highly inefficient for solving planning problems. A more practical orienta-
tion came with the recent definition of TEL for finite traces [6]. This led to the
implementation of system telingo [3], a temporal extension of the popular ASP
solver clingo that relies on the same incremental solving strategy for finding
the shortest plan in an efficient way.

The usual strategy in ASP planning is based on an iterative deepening search,
incrementally increasing the length n of the searched plan until a solution is
found [8]. This kind of planners are obviously incomplete: when the problem

? This work was partially supported by MINECO, Spain, grant TIC2017-84453-P,
Xunta de Galicia, Spain (GPC ED431B 2019/03 and 2016-2019 ED431G/01, CITIC)

has no solution, the planner is trapped in an infinite loop, trying new values for
n indefinitely1. On the other hand, the model checking tools [2, 5] mentioned
before can detect non-existence of a plan, but they are not tailored for planning
problems and result rather inefficient.

In this paper, we describe tasplan2, a complete planner for temporal logic
programs. tasplan receives a temporal logic program as an input. This temporal
program describes the fluents that configure the states of the system, the actions
that can be executed and the restrictions that have to be fulfilled. It will also
determine the behaviour of the state transition system, the initial state and
the goal state to be reached. The output will consist of one or several plans
(sequences of actions) or the answer that there is no possible plan, so tasplan

is the first complete planner for ASP. The strategy followed by tasplan consists
in a classical search algorithm (we follow the pseudocode in [15]) maintaining a
hash table and a fringe containing the next states to be explored (reaching an
empty fringe is a guarantee that there exists no solution). The main distinctive
feature in our search algorithm is that the generation of successor states relies
on multiple calls to clingo3 that is kept running in the background and is
used through its Python API. Finally, tasplan can use different (uninformed
and informed) search algorithms that can be selected through the command
line call. Informed search incorporates the possibility of specifying a heuristic
function that can be used to prune the search, when the planning problem is
solvable. This heuristic is included in the specification of the problem as one
more regular rule, something that provides a natural and declarative method for
defining different heuristics.

2 Architecture

The proposed architecture (see Figure 1) has the form of a pipeline: tasplan
receives as input a file with the specification of the problem to solve, which
must be written in ASP. The problem formalisation must be fragmented in five
#program blocks named as types(t), static, initial, dynamic and final(t).
The input file is grounded using tool gringo to obtain a ground program. No
further grounding will be required afterwards. In order to avoid that the grounder
makes assumptions on dynamic atoms (representing actions and fluents), for
instance, assuming that non-occurring actions are false, we precede those atoms
by the grounder directive #external. This will let us manipulate the ground
program on the fly, adding and removing (ground) dynamic atoms without the
need of grounding again. After that, the solving module implements the planning
algorithm that explores the state space and decides the existence of a plan. Each
time a non-goal state S is picked from the fringe, the algorithm computes its
possible successor states by a call to clasp on the ground program extended

1 An interesting topic for future study would be determining integer bounds for the
required number of steps n to obtain a plan.

2 https://github.com/jmanuelrey/T-ASPlan/
3 Systems clingo, gringo and clasp are available at https://potassco.org.

2

Fig. 1. tasplan architecture based on “Pipe and filter”.

with the facts corresponding to S. The possible successor states are obtained as
the multiple stable models. This process is repeated as many times as transition
computations needed by the search algorithm. If any successor state matches
with the goal specified in the problem formalisation, the solver ends, and the
goal is passed to the last module. Otherwise, if tasplan explores the complete
state space and no new state is generated, the tool determines the non existence
of plan. The post-processing module prepares the data so it can be printed in a
comfortable way for the user.

To conclude this section, we show in Figure 2 an example of input specifi-
cation for tasplan. The program represents the well-known 8-puzzle problem,
where a grid of 3 × 3 cells contains 8 tiles (from 1 to 8) and a hole (represented by
0). The possible actions are moving an adjacent tile to the hole, creating a new
hole in its previous position. We assume some familiarity with clingo language.
The time instant is represented here by the constant terms t and t-1. Perhaps
the most relevant feature is the special predicate heuristics(N,t) that is used
to specify a domain-specific heuristic function N for each state at time point t.
In this particular case, the heuristics corresponds to the Manhattan distance of
each tile to its goal position, and uses a #sum aggregate for all tiles.

3

#program types(t).

action(move(X,t)) :- dir(X).

fluent(pos(X,Y,Z,t)) :- tile(X), row(Y), col(Z).

fluent(goal(t)).

#program static.

row(1..3).

col(1..3).

tile(0..8).

cell(X,Y) :- row(X), col(Y).

% goal state

goalpos(1,1,1). goalpos(2,1,2). goalpos(3,1,3).

goalpos(4,2,1). goalpos(5,2,2). goalpos(6,2,3).

goalpos(7,3,1). goalpos(8,3,2). goalpos(0,3,3).

dir(up;down;right;left).

adj(X,Y,up, X-1,Y) :- row(X),row(X-1),col(Y).

adj(X,Y,down, X+1,Y) :- row(X),row(X+1),col(Y).

adj(X,Y,left, X,Y-1) :- row(X),col(Y-1),col(Y).

adj(X,Y,right,X,Y+1) :- row(X),col(Y+1),col(Y).

#program initial.

pos(8,1,1,0). pos(6,1,2,0). pos(7,1,3,0).

pos(2,2,1,0). pos(5,2,2,0). pos(4,2,3,0).

pos(3,3,1,0). pos(0,3,2,0). pos(1,3,3,0).

#program dynamic(t).

% Manhattan heuristic

heuristics(N,t) :- N = #sum{ M,F : tile(F), F!=0, pos(F,X,Y,t),

goalpos(F,X2,Y2), M=|X-X2|+|Y-Y2|}.

1 {move(D,t) : dir(D)} 1.

pos(0,Z,T,t) :- move(D,t), pos(0,X,Y,t-1), adj(X,Y,D,Z,T).

pos(P,X,Y,t) :- move(D,t), pos(0,X,Y,t-1), adj(X,Y,D,Z,T),

pos(P,Z,T,t-1).

% Inertia

pos(P,Z,T,t) :- pos(P,Z,T,t-1), not -pos(P,Z,T,t).

-pos(P,Z,T,t) :- pos(P,X,Y,t), (X,Y)!=(Z,T), row(Z), col(T).

#program final(t).

goal(t) :- #count{X,Y: pos(P,X,Y,t), not goalpos(P,X,Y)} = 0.

Fig. 2. Encoding of an instance of the 8-puzzle problem in tasplan input language.

4

Table 1. Time measurements for different scenarios of 8-puzzle.

Plan length tasplan (A∗) tasplan (breadth) telingo

5 0.044s 0.409s 0.024s

9 0.068s 2.575s 0.036s

12 0.108s 13.809s 0.104s

15 0.634s 75.154s 0.282s

17 1.259s 143.978s 0.865s

20 3.615s 289.900s 0.868s

25 17.732s 551.520s 12.341s

28 47.271s 860.446s 44.203s

30 49.485s 951.516s 64.537s

31 155.139s 1326.927s 187.962s

∞ 1438.047s 2294.307s ∞

3 Evaluation

We have performed a preliminary evaluation of tasplan efficiency in compari-
son to the incremental solving strategy. Table 1 shows the time results obtained
for different instances of the classical 8-puzzle problem. The measurements have
been taken on a computer with seven Intel c© Xeon c© E5504 processors with 4M
cache, 2 GHz processor frequency, 4.80 GT/s, 4 Intel c© QPI Core CPUs, 16 GB
RAM, and 3TB of external storage. Each instance has been classified by the
length (number of steps) of the shortest plan. This is represented in the leftmost
column: the last line, with value ∞, corresponds to a scenario with no solution.
The time values are organised in three columns: the first one corresponds to
tasplan with an A∗ algorithm (using Manhattan distance as heuristics), the
second is tasplan using an uninformed breadth search and the third one is the
result of telingo with an analogous encoding (telingo does not allow heuristics
specification). As we can see, telingo does not (and cannot) provide an answer
to the last (unsolvable) scenario, whereas both versions of tasplan allow even-
tually deciding that there is no possible solution. In the rest of cases, telingo
is clearly faster than breadth search in tasplan. When we allow domain spe-
cific heuristics, however, tasplan with A∗ has a similar performance to telingo

and is even slightly better for longer plans. This comparison is not completely
fair, in the sense that telingo does not use domain specific heuristics like the
Manhattan distance. However, the truth is that the addition of such informa-
tion to telingo could not be exploited anyway due to its iterative deepening
strategy. This preliminary experiment shows the potential interest of exploiting
user-defined domain heuristics for ASP planning.

4 Final conclusions

We have presented tasplan, a complete planner for temporal Answer Set Pro-
gramming. For a temporal logic program specifying a planning scenario, tasplan

5

is capable of deciding the non-existence of a plan when the problem is unsolv-
able, outperforming previous tools based on model checking. When the problem
has a plan, tasplan is still slower than current ASP incremental solvers, but its
performance is comparable if we allow the introduction of domain specific heuris-
tics, that can be exploited using standard informed search algorithms such as
A∗. For future work, we plan to modify the tasplan input language to accept
telingo logic programs, so that both planners can be applied on the same spec-
ification. We also plan to study automated computation of domain-independent
heuristics.

References

1. Aguado, F., Cabalar, P., Diéguez, M., Pérez, G., Vidal, C.: Temporal equilibrium
logic: a survey. Journal of Applied Non-Classical Logics 23(1-2), 2–24 (2013)

2. Cabalar, P., Diéguez, M.: STELP - a tool for temporal answer set programming.
In: LPNMR’11. Lecture Notes in Computer Science, vol. 6645, pp. 370–375 (2011)

3. Cabalar, P., Kaminski, R., Morkisch, P., Schaub, T.: telingo = ASP + Time.
In: Proc. of the 15th International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR’19) (2019)

4. Cabalar, P., Perez, G.: Temporal Equilibrium Logic: A First Approach. In: Pro-
ceedings of the 11th International Conference on Computer Aided Systems Theory
(EUROCAST’07). pp. 241–248 (2007)

5. Cabalar, P., Diéguez, M.: Strong equivalence of non-monotonic temporal theories.
In: Proceedings of the 14th International Conference on Principles of Knowledge
Representation and Reasoning (KR’14). Vienna, Austria (2014)

6. Cabalar, P., Kaminski, R., Schaub, T., Schuhmann, A.: Temporal answer set pro-
gramming on finite traces. TPLP 18(3-4), 406–420 (2018)

7. Erdem, E., Gelfond, M., Leone, N.: Applications of answer set programming. AI
Magazine 37(3), 53–68 (2016)

8. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider,
M.T.: Potassco: The potsdam answer set solving collection. AI Commun. 24(2),
107–124 (2011)

9. Gelfond, M., Lifschitz, V.: The Stable Model Semantics For Logic Programming.
In: Proc. of the 5th International Conference on Logic Programming (ICLP’88).
pp. 1070–1080. Seattle, Washington (1988)

10. Kamp, H.: Tense Logic and the Theory of Linear Order. Ph.D. thesis, UCLA (1968)
11. Marek, V., Truszczyński, M.: Stable models and an alternative logic programming

paradigm, pp. 169–181. Springer-Verlag (1999)
12. Niemelä, I.: Logic Programs with Stable Model Semantics as a Constraint Pro-

gramming Paradigm. Annals of Mathematics and Artificial Intelligence 25(3-4),
241–273 (1999)

13. Pearce, D.: A New Logical Characterisation of Stable Models and Answer Sets.
In: Proc. of Non-Monotonic Extensions of Logic Programming (NMELP’96). pp.
57–70. Bad Honnef, Germany (1996)

14. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual
Symposium on Foundations of Computer Science. pp. 46–57. SFCS ’77, IEEE Com-
puter Society, Washington, DC, USA (1977)

15. Russell, S.J., Norvig, P.: Artificial Intelligence - A Modern Approach (3. internat.
ed.). Pearson Education (2010)

6

