$\begin{array}{c} {\rm MASTER~IN~ARTIFICIAL~INTELLIGENCE~(UDC~-~USC~-~UVigo)} \\ {\bf REASONING~AND~PLANNING~exam.~January~10th,~2025} \end{array}$

Surname:		
First Name:		
from a total the test, use th	ONS This exam covers units 1-6 and is weighted with a max of 100 pt in the whole course (Unit 7 is not covered in the exact energian statement sheet and avoid corrections or unclear max). Completion time = 2 hours.	am and weights 8 pt). For
	EXAM $$	
you check: som	 Opt). Each question has at least one correct answer and its total e incorrect answer = -3pt; all the correct answers = 5pt; only of blank = 0pt. A total negative score in Exercise 1 counts as 0pt. 	correct answers, but not all
1.1) Mark tho	se formulas below that are equivalent to $\neg(p \leftrightarrow q)$ in classical p	propositional logic:
,	e positive logic program P with rules $a := b, c.$ $c := a$. satements about the direct consequences operator T_P .	d. e:-a,b. mark the
	$T_P(\emptyset) = \{ \mathtt{a}, \mathtt{c}, \mathtt{d}, \mathtt{e} \}$	$egin{array}{ccc} T_P(\emptyset) = \{\mathtt{d}\} \end{array}$
	$T_P(\{\mathtt{a},\mathtt{b}\})=\{\mathtt{c},\mathtt{d},\mathtt{e}\}$	
1.3) Given the	e following logic program p :- not q. r. q :- not p, not c	q.
	the reduct with respect to $\{p,q,r\}$ is the program the reduct with respect to $\{p\}$ is the program p . r.	
	the reduct with respect to \emptyset is the program $\boxed{p := not \ q}$.	q :- not p, not q.
	the reduct with respect to $\{r\}$ is the program p . q .	
	the reduct with respect to $\{p,q\}$ is the program $\fbox{\textbf{r.}}$	
of Here-a	q:-not p, not q. used above is actually equivalent to the form and-There (HT), but the latter is not equivalent to $p \vee q$ in that are HT models of $\neg \neg p \vee \neg \neg q$ but not of $p \vee q$.	
	$H = \{p\}, T = \{p\}$ $H = \emptyset, T = \{p, q\}$ $H = \emptyset, T = \{p\}$ $H = \{p, q\}, T = \{q\}$	

	et is D.
digit(19).	
position(15).	
#show ticket/2.	
Exercise 3 (4pt).	The general inertia default can be written in telingo as the pair of rules
#program dynamic	
$h(F,V) := {}^{\prime}h(F,V)$	
c(F) := 'h(F,V),	
Provide a brief expla	anation of their meaning:
Exercise 4 (4pt). S	Suppose we want to solve the Towers of Hanoi problem but using 5 pegs (a,b,c,d,e
and assume we use	action move(P,Q) to move the top disk of peg P to the top of peg Q. Which is th
and assume we use	Suppose we want to solve the Towers of Hanoi problem but using 5 pegs (a,b,c,d,e action move(P,Q) to move the top disk of peg P to the top of peg Q. Which is the of this planning problem?
and assume we use a branching factor of	action move(P,Q) to move the top disk of peg P to the top of peg Q. Which is the of this planning problem?
and assume we use a branching factor of Exercise 5 (4pt).	action move(P,Q) to move the top disk of peg P to the top of peg Q. Which is th
and assume we use a branching factor of Exercise 5 (4pt).	action move(P,Q) to move the top disk of peg P to the top of peg Q. Which is the of this planning problem? Write a formula in Description Logic (DL) that describes the set of foreign (Foreign
and assume we use a branching factor of Exercise 5 (4pt).	action move(P,Q) to move the top disk of peg P to the top of peg Q. Which is the of this planning problem? Write a formula in Description Logic (DL) that describes the set of foreign (Foreign
and assume we use a branching factor of Exercise 5 (4pt).	action move(P,Q) to move the top disk of peg P to the top of peg Q. Which is the of this planning problem? Write a formula in Description Logic (DL) that describes the set of foreign (Foreign
and assume we use a branching factor of Exercise 5 (4pt).	action move(P,Q) to move the top disk of peg P to the top of peg Q. Which is the of this planning problem? Write a formula in Description Logic (DL) that describes the set of foreign (Foreign
and assume we use a branching factor of Exercise 5 (4pt).	action move(P,Q) to move the top disk of peg P to the top of peg Q. Which is the of this planning problem? Write a formula in Description Logic (DL) that describes the set of foreign (Foreign

Exercise 2 (10pt). A lottery ticket in Spain consists of 5 digits, covering the interval from 00000 to 99999. Write an ASP program that generates one answer set per each lottery number that contains one