
MASTER IN ARTIFICIAL INTELLIGENCE (UDC - USC - UVigo)

REASONING AND PLANNING exam. June 17th, 2024

Surname:

First Name:

INSTRUCTIONS This exam covers units 1-6 and is weighted with a maximum of 42 points (pt)
from a total of 100 pt in the whole course (Unit 7 is not covered in the exam and weights 8 pt). For
the test, use the original statement sheet and avoid corrections or unclear marking (ask for a new blank
sheet if needed). Completion time = 2 hours.

— EXAM —

Exercise 1 (20pt). Each question has at least one correct answer and its total score depends on whether
you check: some incorrect answer = -3pt; all the correct answers = 5pt; only correct answers, but not all
= 3pt; leaving blank = 0pt. A total negative score in Exercise 1 counts as 0pt in the rest of the exam.

1.1) Mark those formulas below that are equivalent to p ∨ q → r in classical propositional logic:

� (p→ r) ∧ (q → r)

� (p→ r) ∨ (q → r)

� ¬r → ¬p ∧ ¬q
� ¬(p ∧ q ∧ ¬r)

1.2) The logic program P with rules a :- not c. a :- b c :- b is stratified. Mark the rules below
that, if they were (individually) added to P , they would make the result a non-stratified program.

� c :- a. � b :- a.

� p :- not p. � b :- not a.

1.3) Given the following logic program p :- q. p :- not r. r :- p, not q

� the reduct with respect to {q} is the program p :- q. p :- not r.

� the reduct with respect to ∅ is the program p :- q. p. r :- p.

� the reduct with respect to {r} is the program p :- q. r :- p.

� the reduct with respect to {p, q} is the program

� the reduct with respect to {q} is the program p :- q. p.

1.4) The rule p :- not r. used above corresponds to the implication ¬r → p that is equivalent to p ∨ r
in classical logic, but is strictly stronger in the the logic of Here-and-There (HT). Mark those HT
interpretations that are HT models of ¬r → p but not of p ∨ r.

� H = {p}, T = {p}
� H = ∅, T = ∅
� H = {r}, T = {p, r}
� H = ∅, T = {r}

Explanations for the test

1.1) Let us call α := p ∨ q → r. One way to see why the first formula is equivalent to α is the sequence
of equivalences:

p ∨ q → r ≡ ¬(p ∨ q) ∨ r
≡ (¬p ∧ ¬q) ∨ r
≡ (¬p ∨ r) ∧ (¬q ∨ r)
≡ (p→ r) ∧ (q → r)

The third formula is also equivalent to α because:

p ∨ q → r ≡ ¬(p ∨ q) ∨ r
≡ (¬p ∧ ¬q) ∨ r
≡ (¬p ∧ ¬q) ∨ ¬¬r
≡ ¬(¬r) ∨ (¬p ∧ ¬q)
≡ ¬r → ¬p ∧ ¬q

The second formula (p→ r)∨(q → r) is not equivalent to α. It actually amounts to ¬p∨r∨¬q∨r ≡
¬p∨ r ∨¬q, let us call it β. The interpretation ∅ (all atoms false) does not satisfy β but, in fact, is
a model of α.

Finally, we can see that if we apply De Morgan in the fourth formula we get ¬(p ∧ q ∧ ¬r) ≡
¬p ∨ ¬q ∨ r ≡ β that is, it amounts to the second one, and so, it is not equivalent to α either.

1.2) The program dependence graph is:
a **

− ''

b

c

HH

• Adding c :- a creates a loop between c and a that has a negative edge, so the program
becomes non-stratified.

• Adding c :- a creates a loop c and a, but there is no negative edge in the loop, so the program
remains stratified.

• Adding p :- not p to any program creates a negative loop p to itself. Any program that
contains this rule immediately becomes non-stratified.

• Adding b :- not a creates a loop b and a, and the new dependence is negative, so the program
becomes non-stratified.

1.3) Answer number 1 is incorrect: the program reduct never contains a negation (all not’s are removed).
On the other hand, any positive rule is preserved untouched in the reduct: this applies to the first
rule p :- q, that must always be present in all reduct programs, so answer 4 is also incorrect. The
other three answers are correct.

1.4) We look for models of ¬r → p that are countermodels of p∨ r. To be a model of p∨ r we need that
either p or r are “proved”, that is, belong to H. Thus, answers 1 and 3 are models of p ∨ r and
so, they are disregarded (we look for countermodels). Answer number 2 is not a model of ¬r → p:
this is because proving negation only requires checking T 6|= r. So ¬r is proved and the implication
would require p to be proved, but we have p 6∈ H. Finally, we can see that answer 4 is a model
of ¬r → p simply because the antecedent ¬r is neither proved or assumed (T |= r), and so the
implication does not require anything about p. On the other hand, answer 4 is not a model of p∨ r,
because H = ∅, there are no proved atoms.

Exercise 2 (10pt). Write an ASP program that generates all ways to place 4 bishops in a chessboard
so that they do not attack each other. Use predicate bishop(X,Y) meaning there is a bishop at row X

and column Y. (NOTE: in chess, bishops attack other pieces in the same diagonal).

#const n=8.

cell(1..n,1..n).

4 {bishop(X,Y): cell(X,Y)} 4.

:- bishop(X,Y), bishop(X’,Y’), |X-X’|=|Y-Y’|, X!=X’.

#show bishop/2.

Exercise 3 (8pt). The following telingo program tries to move a robot in a grid from an initial position
at (0,0) to a goal position at (3,4). Complete the program to fulfil the two missing requirements: (1)
move the robot to some adjacent position (up, down, left or right); (2) the robot cannot step out of the
grid.

#program initial.

grid(0..3,0..4).

wall(0,2). wall(2,2). wall(3,2). robot(0,0). goal(3,4).

#program dynamic.

% Move the robot to some adjacent position

1 { robot(X+1,Y); robot(X-1,Y); robot(X,Y+1); robot(X,Y-1) } 1 :- ’robot(X,Y).

:- robot(X,Y), _wall(X,Y). % Do not step into a wall

:- robot(X,Y), not _grid(X,Y). % Do not step out of the grid

#program final.

:- robot(X,Y), not _goal(X,Y). % Reach the goal at last state

Exercise 4 (4pt). Write a formula in Description Logic (DL) that describes the set of red (Red) cars
(Car) that have some foreign (Foreign) owner (owned by).

Red u Cap u ∃owned by .Foreign

